

Uncovering the Small Community Structure in Large Networks: A Local Spectral Approach

Yixuan Li¹, Kun He², David Bindel¹ and John E. Hopcroft¹

¹Cornell University, USA

²Huazhong University of Science and Technology, China

May 20th, 2015

Preliminaries

Algorithm Overview

Seeding

Comparison and Discussion

Miscellaneous

Uncover Small Community Structure

How can we find a community of hundreds in a network of billions?

Figure : Visualization of Facebook friendship data¹.

¹ www.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919

Global Structure \rightarrow Local Structure

Reduce Complexity

Enables finding communities in time functional to the size of the community (\sim 100) rather than the size of the entire graph (\sim billions)

Improve Accuracy

Enables finding out how many communities is an individual in, and what are these communities.

Introduction

Preliminaries

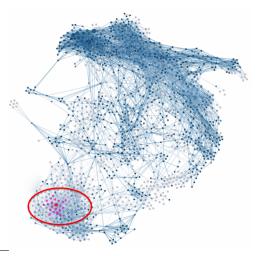
Algorithm Overview

Seeding 000 Comparison and Discussion

Miscellaneous

Local expansion

- What is a seed set ²³⁴?
- What is local expansion useful for?
- How can we conduct local expansion? (short-step random walks)



²K. Kloster and D. F. Gleich. Heat kernel based community detection. In KDD'14.

³I. M. Kloumann and J. M. Kleinberg. Community membership identification from small seed sets. In KDD'14.

⁴J. J. Whang, D. F. Gleich, and I. S. Dhillon. Overlapping community detection using seed set expansion. In CIKM'13.

Synthetic datasets: LFR benchmark graphs⁵

- Built-in community structure, power-law distribution.
- om: overlapping memership. (2 \sim 8)
- μ (mixing parameter): controls the fraction of links for each vertex to connect outside. ($\mu = 0.1, \mu = 0.3$)

Real datasets⁶

⁶Stanford Network Analysis Project: http://snap.stanford.edu

⁵A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs for testing community detection algorithms. Physical Review E, 78(4):046110, 2008.

o Pre

liminaries

Algorithm Overview

Seeding

Comparison and Discussion

Miscellaneous

Existing Spectral Methods

- Consider an undirected graph *G* = (*V*, *E*) with *n* nodes and *m* edges.
- A is the adjacency matrix; N = D⁻¹A is the transition matrix where D is the diagonal matrix of node degrees.
- Find out the dominant eigenvectors of N.

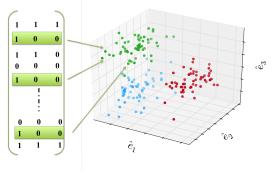


Figure : Spectral clustering methods

reliminaries

Algorithm Overview

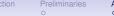
Seeding 000 Comparison and Discussion

Miscellaneous

Existing Spectral Methods

Drawbacks:

- Inefficient computation of eigenvectors
- Unable to partition overlapping communities



Algorithm Overview

Seeding 000 Comparison and Discussion

Miscellaneous

Local Spectral Clustering

Find *local spectra*:

- Random walks starting from a seed set S.
- Consider the span of ℓ -dimensional probability vectors $\bm{P}_{0,\ell}=[\bm{p}_0,\bm{p}_1,...,\bm{p}_\ell].$
- Initial invariant subspace: $\mathbf{V}_{0,\ell}$.
- Use the following recurrence to calculate the local spectra $V_{k,\ell}$ after *k* steps of random walk

$$\mathbf{V}_{k,\ell}\mathbf{R}_{k,\ell} = \mathbf{V}_{k-1,\ell}\bar{\mathbf{A}},\tag{1}$$

where $\bar{\mathbf{A}} = \mathbf{D}^{-1/2} (\mathbf{A} + \mathbf{I}) \mathbf{D}^{-1/2}$ is the normalized adjacency matrix of the graph.

Local Spectral Clustering

To find out the members in the same community as the seed set S belong to, is equivalent to find rows in $V_{k,\ell}$ that point in nearly the same direction as nodes in S.

To seek a sparse vector **y** in the span of $V_{k,\ell}$ such that seed nodes are in its support.

$$\begin{array}{ll} \min \quad \mathbf{e}^T \mathbf{y} = ||\mathbf{y}||_1\\ s.t. \quad \mathbf{y} = \mathbf{V}_{k,\ell} \mathbf{x},\\ \mathbf{y} \geq \mathbf{0},\\ \mathbf{y}(\mathcal{S}) \geq 1 \end{array}$$

Comparison and Discussion

Miscellaneous

Community Size Determination

We can obtain a "candidate community" by truncating sorted sparse vector $\hat{\mathbf{y}}$. But we still need to pin down to answer the following question:

Q.1

What defines "good" communities and when do they emerge as we expand the seed set?

Seedi 000 Comparison and Discussion

Miscellaneous

Community Size Determination

The random walk techniques produce communities with conductance guarantees⁷.

$$\psi(V) = \frac{|\partial(V)|}{\min(Vol(V), Vol(\bar{V}))},$$
(2)

where $|\partial(V)|$ denote the cut size, and Vol(V) is the sum of node degree in set V.

A.1

The expansion of seed set can stop and form a natural community when it encounters a low-conductance cut.

¹Andersen, Reid, and Kevin J. Lang. "Communities from seed sets." Proceedings of the 15th international conference on World Wide Web. ACM, 2006.

aries Algo

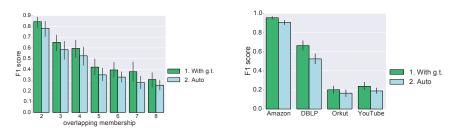
Algorithm Overview

Seeding 000 Comparison and Discussion

Miscellaneous

Community Size Determination

Comparison of the average F1 score with ground truth and automatic size determination:



LFR benchmark graphs ($\mu = 0.3$)

Real datasets

Complexity Reduction by Sampling

If one wants to uncover a small community within a network with billions of vertices, it would be very costly to take the whole graph into account.

Q.2

How to find a small community in time functional to the size of the community rather than that of the entire graph?

Algorithm Overview

Seeding

Comparison and Discussion

Miscellaneous

Complexity Reduction by Sampling

In practice, the unknown members in the target community are more likely to be around the seed members, and are usually a few steps away from the seeds.

A.2

Sample the graph by cutting off the redundant nodes with low probability being reached after short random walk.

Dataset	Coverage	Sample	$ \mathcal{C} _{avg}$	Subgraph
	ratio	rate	-	size
Amazon	1.00	0.0087	39	2913
DBLP	0.98	0.0076	251	2409
YouTube	0.66	0.0033	79	3745
Orkut	0.64	0.0011	83	3379

Table : Statistics of the mean values for the sampling method on real datasets.

Seeding Method

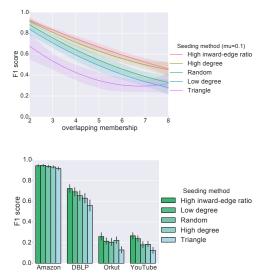
The quality of seed set is crucial to the detection accuracy. The alternative seeding methods can be strategically applied by domain experts in different scenarios based on the availability of candidate seeds.

Q.3: What defines a "good" seed set and how many seeds are needed in order to define a community?

Seeding Method

Adopt |S| = 3 seeds for each of the seeding method:

- High degree seeding
- Low degree seeding
- Random seeding
- Triangle seeding
- High inward-edge ratio seeding



Seed Set Size

For LFR benchmark graphs, we test with five different seeding ratios: 2%, 4%, 6%, 8% and 10%. For real networks, varying seed set size has little effect on the performance.

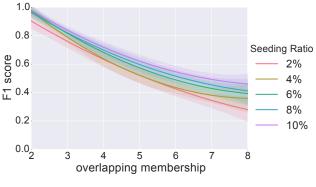


Figure : LFR benchmark graphs with $\mu = 0.1$.

Introduction

Preliminaries

Algorithm Overview

Seeding 000 Comparison and Discussion

Miscellaneous

Comparison with localized algorithms

- Heat Kernel (Kloster et. al, KDD'14)
- PageRank (Kloumann et. al, KDD'14)
- Seed Set Expansion (Whang et. al, CIKM'13)
- Local Expansion via Minimum One Norm

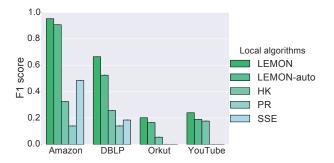


Figure : Comparison of the average F1 score with state-of-the-art local detection algorithms.

Networks are not all similar and we cannot assume one algorithm works for finding communities in a network will behave the same on the other networks.

Q.4

How the local expansion approach is suited for uncovering communities in different types of networks?

Discussion

Empirical comparison between synthetic and real networks:

A.4

- *LEMON* is less sensitive to the random walk step and subspace dimension on real networks than that on LFR benchmark graphs.
- *LEMON* is less sensitive to the seed set size on real networks than that on LFR benchmark graphs.
- *LEMON* is more sensitive to the high-degree seeds on real networks than that on LFR benchmark graphs.

Future Work

Hierarchical Structure

Look further into some larger low-conductance communities and see if a hierarchical structure exists. In this case, some large social group consisting of several small cliques is likely to be discovered.

Membership Detection

The local spectral clustering method could be potentially applied to the membership detection problem, i.e., finding all the communities that an arbitrary vertex belongs to.

Introduction	Preliminaries o	Algorithm Overview	Seeding	Comparison and Discussion	Miscellaneous ●○○○○○
--------------	--------------------	--------------------	---------	---------------------------	-------------------------

Q & A

Evaluation Metric

Use F1 score to quantify the similarity between the algorithmic community C and the ground truth community C^* :

$$F_{1}(\mathcal{C}, \mathcal{C}^{*}) = \frac{2 \cdot Precision(\mathcal{C}, \mathcal{C}^{*}) \cdot Recall(\mathcal{C}, \mathcal{C}^{*})}{Precision(\mathcal{C}, \mathcal{C}^{*}) + Recall(\mathcal{C}, \mathcal{C}^{*})},$$
(3)

where the precision and recall are defined as:

$$Precision(\mathcal{C}, \mathcal{C}^*) = \frac{|\mathcal{C} \cap \mathcal{C}^*|}{|\mathcal{C}|},$$
(4)

$$Recall(\mathcal{C}, \mathcal{C}^*) = \frac{|\mathcal{C} \cap \mathcal{C}^*|}{|\mathcal{C}^*|}.$$
(5)

Parameter Selection

- Fix k = 3, vary ℓ from 1 to 15
- Fix $\ell = 3$, vary k from 1 to 15
- The observation holds for the remaining datasets as well.

Introduction

Preliminaries

Algorithm Overview

Seeding 000 Comparison and Discussion

Miscellaneous

Parameters of LFR graphs

Parameter	Description	Value
n	graph size	5000
μ	mixing parameter	$\{0.1, 0.3\}$
$\frac{\mu}{k}$	average degree	10
k_{max}	maximum degree	50
$ \mathcal{C} _{min}$	minimum community size	20
\mathcal{C}_{max}	maximum community size	100
$ au_1$	node degree distribution exp.	2
$ au_2$	community size distribution exp.	1
om	overlapping membership	$\{2, 3,, 8\}$
on	overlapping node	2500

Figure : Parameters for the LFR datasets.

ntroduction	Preliminaries	Algori
000	0	0000

Algorithm Overview

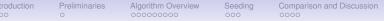
Seeding 000 Comparison and Discussion

Miscellaneous

Stats of Real Datasets

Dataset	Vertices	Links	Average	Maximum	Community
			membership	membership	size mean
Amazon	334,863	925,872	0.11	49	39
DBLP	317,080	1,049,866	0.22	11	251
YouTube	1,134,890	2,987,624	0.05	41	79
Orkut	3,072,441	117,185,083	9.56	504	83

Figure : Statistics for the real networks.

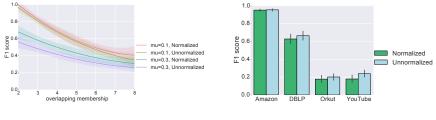


Miscellaneous

Further Extension

We enforce a bias towards the high-degree vertices at the beginning of the random walk by normalizing the initial probability vector:

$$p_0(v_i) = \begin{cases} d(v_i) / \text{Vol}(\mathcal{S}) & \text{if } v_i \in \mathcal{S} \\ 0 & \text{otherwise} \end{cases}$$
(6)



LFR benchmark graphs

Real datasets