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Matrix Completion Problem
 Problem: given a partially-observed noisy matrix M, we 

would like to approximately complete it.

 Application: recommendation systems
 Mu,i is rating of item i by user u.
 Naturally sparse: most are unknown.
 We want to estimate unrated items.
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Low-rank Assumption
 Common practice: low-rank assumption.

 Incomplete SVD: 

Observed Unobserved

≈
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Ordering Problem
 Motivation: we usually care about relative order of 

preference, not exact score.
 Order items according to the (partial) preferences of 

a given user.
 Example: for the following user who rated 4 ratings,

5 3 3 4
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> >

>
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Talk Agenda & Contribution
 Paired loss functions

 How to solve ordering problem?

 Local Low-Rank Assumption
 Why and how to tackle diminishing returns?

 Algorithm
 Should be scalable for big data.

 Experimental analysis
 Two frameworks.
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Ordering Function
 Learn an ordering function f , such that f(u, i) > f(u, j)

if Mu,i > Mu,j.
 Not necessarily f(u, i) ≈ Mu,i.

 Pair-wise Loss function L(ΔM, Δf)

 ΔM = Mu,i－Mu,j : difference of observed ratings.
 Δf = fu,i－fu,j: difference of estimated ratings.
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Pair-wise Loss L(ΔM, Δf)
 Zero-one loss

 Assigns (same) positive loss when ΔM Δf < 0.
 Not differentiable.

 Multiplicative Additive

Log-loss ΔM log(1 + e－Δf) log(1 + eΔM－Δf)

Exp-loss ΔM exp{－Δf} exp{ΔM－Δf}
Hinge-loss ΔM [－Δf]+ [ΔM－Δf]+
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Global Approximation
 With f(u, i) = [UVT]u,i, solve matrix factorization 

problem with respect to a paired loss L.

 We model using form,

so as to minimize a pair-wise loss. 
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Diminishing Returns
 Small improvement as capacity increases.
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Why diminishing returns?
 Hypotheses

 H1: M has low rank; it reflects best possible prediction.
 H2: M has high rank; diminishing returns due to over-fitting, 

or convergence to a poor local optimum.

 In recommendation systems,
 H2 is a realistic assumption.
 H1 is unrealistic globally, but it’s realistic locally.

 The rating matrix is only locally low-rank.
 Low-rank only with subset of similar users and items.
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Local Low-rank Matrix Approx.

Users

Items

+

+

+ +

[Lee et al, 2013 ICML]
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Learning Algorithm
 Repeat:

 Step 1:
 Step 2:
 Step 3:

U

V

Select an anchor point.
Calculate user/item weight using kernel smoothing.
Solve a weighted matrix factorization problem.

Item Weight
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t

 Run in Parallel:
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Evaluation
 Goal: Recommend most preferable items based on 

precise estimation of order of preference.

 Criteria
 Zero-One Error: the ratio of correctly ordered test pairs.
 Average Precision: the ratio of preferred items in the list.
 NDCG@k: optimality of the order of recommendation list.

 Dataset: MovieLens, EachMovie, Yelp
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Data Split
 Fixed ratio

 For each user, 50% of ratings are used for training, rest of 
them are for testing.

 More realistic: take cold/cool-start users into account.
 Used to see effects of parameters.

 Fixed number
 Users with more than 20 ratings are considered. 10 ratings are 

used for training, and rest of them are for testing.
 More stable: consider users with sufficient ratings only.
 Widely used in literature with N=10.
 Used to compare with existing methods.
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Effect of Capacity
Zero-one: With higher 
dimension, converges 
slowly.

AvgP, NDCG: With 
higher dimension, it 
less overfits.

All: With higher 
dimension, ultimate 
performance is better.
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Effect of Number of Local Models
Zero-one: With more 
local models, 
converges slowly.

AvgP, NDCG: With 
more local models, it 
less overfits.

All: With more local 
models, ultimate 
performance is better.
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Effect of Loss Functions

Zero-one: Hinge[A], 
Log[A] performs best.

AvgP, NDCG: Log[M], 
Exp[M] performs best.

All: Convergence and 
overfitting depends on
loss function.
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Comparison with other methods

Method Average 
Precision NDCG@10

M
ov

ie
Le

ns CofiRank 0.6632 0.6502

GCR (SVD with ranked loss) 0.7209 0.6990

LCR 0.7406 0.7152

Ea
ch

M
ov

ie CofiRank 0.7491 0.6635

GCR (SVD with ranked loss) 0.7088 0.6998

LCR 0.7307 0.7166

Ye
lp

CofiRank 0.7246 0.6997

GCR (SVD with ranked loss) 0.7754 0.7465

LCR 0.7903 0.7575
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Take-home Messages
 In recommendation systems, the rating matrix is low-

rank only locally.

 Local low-rank assumption is realistic for ordering 
problem as well as rating prediction.

 LCR (Local Collaborative Ranking) algorithm is highly 
parallelizable and scalable.
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Source code available soon!
 PREA toolkit: http://prea.gatech.edu
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