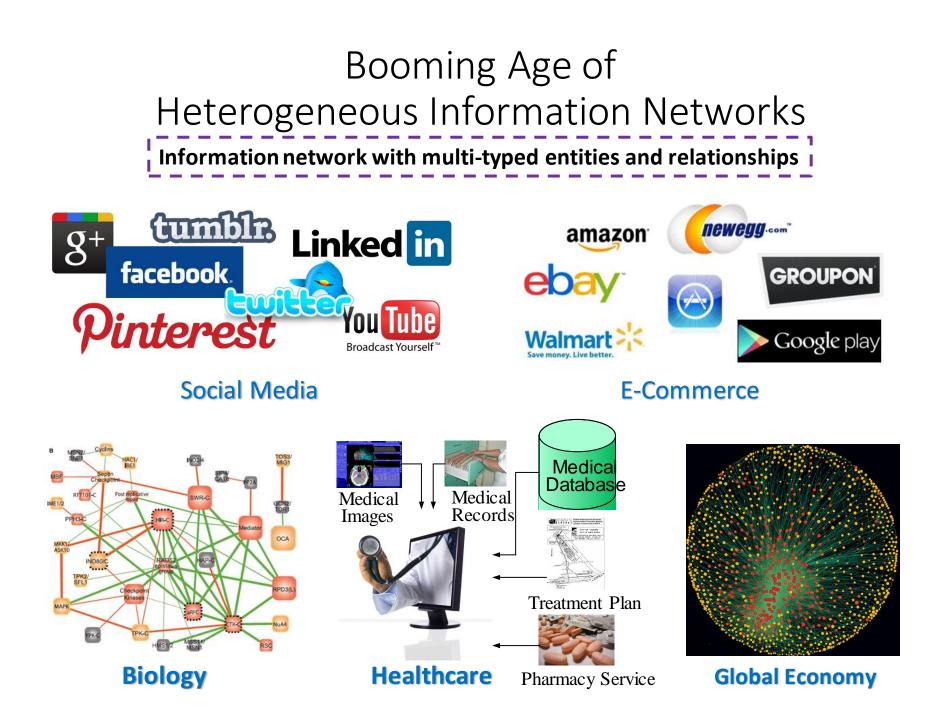


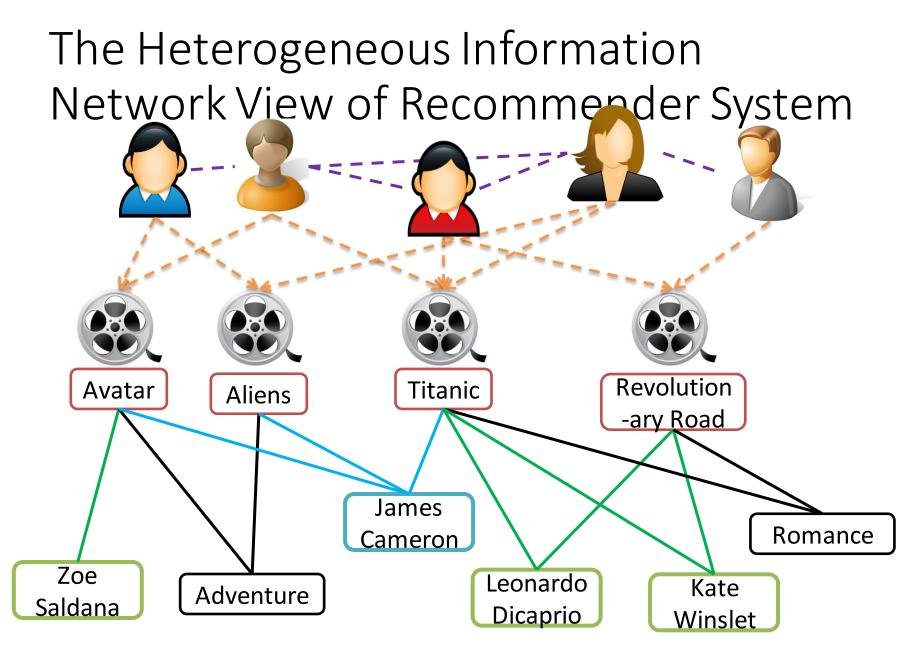
Personalized Entity Recommendation: A Heterogeneous Information Network Approach

Xiao Yu, Xiang Ren, Yizhou Sun†, Quanquan Gu, Bradley Sturt, Urvashi Khandelwal, Brandon Norick, Jiawei Han University of Illinois, at Urbana Champaign †Northeastern University 02/26/2014

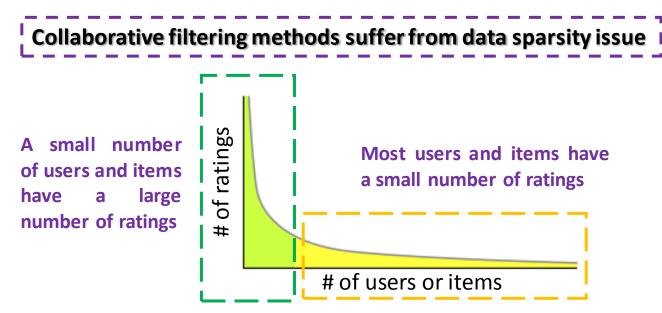


Hybrid Collaborative Filtering with Networks

- Utilizing network relationship information can enhance the recommendation quality
- However, most of the previous studies only use single type of relationship between users or items (e.g., social network Ma,WSDM'11, trust relationship Ester, KDD'10, service membership Yuan, RecSys'11)



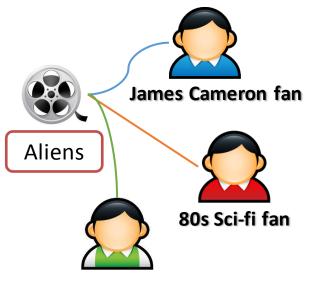
Relationship heterogeneity alleviates data sparsity



- Heterogeneous relationships complement each other
- Users and items with limited feedback can be connected to the network by different types of paths
 - Connect new users or items (cold start) in the information network

Relationship heterogeneity based personalized recommendation models

Different users may have different behaviors or preferences



Sigourney Weaver fan

Different users may be interested in the same movie for different reasons

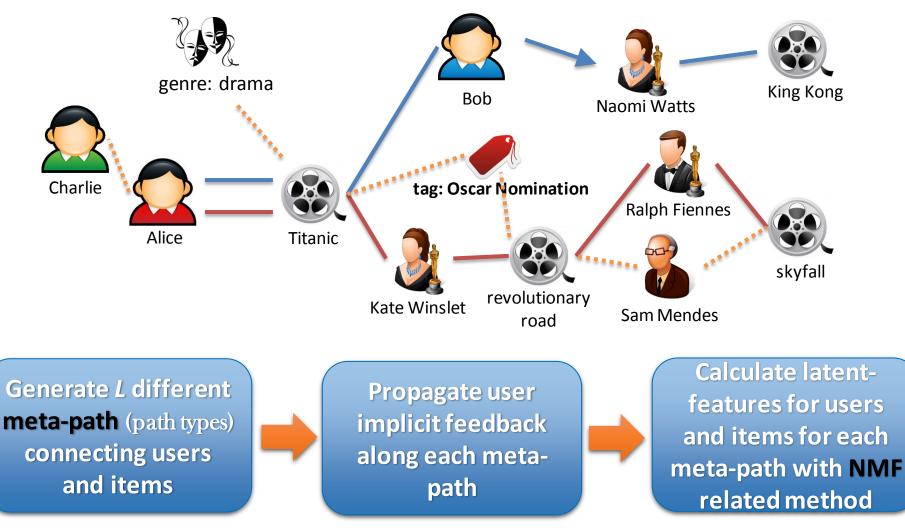
Two levels of personalization Data level

 Most recommendation methods use one model for all users and rely on personal feedback to achieve personalization

Model level

• With different entity relationships, we can learn personalized models for different users to further distinguish their differences

Preference Propagation-Based Latent Features



Recommendation Models

Observation 1: Different meta-paths may have different importance

Global Recommendation Model

$$\hat{r}(u_i, e_j) = \sum_{q=1}^{L} \theta_q \cdot \frac{\hat{U}_i^{(q)} \hat{V}_j^{(q)T}}{\hat{U}_i^{(q)} \hat{V}_j^{(q)T}}$$
(1)

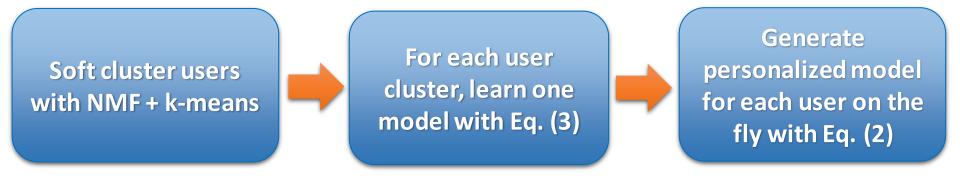
Observation 2: Different users may require different models

Personalized Recommendation Model

$$\hat{r}_{p}(u_{i}, e_{j}) = \sum_{k=1}^{c} \frac{sim(C_{k}, u_{i})}{\sum_{q=1}^{c} \theta_{q}^{\{k\}} \cdot \hat{U}_{i}^{(q)} \hat{V}_{j}^{(q)T}}$$
(2)

Parameter Estimation

- Bayesian personalized ranking (Rendle UAI'09)
- Objective function sigmoid function $\sigma(x) = \frac{1}{1+e^{-x}}$. $\min_{\Theta} -\sum_{u_i \in \mathcal{U}} \sum_{(e_a > e_b) \in R_i} \ln \sigma(\hat{r}(u_i, e_a) - \hat{r}(u_i, e_b)) + \frac{\lambda}{2} \|\Theta\|_2^2 \quad (3)$ for each correctly ranked item pair i.e., u_i gave feedback to e_a but not e_b



Learning Personalized Recommendation Model

Experiment Setup

Datasets

Name	#Items	#Users	#Ratings	#Entities	#Links
IM100K	943	1360	89,626	60,905	146,013
Yelp	11,537	43,873	229,907	285,317	$570,\!634$

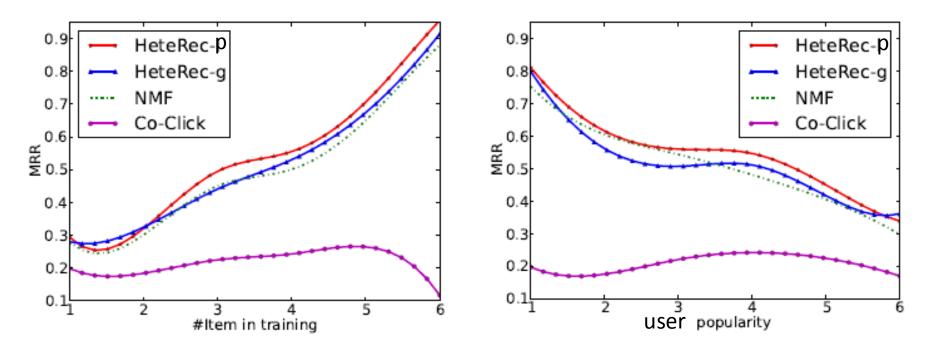
- Comparison methods:
 - Popularity: recommend the most popular items to users
 - Co-click: conditional probabilities between items
 - NMF: non-negative matrix factorization on user feedback
 - Hybrid-SVM: use Rank-SVM with plain features (utilize both user feedback and information network)

Performance Comparison

Method	IM100K				Yelp			
	Prec1	Prec5	Prec10	MRR	Prec1	Prec5	Prec10	MRR
Popularity	0.0731	0.0513	0.0489	0.1923	0.00747	0.00825	0.00780	0.0228
Co-Click	0.0668	0.0558	0.0538	0.2041	0.0147	0.0126	0.01132	0.0371
NMF	0.2064	0.1661	0.1491	0.4938	0.0162	0.0131	0.0110	0.0382
Hybrid-SVM	0.2087	0.1441	0.1241	0.4493	0.0122	0.0121	0.0110	0.0337
HeteRec-g	0.2094	0.1791	0.1614	0.5249	0.0165	0.0144	0.0129	0.0422
HeteRec-l	0.2121	0.1932	0.1681	0.5530	0.0213	0.0171	0.0150	0.0513

HeteRec personalized recommendation (HeteRec-p) provides the best recommendation results

Performance under Different Scenarios



(a) Performance Change with User Feed- (b) Performance Change with User Feedback Number back Popularity

HeteRec-p consistently outperform other methods in different scenarios better recommendation results if users provide more feedback better recommendation for users who like less popular items

Contributions

- Propose latent representations for users and items by propagating user preferences along different meta-paths
- Employ Bayesian ranking optimization technique to correctly evaluate recommendation models
- Further improve recommendation quality by considering user differences at model level and define personalized recommendation models
 - Two levels of personalization