Communication Limits of Distributed Algorithms for Statistical Learning

Yuxin Su

Department of Computer Science and Engineering The Chinese University of Hong Kong

January 28, 2015

Yuxin Su (CSE@CUHK)

Communication Limits

January 28, 2015 1 / 19

- Distributed Machine Learning
- Another Perspective

2 General Information-theoretic Framework

- General Framework
- Result

• Distributed Machine Learning

Another Perspective

2 General Information-theoretic Framework

- General Framework
- Result

• The volume of data is quite large

- Model is big enough like huge kernel or big latent matrix
- How to achieve fast response?

- The volume of data is quite large
- Model is big enough like huge kernel or big latent matrix
- How to achieve fast response?

- The volume of data is quite large
- Model is big enough like huge kernel or big latent matrix
- How to achieve fast response?

Wait for communication

- MapReduce
- Bulk Synchronous Parallel
- GraphLab

Trade-off between communication and performance

- Petuum
- Many global approximation methods from local sub-solution
 - Local computation -> reduce to global result

Wait for communication

- MapReduce
- Bulk Synchronous Parallel
- GraphLab

Trade-off between communication and performance

- Petuum
- Many global approximation methods from local sub-solution
 - Local computation -> reduce to global result

- Distributed Machine Learning
- Another Perspective

2 General Information-theoretic Framework

- General Framework
- Result

Memory constrain

kernel methods

Sequential access constrain

Online learning

Communication Constrain

Distributed machine learning

Partial access to the underlying data

- Matrix completion
- Multi-armed bandit problem

Communication constrain vs Partial access

Yuxin Su (CSE@CUHK)

Communication Limits

January 28, 2015 9 / 19

э

- Distributed Machine Learning
- Another Perspective

2 General Information-theoretic Framework

- General Framework
- Result

э

- How the learning algorithms interact with the training data
- How these constrains impact the performance

э

(b, n, m) protocol

Given access to a sequence of $m \times n$ i.i.d instance in \mathbb{R}^d , an algorithm is a (b, n, m) protocol if it has the following form:

- For *t* = 1, ..., *m*
 - Let X^t be a batch of n i.i.d instances
 - Compute message $W^t = f_t(X^t, W^1, \dots, W^{t-1})$

• Return
$$W = f(W^1, \ldots, W^m)$$

 W^t are constrained to be only *b* bits.

In distributed setting

There are m machines, each machine will received a set of messages in serial order.

It is similar to "exploration and exploitation" strategy in multi-armed bandit problem.

Definition

Consider the set of product distributions $\{\Pr_j(\cdot)\}_{j=1}^d$ over $\{-1,1\}^d$ defined via $\mathbb{E}_{\mathbf{x}\sim\Pr_j(\cdot)}[x_i] = 2\rho \mathbf{1}_{i=j}$ for all coordinates i = 1, ..., d. Given an i.i.d sample of $m \times n$ instances generated from $\Pr_j(\cdot)$, where j is unknown, detect j.

Theorem

Consider the hide-and-seek problem. Given $m \times n$ samples, if \tilde{J} is the coordinate with the highest empirical average, then:

$$Pr_j(\widetilde{J}=j) \ge 1 - 2d\exp(-\frac{1}{2}mn\rho^2)$$

Theorem

Consider the hide-and-seek problem on d > 1 coordinates, with some bias $\rho \leq 1/4$ and sample size m. The for any estimate \widetilde{J} of the biased coordinate returned by an (b,1,m) protocol, there exists some coordinate j such that:

$$Pr_j(\widetilde{J}=j) \leq \frac{3}{d} + 21\sqrt{m\frac{
ho^2 b}{d}}$$

Implication

For any algorithm based on (b, 1, m) protocol, it requires sample size m to reliably detect some j.

$$m \ge \Omega(\frac{d}{b\rho^2})$$

Theorem

Consider the hide-and-seek problem on d > 1 coordinates, with some bias $\rho \leq 1/4n$ and sample size $m \times n$. Then for any estimate \widetilde{J} of the biased coordinate returned by any (b, n, m) protocol, there exists some coordinate j such that:

$$Pr_j(\widetilde{J}=j) \leq \frac{3}{d} + 5\sqrt{mn\min\left\{\frac{10\rho b}{d},\rho^2\right\}}$$

Implication

For any algorithm based on (b, n, m) protocol, it requires sample size at least $\Omega(\max\left\{\frac{(d/b)}{\rho}, \frac{1}{\rho^2}\right\})$ to reliably detect some *j*.

- Distributed Machine Learning
- Another Perspective

2 General Information-theoretic Framework

- General Framework
- Result

э

Generic regret lower bound for partial access

 $\Omega(\sqrt{(d/b)T})$

- *d* is the dimension of loss or reward vector.
- *b* is the dimension of extracted vector from received message.
- T is the number of round.

Trade-off between communication and sample complexity

For serial protocol on i.i.d data, the lower bound of communication is $\tilde{\Omega}(d^2)$ per machine.

• *d* is the dimension of problem.

Whether the results for distributed algorithms can be extended to more interactive protocols, where the different machines can communicate over several rounds.