LCR: Local Collaborative Ranking

Joonseok Lee

with Samy Bengio, Seungyeon Kim, Guy Lebanon, Yoram Singer

Matrix Completion Problem

- Problem: given a partially-observed noisy matrix M, we would like to approximately complete it.
- Application: recommendation systems
 - $M_{u,i}$ is rating of item *i* by user *u*.
 - Naturally sparse: most are unknown.
 - We want to estimate unrated items.

Low-rank Assumption

• Common practice: low-rank assumption. $M \approx UV^T \in \mathbb{R}^{n_1 \times n_2}, \qquad U \in \mathbb{R}^{n_1 \times r}$

 $V \in \mathbb{R}^{n_2 \times r}$

 $r \ll \min(n_1, n_2)$

Ordering Problem

- Motivation: we usually care about relative order of preference, not exact score.
- Order items according to the (partial) preferences of a given user.
- Example: for the following user who rated 4 ratings,

Talk Agenda & Contribution

Paired loss functions

- How to solve ordering problem?
- Local Low-Rank Assumption
 - Why and how to tackle diminishing returns?

Algorithm

Should be scalable for big data.

Experimental analysis

Two frameworks.

Ordering Function

- Learn an ordering function f, such that f(u, i) > f(u, j)if $M_{u,i} > M_{u,j}$.
 - Not necessarily $f(u, i) \approx M_{u,i}$.
- Pair-wise Loss function $L(\Delta M, \Delta f)$

$$E(f) = \sum_{u} \sum_{(i,j) \in M_u} L(M_{u,i} - M_{u,j}, f(u,i) - f(u,j))$$

- $\Delta M = M_{u,i} M_{u,j}$: difference of observed ratings.
- $\Delta f = f_{u,i} f_{u,j}$: difference of estimated ratings.

Pair-wise Loss $L(\Delta M, \Delta f)$

Zero-one loss

- Assigns (same) positive loss when $\Delta M \Delta f < 0$.
- Not differentiable.

Global Approximation

• With $f(u, i) = [UV^T]_{u,i'}$ solve matrix factorization problem with respect to a paired loss *L*.

$$\min_{U,V} \sum_{u} \sum_{(i,j)\in M_u} L(M_{u,i} - M_{u,j}, [UV^T]_{u,i} - [UV^T]_{u,j})$$

so as to minimize a pair-wise loss.

Diminishing Returns

Small improvement as capacity increases.

Why diminishing returns?

Hypotheses

- H1: M has low rank; it reflects best possible prediction.
- H2: M has high rank; diminishing returns due to over-fitting, or convergence to a poor local optimum.
- In <u>recommendation systems</u>,
 - **H2** is a realistic assumption.
 - **H1** is unrealistic globally, but it's realistic locally.
- The rating matrix is only locally low-rank.
 - Low-rank only with subset of similar users and items.

Local Low-rank Matrix Approx.

[Lee et al, 2013 ICML]

Learning Algorithm

Run in Parallel:

- Step 1: Select an anchor point.
- Step 2: Calculate user/item weight using kernel smoothing.
- Step 3: Solve a weighted matrix factorization problem.

Evaluation

- Goal: Recommend most preferable items based on precise estimation of order of preference.
- Criteria
 - Zero-One Error: the ratio of correctly ordered test pairs.
 - Average Precision: the ratio of preferred items in the list.
 - NDCG@k: optimality of the order of recommendation list.
- Dataset: MovieLens, EachMovie, Yelp

Data Split

Fixed ratio

- For each user, 50% of ratings are used for training, rest of them are for testing.
- More realistic: take cold/cool-start users into account.
- \rightarrow Used to see effects of parameters.

Fixed number

- Users with more than 20 ratings are considered. 10 ratings are used for training, and rest of them are for testing.
- More stable: consider users with sufficient ratings only.
- Widely used in literature with N=10.
- → Used to compare with existing methods.

Effect of Capacity

Effect of Number of Local Models

Effect of Loss Functions

Comparison with other methods

	Method	Average Precision	NDCG@10
MovieLens	CofiRank	0.6632	0.6502
	GCR (SVD with ranked loss)	0.7209	0.6990
	LCR	0.7406	0.7152
EachMovie	CofiRank	0.7491	0.6635
	GCR (SVD with ranked loss)	0.7088	0.6998
	LCR	0.7307	0.7166
Yelp	CofiRank	0.7246	0.6997
	GCR (SVD with ranked loss)	0.7754	0.7465
	LCR	0.7903	0.7575

Take-home Messages

- In recommendation systems, the rating matrix is lowrank only locally.
- Local low-rank assumption is realistic for ordering problem as well as rating prediction.
- LCR (Local Collaborative Ranking) algorithm is highly parallelizable and scalable.

Source code available soon!

PREA toolkit: http://prea.gatech.edu

