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ABSTRACT
We consider the problem of jointly training structured mod-
els for extraction from multiple web sources whose records
enjoy partial content overlap. This has important applica-
tions in open-domain extraction, e.g. a user materializing a
table of interest from multiple relevant unstructured sources;
or a site like Freebase augmenting an incomplete relation by
extracting more rows from web sources. Such applications
require extraction over arbitrary domains, so one cannot use
a pre-trained extractor or demand a huge labeled dataset.
We propose to overcome this lack of supervision by using
content overlap across the related web sources. Existing
methods of exploiting overlap have been developed under
settings that do not generalize easily to the scale and diver-
sity of overlap seen on Web sources.

We present an agreement-based learning framework that
jointly trains the models by biasing them to agree on the
agreement regions, i.e. shared text segments. We present
alternatives within our framework to trade-off tractability,
robustness to noise, and extent of agreement enforced; and
propose a scheme of partitioning agreement regions that
leads to efficient training while maximizing overall accuracy.
Further, we present a principled scheme to discover low-noise
agreement regions in unlabeled data across multiple sources.

Through extensive experiments over 58 different extrac-
tion domains, we establish that our framework provides sig-
nificant boosts over uncoupled training, and scores over al-
ternatives such as collective inference, staged training, and
multi-view learning.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Parameter learning; I.2.7
[Artificial Intelligence]: Text Analysis

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
There continues to be increasing research and commercial

interest in harvesting and querying for structured data on
the Web. This calls for automated techniques for converting
organically created unstructured web sources to structured
views that align with a user’s needs. Since the space of pos-
sible domains that a user could query is open-ended, it is
necessary to design information extraction methods that do
not depend on either domain-specific extraction rules or a
large supervised labeled set as in classical tasks such as ex-
tracting named entities, citations, or personnel records. On
the web, the lack of training data is often compensated by
redundancy of representation, wherein the same information
is expressed in multiple formats and styles. In this paper we
show how to exploit such redundancy for improving the ac-
curacy of extractors that convert HTML lists into structured
tables. HTML lists are a much better source of structured
data than totally unformatted free-format documents, and
are a valuable component of the recently popularized table
materialization tasks on the Web [13, 7, 10, 1].

In table materialization, a user wishes to compile a table
of structured records, say a table of oil spills with fields like
TankerName, SpillLocation, and SpillDate. The user starts
with a small seed set of rows, and based on a keyword match
filters several HTML list sources that provide more records,
as shown in Figure 1. However, each HTML source is un-
structured and in order to obtain clean consolidated results
from the union of these sources, it is necessary to first con-
vert each list record to a structured row containing the fields
of interest. The lists are not necessarily machine generated,
therefore pattern-based extractors (as in Web wrappers) are
ruled out. We resort to statistical models such as Condi-
tional Random Fields (CRFs) to convert each of the S lists
into a set of structured records. As in Figure 1, each list
source usually has a distinct style and arbitrary feature set,
so it is necessary to train a separate CRF for each source.
Using the seed query rows we can obtain only a very limited
amount of labeled data in each list source [13]. However,
many text segments are repeated across the various sources.
For example, in the snippet of the three list sources in Fig-
ure 1 the text segment“Atlantic Empress”appears in sources
1 and 2, “Trinidad and Tobago” appears in source 2 and 3,
and “Tobago” appears in all three sources. The question we
address in this paper is how to train the S extraction mod-
els, where each model has only a limited amount of labeled



Prudhoe Bay Alaska  2006

Ixtoc Gulf of Mexico 1979Query table 

List source 1 List source 2 List source 3

- Norway 1980

… … …

… … …

Gulf war oil spill Persian Gulf 1991

… - …

… - …

- Trinidad and Tobago 1979

… … …

… … …

Extract

Figure 1: Example structured query to retrieve structured oil spill records from unstructured list sources.
Lists differ a lot in style and features, thus need dedicated extraction models.

data but where among the unlabeled records of each source
there are many overlapping text segments.

We propose a training objective to jointly train all S mod-
els so as to maximize the likelihood of the labeled data on
the one hand, and the likelihood of the models agreeing on
the entity labels of the overlapping text on the other. Typ-
ically this, and many other related training objectives lead
to an intractable inference problem during training, usually
tackled with approximate inference [15]. However, we show
that an alternative strategy based on partitioning the set
of overlapping segments into subsets of tractable segments
enables more efficient training, while providing similar ac-
curacy improvements. We present an algorithm for finding
such a partitioning that clusters adjacent segments together
to preserve correlation and hence accuracy, while ensuring
tractability of each cluster. Another challenge of exploiting
overlap is that of choosing an agreement set viz. the set of
overlapping segments on which we desire agreement. We
show that näıve approaches based on enforcing agreement
among all occurrences of a repeated word introduce a lot of
noise in the agreement set. We present an alternative strat-
egy that leads to a significantly cleaner and more compact
agreement set, with vast gains in training time and accuracy.
We present an extensive evaluation on 58 real-life collective
extraction tasks, each enforcing agreement between 2 to 20
sources, and covering a rich spectrum of data characteristics.
We show that the partitioned objective along with our par-
titioning algorithm provides the best trade-offs of accuracy
and training time compared to the alternatives.

2. RELATED APPROACHES
Statistical learning and NLP communities offer several rel-

evant techniques for this problem. An established method
that exploits content repetition is collective inference [22, 6,
17, 11]. When applying it to our problem, the S models are
trained independently ignoring the overlap. During deploy-
ment, inference is done jointly on records of all sources to
encourage agreement in the entity labels of repeated content.

In contrast approaches that exploit content overlap during
training are expected to be more effective than collective in-
ference, whose benefit is limited to repeated text. One such

approach of“growing the seed set” i.e. bootstrapping has been
applied in various information harvesting and extraction set-
tings [2, 8, 13, 21]. In [13] we developed one such strategy
called staged training where we train a more confident source
first, label the records in that source using the trained model,
add the top-few most confident labeled records to the seed
labeled set, use this augmented seed set to generate labeled
records for the next source, and so on. This snow-balling
of the seed set is well-known to occasionally lead to error
cascades and consequent performance degradation.

Another form of label-transfer is used in methods like Co-
Boosting [9], Co-Training [4], and two-view Perceptrons [5].
These methods alternately refine two models in tandem by
each model providing labeled data for the other. The success
of these methods crucially depends on the presence of two or
more views of the data that make independent errors, which
is rarely the case in practice.

Instead of hard label-transfer, a more robust and elegant
approach is to define a single training objective over all mod-
els. One such method is posterior regularization (PR) [12]
that trains the various models so as to minimize the distance
between the posteriors over the labels of the unlabeled data.
PR was shown to achieve significant accuracy gains over the
label transfer approaches [12]. However PR is not directly
applicable to our setting as it is developed in the context
of multi-view learning where multiple models are trained on
different views of a single source. In contrast we have mul-
tiple sources with arbitrary overlapping content. Further,
multi-view learning enjoys noise-free agreement sets where
the records across views are known duplicates instead of as-
sumed duplicates like in our case. Still, our method is similar
as it also defines a joint training objective over all the mod-
els. In Section 6.2 we will show how we can adapt the PR
multi-view objective to our problem and contrast our pro-
posed objective with it both empirically and analytically.

Our problem also differs from multi-task learning that
trains multiple models for different tasks on a single data
source using shared feature representations. Our setup is
closest to the agreement-based learning framework [18, 19]
which trains multiple models so as to maximize the likeli-
hood of agreement on shared variables. However, [18, 19]



assume that all models agree on the same set of variables
— this trivially holds for two sources where these methods
have been applied. In our case any subset of models can
agree on any subset of variables, and the number of sources
is often as large as 20. As the number of sources increases,
there is a bewildering number of ways in which they can
overlap. This makes it challenging to devise objectives that
maximally exploit overlap, but also account for noisy shared
segments, and intractability of training. We are aware of
no study where such issues are addressed in the context of
jointly training more than two sources with partial overlap.

Last, there are scoped-learning methods [3, 23] that as-
sume features to be a mix of global and source-specific func-
tions. In our problem due to lack of labeled data we do not
have any word features, so our sources end up not sharing
any global features in many cases.

3. COLLECTIVE TRAINING
Our goal is to train S Conditional Random Fields (CRFs)

corresponding to the S source lists from which we wish to
extract the columns of a query table Q with a small seed
set of rows. We again stress the need for separate models
as the lists vary a lot in their features, thus ruling out the
possibility of learning a common model for all of them.

The CRF for a list source s ∈ {1, . . . , S} defines a distri-
bution Ps(y|x) over a vector of output labels y = y1, . . . , yn
given tokens x = x1, . . . , xn of a single record x in s. Each
yp ∈ y takes one of a discrete set L of labels denoting
the columns of the query1 and a special label “None of the
above”. The distribution is constructed from a feature set
fs(x,y) that captures various properties of the context in
which data is laid out in the list s, including the presence of
delimiters, HTML tags, frequent words, order of labels, and
so on. Then the CRF defines Ps(y|x,ws) in terms of these
features and parameters ws as:

Ps(y|x,ws) =
1

Z(x,ws)
exp(ws · fs(x,y)) (1)

where Z(x,ws) =
∑

y′ exp(ws · fs(x,y′)) is the normaliz-
ing constant, known as the partition function. As in stan-
dard CRFs, the features decompose over individual posi-
tions (called node features) and pairs of adjacent positions
(called edge features) as follows: fs(x,y) =

∑
p fs(x, yp, p)+

fs(x, yp−1, yp, p). Thus Z(x,ws) can be efficiently calculated
using the forward-backward algorithm. Each list s comes
with a small labeled set Ls = {(Xs1, Ỹs1), . . . , (Xsms , Ỹsms)}
obtained by matching s to the structured rows in query
Q; and many unlabeled records Us = {Xsms+1, . . . ,Xsns}
where ms, ns denote the number of labeled and total records
respectively in source s.

The traditional goal of training is to find a ws that max-
imizes the regularized likelihood of the labeled data Ls:

LLs(Ls,ws) =
∑

(Xsi,Ỹsi)∈Ls

log Ps(Ỹsi|Xsi,ws)− γ||ws||2

(2)
where γ is set via cross-validation to restrict over-fitting.
This objective is concave in ws and is maximized easily using
gradient ascent. The gradient can be computed using exact

1In practice, the label space is encoded in a finer grained
fashion denoting the begin, continuation, end of labels as in
standard information extraction [21]

sum-inference since the features decompose over adjacent
positions. When Ls is small, the parameters ws are not
trained adequately and are often prone to over-fitting.

Our goal is to improve upon traditional training by ex-
ploiting text overlap in the unlabeled data of the various
sources. We next describe how the overlap is represented.

Representing overlap.
We formally represent overlap as an agreement set A com-

prising of a set of shared segments. A shared segment is a
span of contiguous text that occurs in the records of two or
more sources, e.g. Trinidad and Tobago in Figure 1. Thus
each shared segment C ∈ A is associated with a span of
tokens t and a list of triples (s, i, r) indicating the source
s, the record i ∈ Us, and the contiguous range of tokens
r ∈ i that matches t. We do not assume any mutual ex-
clusion between shared segments, and each shared segment
can repeat across an arbitrary number of sources and have
an arbitrary length. Also, a shared segment can repeat in
records from the same source, but we prohibit a shared seg-
ment from spanning two different spans of the same record
to avoid intractability. Figure 2(a) presents an example of
an agreement set comprising of four shared segments. As-
sume that the three sentences are first records of three dif-
ferent list sources. The first shared segment corresponding
to t = “Matt Groening , The Simpsons” includes two mem-
ber triples (2, 1, [4 . . . 8]) and (3, 1, [3 . . . 7]) since it appears
in the first record of sources 2 and 3 at token spans [4 . . . 8]
and [3 . . . 7] respectively. For now we assume that A has al-
ready been computed. In Section 5 we present our strategy
for principled computation of the agreement set.

We now use the agreement set A to augment the baseline
objective of Equation 2. To the base term, we add the log-
likelihood of the S models agreeing on the labeling of shared
segments in A. We define this likelihood next.

First, let Y be a random variable vector that denotes
the concatenation of all the record labelings Ysi. Since the
individual Ysi are independent of each other, we have

P(Y|X,w1, . . . ,wS) ,
∏
(s,i)

Ps(Ysi|Xsi,ws) (3)

where (s, i) denotes record i in source s as before, and X
represents all the records Xsi.

A given Y is consistent w.r.t. A iff for each segment in A,
Y assigns the same labeling to all its occurrences. Therefore
we define the set of consistent labelings as:

YA , {Y : ∀C ∈ A, (s, i, r), (s′, i′, r′) ∈ C : Ysir = Ys′i′r′}

We define the log-likelihood of agreement w.r.t. A as:

LL(YA,W) , log Pr(YA|W)

= log
∑

Y∈YA

∏
(s,i)

Ps(Ysi|Xsi,ws) (4)

where W is shorthand for (w1, . . . ,wS). Our goal now is
to jointly train w1, . . . ,wS so as to maximize a weighted
combination of the traditional likelihood of the labeled data
and that of agreement over A:

max
w1,...,wS

∑
s

LL(Ls,ws) + λLL(YA,W) (5)

where λ is a balancing parameter set using cross-validation.
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Figure 2: (a) Three samples sentences from different sources with A={(Matthew Matt Groening), (Matt
Groening), (Matt Groening , The Simpsons), (Simpsons)}. (b) The fused graph. (c)-(f) Per-segment parti-
tioning that defines one fused model per segment. (g)-(h) Tree partitioning that partitions A and forms a
tractable fused model for each part. Parentheses denote (source-id, record-id) for the chains.

3.1 Computing LL(YA,W)

It is clear that for agreement sets containing arbitrarily
overlapping shared segments spanning many sources, the
computation of LL(YA,W) explicitly via Equation 4 is not
tractable because the space of labelings YA could be expo-
nentially large. In this section we show that LL(YA,W)
is equivalent to the log of the partition function in a suit-
ably defined graphical model. This connection enables us to
apply well-known algorithms from the extensive graphical
model inference literature to computing LL(YA,W).

Substituting Equation 1 in Equation 4, we get

LL(YA,W) = log
∑

Y∈YA

exp(
∑
(s,i)

ws · fs(Xsi,Ysi))

−
∑
(s,i)

logZ(Xsi,ws) (6)

The second part in this equation is the sum of the log-
partition function over individual records which also ap-
pears during normal CRF training and can be computed
efficiently. The first part is equal to the log-partition func-
tion of a fused graphical model GA constructed as follows.

Fused Model for A: Initially, each record (s, i) uses its dis-
tribution Ps(.) to create its base chain model Gsi, which has
one node per token in Xsi. Next, for each shared segment
C ∈ A, and for each pair of occurrences (s, i, r), (s′, i′, r′) ∈
C, we collapse the nodes of the span r in Gsi with the cor-
responding nodes of the span r′ in Gs′i′ , along with the
corresponding edges. Figure 2(d) shows the fused graph af-
ter collapsing on the shared segment “Matt Groening”. We
do this successively for each segment in A to get the final
graph GA. Figure 2(b) shows the final graph after collaps-
ing on all the four shared segments. Since the graph fuses
shared segments together, we call it a fused model.

We now define the log-potentials for GA. Let K be the
number of nodes in GA and z1, . . . , zK denote random vari-
ables for the node labels. Every node j in an initial graph
Gsi is now mapped to some final node k ∈ 1, · · · ,K, and let
this mapping be denoted by π(s, i, j). The log-potential for

a node k in GA is simply an aggregate of the log-potentials
of the chain nodes that collapsed onto it.

θk(z) ,
∑

(s,i,j):π(s,i,j)=k

wsfs(Xsi, z, j) (7)

and the log-potential for an edge (k, `) is the aggregate of
the log-potentials of the edges that collapsed onto it:

θk,`(z
′, z) ,

∑
(s,i,j):π(s,i,j−1)=k,π(s,i,j)=`

wsfs(Xsi, z
′, z, j)

(8)
The above θ parameters now define a distribution over the

fused variables z1, . . . , zK as follows:

PA(z|θ) =
1

ZA(θ)
exp(

K∑
k=1

θk(zk) +
∑

(k,`)∈GA

θk,`(zk, z`))

where ZA(θ) is the partition function of the distribution:

ZA(θ) =
∑
z′

exp(
∑
k

θk(z′k) +
∑

(k,`)∈GA

θk,`(z
′
k, z
′
`))

Observe that fusing the nodes trivially leads to agreement
on their labels, and that logZA(θ) is the same as the first
term of Equation 6. If the set of shared segments in A is
such that the fused graph GA has a small tree-width, we
can compute logZA(θ) efficiently. Since this is rarely the
case, we need to approximate the term in various ways. We
discuss several such approximations in Section 4.

To summarize, we equated LL(YA,W) to the better un-
derstood log partition function of a graphical model [15].
With this reduction, we can characterize the complexity of
the problem as O(K|L|T ) where T is the size of the largest
clique in the fused graph. For large T as the problem gets
intractable, many well-known approximations can be used
as discussed in Section 4. Also, we will see how this under-
standing will guide us to develop a faster and more accurate
partitioning-based approximation (Sections 4.1, 4.2).

3.2 Training Algorithm
The overall training objective of Equation 5 is not nec-

essarily concave in ws because of the agreement term with



sums within a log. One possibility is to use the EM al-
gorithm over a variational approximation of the objective
with extra variables [18, 12]. EM will give a local optima
if the marginals of PA can be computed exactly. Since this
cannot be guaranteed for general fused graphs, we also ex-
plore the simpler approach of gradient ascent. In Section 6
we show that gradient ascent achieves better accuracy than
EM, while also being much faster.

The gradient of LL(YA,W) with respect to the parameter
wst of a node feature fst in source s, is:

∂LL(YA,W)

∂wst
=

∑
i∈Us

|Xsi|∑
j=1

∑
y

(µA,π(s,i,j)(y|X)− µs,j(y|Xsi))fst(Xsi, y, j)

where j varies over the tokens in Xsi, and µs,j , µA,j′ denote
the marginal probability at variable j of Ps, and j′ of PA
respectively. The derivative with respect to an edge feature
can be computed similarly. Thus if the feature fst has the
same expectation under the agreement model PA and the
chain model Ps, its gradient is zero. Note that the E-step of
EM requires the computation of the same kind of marginal
variables. These marginals are computed using the same
inference algorithms that compute the log-partition ZA(θ),
and we discuss the various options next.

4. APPROXIMATIONS
In formulations where computing the objective and gra-

dient leads to intractable inference, the standard approach
in machine learning is to use approximate inference [15]. In
general, any available sum-product inference algorithm like
Belief Propagation (BP) or its convergent tree-reweighted
versions (TRW) [20, 16] can be used to approximate ZA(θ)
and the marginals required by the gradient. However, these
typically need multiple iterations and can sometimes be slow
to converge. [18] proposes an efficient one-step approxima-
tion that reduces to a single step of TRW [16] where the
roles of trees are played by individual chains. As in all TRW
algorithms, this method returns an upper bound of the log-
partition value. We will show in Section 6 that accuracy-
wise, this approximation is quite poor compared to BP. How-
ever with approximations such as BP, the convergence of the
outer gradient ascent loop is quite slow. Another downside
of these approaches is that there is no guarantee that the
approximation leads to a valid probability distribution. For
example, we often observed that the approximate value of
ZA(θ) was greater than

∑
(s,i) logZ(Xsi,ws) causing PA to

be greater than 1.
We therefore explored a second form of the objective where

instead of enforcing joint agreement over all shared segments
in A, we partition A into smaller subsets A1, . . . ,AR such
that each Pr(YAk ) is easy to compute, and ∩kYAk = YA.
We then replace Pr(YA) by

∏
k Pr(YAk ), thus replacing the

corresponding log-likelihood term by
∑
k LL(Ak,W). Be-

fore we present our general strategy in Section 4.2 to parti-
tion A, for simplicity we describe its very special case.

4.1 Per-segment Partitioning
This scheme partitions A by assigning each shared seg-

ment C ∈ A to its own partition. GA is now replaced by
several simpler graphs, each of which has its nodes fused

only at one shared segment. Figures 2(c)-(f) illustrate this
partitioning for the example of Figure 2(a). The probabil-
ity Pr(Y{C}) of agreement on occurrences of a single shared
segment C simplifies to

Pr(Y{C}) =
∑

y∈YC

∏
(s,i,r)∈C

Ps(Ysir = y|Xsi,ws) (9)

where YC is set of all possible labelings for any occurrence
of C, and Ps(Ysir = y|.) is the marginal probability of the
span r in record (s, i) taking the labeling y under Ps.

This partitioning is useful for two reasons. First, since C
spans contiguous tokens, the fused graph of Pr(Y{C}) is al-
ways a tree, e.g. the ones in Figures 2(c)-(f). Second, since
for trees we can use sum-product to compute Pr(Y{C}) in-
stead of Equation 9, we can use arbitrarily long shared seg-
ments instead of choosing unigram shared segments, which
is usually the norm in extraction applications.

We found that empirically this partitioning was more ac-
curate than doing approximate inference on the globally
fused graph GA, while being significantly faster. However
the absolute runtime of this approach is still high since it cre-
ates as many repetitions of a chain as the number of shared
segments in which it appears (e.g. Figures 2(c)-(f)). We next
present a smarter partitioning strategy that directly mini-
mizes total runtime, while ensuring that the fused graph of
each partition remains a tree where inference is tractable.

4.2 Tree-based Partitioning
Our goal2 is to partition A into disjoint sets A1, . . . ,AR

(R unknown) and compute
∏R
i=1 Pr(YAi) instead of Pr(YA).

The key desiderata for a good partitioning are: (a) For every
partition Ai, its fused graph GAi is a tree (for tractability)
(b) Total number of nodes across all GAi should be small,
as the runtime is linear in it, and (c) Two or more shared
segments that overlap or are adjacent in many chains should
ideally be in the same partition to preserve correlation of
agreement during training.

The per-segment partitioning of Section 4.1 passes only
the first criteria and is the worst with regards to the other
two. In contrast an unpartitioned A fulfills the last two
criteria trivially but not the first. So we need a partitioning
somewhere between these two extremes.

We observe that the last two criteria can be satisfied with
just one metric — minimizing the number of nodes in every
GAi . This is because when two (or more) shared segments
that occur in many common chains go in the same parti-
tion, they reuse a lot of nodes in the fused graph. Thus
minimizing the number of nodes forces us to club together
such segments in the same partition. Keeping this in mind,
we write our partitioning goal as:

min
R,A1,...,AR

R∑
i=1

#nodes(GAi) (10)

s.t. Each GAi is a tree ∀i = 1, . . . , R

We now show that this objective is NP-hard.

Theorem 4.1. The objective in Equation 10 is NP-hard.
2Tree-based partitioning should not be confused with Tree
re-weighted message passing (TRW) [16] — the former par-
titions A to approximate the objective with a product of
tractable probabilities, whereas TRW approximates the par-
tition function that appears in the numerator of the original
objective, as discussed in the beginning of Section 4.



Proof. We reduce the following NP-hard problem to our
objective: Given a graph H, partition its vertices so that
each part induces a forest and the number of edges with
both endpoints in the same part is maximized.

The reduction is as follows. Each edge e = (u, v) ∈ H
defines a three-node chain u−e−v. Each vertex u defines a
shared segment of length 1, and node e is not in any shared
segment. Thus a vertex set in H corresponds to a set of
segments, and it will induce a forest iff the segment set’s
fused graph is a forest.

Also, for a vertex set V in H, the number of nodes in the
fused graph of the corresponding segment set is just three
times the number of chains, which in turn is (sum of degrees
of vertices in V - number of edges in the forest induced by
V ). Summing up, the total number of nodes is just 6 *
number of edges in H - 3 * total number of edges with both
endpoints in the same set. Thus minimizing the number of
nodes is the same as maximizing the number of edges of H
with endpoints in the same part.

Algorithm 1 PartitionAgreementSet(A)

input A
output a partition of A
P ← Each segment in its own set
Initialize G{C} for each {C} ∈ P
{Phase One}
repeat

Find Ai, {C} ∈ P such that MergeValid(Ai, C) and which
maximize node reduction
if Ai, {C} found then
P ← P \ {C}
Ai ← Ai ∪ {C}
Update the data-structures in GAi

end if
until change
{Phase Two}
repeat

Find Aj ,Ak ∈ P such that OneChainCommon(Aj ,Ak) and
which maximize node reduction
if Aj ,Ak found then
Aj ← Aj ∪ Ak
P ← P \ Ak

end if
until change

return P

We now present a greedy partitioning algorithm (Algo-
rithm 1) to solve the objective in Equation 10. The al-
gorithm works in two phases. Phase one begins with the
per-segment partitioning of Section 4.1 and merges adjacent
or overlapping segments as follows. In each round the al-
gorithm picks a set Ai in the partition, a shared segment
C 6∈ Ai, and adds C to Ai if GAi∪{C} is a tree and C is
adjacent to at least one segment in Ai. Ai and C are greed-
ily chosen to minimize #nodes(GAi∪{C})−#nodes(GAi)−
#nodes(G{C}). For example, consider Figure 2(a), and let
Ai = {Matt Groening}. We can add the segment “Matt
Groening , The Simpsons” to it because it does not create a
cycle. But, we cannot add “Simpsons” to Ai. It is easy to
see that the partitioning after phase one will be {{“Matt
Groening”, “Matthew Matt Groening”, “Matt Groening ,
Simpsons”}, {“Simpsons”}} whose fused models are trees,
as shown in Figures 2(g) and 2(h).

When we cannot do any merges, the algorithm moves to
phase two. In a round in phase two, the algorithm picks

two sets Aj ,Ak and merges them if the segments in Aj and
Ak have exactly one common chain, i.e. |{(s, i) | ∃C1 ∈
Aj , C2 ∈ Ak : (s, i, .) ∈ C1∧(s, i, .) ∈ C2}| = 1. Merging two
fused trees with only one common chain cannot introduce
a cycle so GAj∪Ak will be a tree. Again the set pair to be
merged is chosen using the greedy criteria.

The key step in the algorithm is checking for adjacency
and cycle creation in phase one. Algorithm 2 describes this
check for adding a shared segment C to partition Ai. It
maintains the fused graph GAi (which is a tree since it is
acyclic) for Ai. Given C, it locates its occurrences in GAi

and sees if they can be fused without introducing a cycle.
This is true if every pair of occurrences has the same com-
mon ancestor in GAi , and either this ancestor is adjacent to
all the occurrences, or is inside all the occurrences. Algo-
rithm 2 describes this check, which in practice is done using
tree branch information in GAi . To illustrate, consider the
fused graph in Figure 2(e). In this graph, the three occur-
rences of “Matt Groening” are at distances 1,2,2 from the
common ancestor (the fused Simpsons node) so the check
fails. In contrast, both the occurrences of “Matt Groening ,
The Simpsons”, contain their common ancestor (again, the
Simpsons node), so the check succeeds.

The main merit of the two-phase algorithm is that, by
delaying the merging of non-adjacent segments to phase two,
the bottom-up algorithm is able to assign higher priority to
the merging of adjacent segments.

Algorithm 2 MergeValid(Ai, C)

input Set of shared segments Ai, shared segment C
output Boolean check for mergeability of C and Ai.

rj ← jth occurrence span of C in GAi
, ∀j

u← Unique lowest ancestor node in GAi
of every pair (rj , rj′ )

{u may not exist or u may be inside a span(s)}
if u exists and (u is adjacent to every rj or u is inside every
rj) then

return true {adjacent and mergeable}
end if

return false

5. GENERATING THE AGREEMENT SET
We now discuss principled generation of a clean agreement

setA. Generating a cleanA is highly important; we shall see
in Section 6 that even the best collective training schemes
can get derailed by noisy agreement sets. This is analogous
to the impact of a good neighborhood graph on the accuracy
of semi-supervised learning [14].

Traditional collective extraction methods have not focused
on the process of finding quality agreement sets. These
methods simply announce arbitrary repetitions of a unigram
as a shared segment [22, 11, 17]. This is inadequate be-
cause of two reasons. First, unigram segments cannot trans-
fer any strong first order dependencies across records and
sources. Longer shared segments are essential for that. Sec-
ond, blindly using repetitions of a token/n-gram as a shared
segment can inject a lot of noise in the agreement set. For
example, enforcing agreement on two random occurrences
of “America” is not advisable as their true labels might be
different (Organization as in Bank of America, vs Place as
in United States of America).

Instead we present a more principled strategy for gen-
erating agreement sets. We make the working assumption



that significant content overlap across sources is caused by
approximate duplication of records, modulo any differences
in style. This is predominantly true in organically created
HTML lists on the web. Our approach works in two stages
(pseudo code as Algorithm 3).

The first stage clusters records into groups of approximate
duplicates. In the second stage, for each group, we find
maximally long segments that repeat among records inside
that group, and output these as shared segments. By limit-
ing ourselves to generating shared segments among similar
records, we increase the chance that segment occurrences
refer to the same field(s) and should be labeled similarly.

Our algorithm for computing the groups in the first stage
is also different from conventional clustering and is designed
to exploit our observed pattern of duplicates within and
across sources. First, we group together any almost-duplicate
records within a source. Next, we merge record groups
across sources using multi-partite matching. Since this is
NP-hard, we employ the following phased scheme: First, we
order the sources using a natural criteria such as maximiz-
ing pairwise similarity with adjacent sources. Each record
group in the first source forms a cluster. In phase s, we find
a bipartite matching between source s + 1 and the clusters
formed by the first s sources. The edge weight between clus-
ters g and g’ is the best similarity score between any record
of g and any record of g’. Similarity is measured by a user-
specified function like Jaccard or TF-IDF. A record group in
source s+1 is assigned to the cluster to which it is matched.
Unmatched record groups form new clusters.

We will empirically show that this two-stage method finds
more accurate shared segments than the traditional unigram
generation methods mentioned earlier.

Algorithm 3 Generating the agreement set A
input {Xsi : ∀s, s = source, i ∈ Us}
output A = set of shared segments

Set of clusters D = empty, A = empty.
{First stage}
for s = 1 . . . S do
Ds = Cluster records of source s to collapse duplicates.
Find bipartite match between record groups in D & Ds.
Update D by merging matched groups and creating new clus-
ters for unmatched groups in Ds.

end for
{Second stage}
for record group g ∈ D do

Add to A all maximal segments that repeat across records
in g

end for

6. EXPERIMENTAL EVALUATION
We present extensive experiments over several extraction

domains covering a rich diversity of data characteristics.

Task: We evaluate our framework on the table materializa-
tion task of [13]. The task takes a user-provided query table
containing only a few rows (e.g. top table in Figure 1), and
up to 20 potentially relevant HTML lists, and converts ev-
ery list record into a structured row of interest to the user.
The 20 lists are chosen by using the cells of the query ta-
ble to probe an index of 16M lists obtained from a 500M
webpage crawl. The query rows are also used to generate

Table 1: Properties of the datasets
Dataset # #Srcs |L| |A| Records Base |A|
Group error Noise
50F 2 9 4.0 23 75 44.8 0.10
50M 3 11 4.3 202 223 45.4 0.11
40F 4 6 3.5 147 409 33.1 0.07
40M 4 14 4.5 235 344 32.7 0.12
30F 3 9 5.3 146 346 26.5 0.35
30M 14 10 4.4 413 336 23.9 0.21
20F 9 14 4.0 172 575 14.4 0.04
20M 7 13 4.0 959 831 13.4 0.11
10F 6 10 4.0 154 440 5.7 0.04
10M 6 15 4.0 436 493 3.9 0.13
All 58 11 4.2 348 451 16.7 0.15
Std 0 5.8 1.1 500 432 12.24 0.14

labeled records for each list3. We use dataset to denote a
query table and its list sources.

Datasets: We use a set of 58 datasets from [13] 4. These
cover various tables of interest, e.g. Oil spills, University
mottos, Caldecott medal winners, Supreme court cases etc.
Figure 1 shows three lists from the Oil Spill dataset.

Our ground truth consists of every list token manually
labeled with a relevant dataset-specific label. We measure
extraction error as 100-F1 accuracy of the extracted entities.
We measure noise in an agreement set A as the percentage
of shared segments which have any one member disagreeing
with the rest in their ground truth label.
Settings: We experiment with two query sizes – 3 and 7
seed rows, simulating limited supervision in our task. Our
numbers are averaged over five random selections of the seed
rows. We set λ in Equation 5 using a validation set. Our
base model is a CRF (http://crf.sourceforge.net), one
per list as stressed before. We use standard context features
over the neighborhood of a word including HTML tags and
punctuations, along with class prior and edge features.

Our corpus of 58 real datasets forms an interesting bench-
mark, as it spans more than 600 lists, and exhibits a wide
spectrum in terms of error rate of the base models, number
of HTML lists, number of shared segments per record, and
noise in the agreement set. For ease of presentation, we clus-
ter these 58 datasets into ten groups using a paired criteria
— error of the base models and relative size of the agreement
sets. We create five bins for errors: 40–50%, 30–40%, and
so on, and two bins for agreement set: “M” (many) when
there are more than 0.5 shared segments per record and “F”
(few) otherwise. Table 1 lists for each of the ten groups: the
number of datasets (#), average number of sources (#Srcs),
number of labels (|L|), number of shared segments (|A|),
number of records, error of base models, and percentage of
noisy segments in A. The last row in the table that lists the
standard deviation of these values over all 58 sources illus-
trates the diversity of the datasets.

Methods: We compare the following methods on extrac-
tion error and training time.

1. Base: Baseline that independently trains each CRF.
2. Four prior methods discussed in Section 2:

3Labeled data generation is non-trivial [13] but not relevant
to this paper so we omit the details.
4The original task had 65 datasets. We dropped those whose
ground truth we could not independently re-verify.



40

50

60

Tr
a

in
in

g
 t

im
e

 a
s 

m
u

lt
ip

le
 o

f 

CI

Staged

TreePart

TR1

0

10

20

30

3 7

Tr
a

in
in

g
 t

im
e

 a
s 

m
u

lt
ip

le
 o

f 

B
a

se

Train size

TR1

SegPart

FullBP

PR

(a) Ratio of running time with Base which takes
11 and 17 seconds respectively for 3 and 7 training
records.

10%

15%

20%

25%

30%

%
 E

rr
o

r
 r

e
d

u
c
ti

o
n

 o
v
e

r 
b

a
s
e

-10%

-5%

0%

5%

10%

3 7

%
 E

rr
o

r
 r

e
d

u
c
ti

o
n

 o
v
e

r 
b

a
s
e

Train size

(b) % reduction in error over Base which has error
16.7% and 12.7% respectively for 3 and 7 training
records

Figure 3: Comparing different methods of exploiting
overlap on running time and accuracy. The legends
are shared across the two bar charts and appear in
the left to right order.

(a) CI: Collective inference at deployment after inde-
pendently training each model.

(b) Staged: Sequentially transferring labels from trained
to untrained sources via shared segments.

(c) PR: The EM-based posterior regularization method
for multiview learning [12].

(d) TR1: The agreement maximizer of [18].

3. Our partitioning-based approach with two options:

(a) SegPart: Per-segment partitioning of Section 4.1.

(b) TreePart: Tree-based partitioning of Section 4.2.

4. FullBP: Belief Propagation based approximate infer-
ence on the global fused graph GA (Section 4).

For TR1, TreePart, SegPart, and FullBP, we also perform
collective inference after collective training.

6.1 Benefit of Collective Training
In Figures 3(a) and 3(b) we compare all the methods on

their total runtime and relative error reduction over Base.
Table 2 breaks down these numbers on individual dataset
groups. We make various observations from these graphs:

First, observe that many schemes give significant error
reduction over Base, asserting that overlap in unlabeled data
is useful when labeled data is limited. Starting with three
training records, Base needs four more records to reduce the
error by 25% (16.7% to 12.7%). In contrast, our collective
training methods (TreePart, SegPart and FullBP) achieve
26% error reduction by exploiting overlap in unlabeled data.

This shows that proper overlap exploitation can compensate
for limited supervision in open-domain extraction tasks.

Collective inference (CI) reduces error by 17% and 13%
overall for three and seven training records respectively. In
contrast, Staged overall performs worse than Base and shows
large swings in errors across datasets. It is highly sensitive
to the ordering of sources, and the hard label-transfer often
cascades errors to all downstream sources.

SegPart provides the largest error reduction over Base
of 27% and 19% respectively for three and seven training
records, and TreePart is a close second, followed by FullBP.
These methods are superior to CI mainly because CI can-
not benefit records with no shared segments. This superi-
ority persists even if we do not do collective inference after
collective training. For example, SegPart without CI (de-
noted “SegPart (No CI)” in Table 2) still provides an error
reduction of 23.5% for three training records. This shows
that collective inference is best used in tandem with collec-
tive training and not alone. We also observe that the gains
of collective training are prominent for datasets with large
agreement sets, and base errors in the 15-35% range.

The TR1 method (Table 2) achieves a training time close
to TreePart and SegPart. However, its error reduction over
Base is only 19% as compared to >25% for SegPart and
TreePart. This is expected as TR1 performs only one round
of message passing for the sake of speed. However the er-
ror reduction of TR1 without collective inference (denoted
“TR1 (No CI)” in Table 2) is quite small at 9% and 4% for
three and seven training records respectively. This shows
that TR1 does not train sufficiently good joint models and
most of its limitations are masked by collective inference.
In contrast SegPart and TreePart provide significant bene-
fits even without collective inference.

Figure 4(a) shows the spread of relative error reduction of
TreePart vs the absolute error of Base for all datasets using
three training records. This plot shows that there are many
extraction tasks where TreePart achieves a big reduction in
error (> 40%) even for small values of base error. Only
four of the 58 cases see > 10% error increase after collective
training, which can be explained by noise in the agreement
sets. Figure 4(b) shows that the benefits of TreePart over
Base decrease as agreement sets become noisier.

While SegPart, TreePart, and FullBP provide the best er-
ror reduction, TreePart has the best runtime (Figure 3(a)).
For three training records, it is two and four times faster
than SegPart and FullBP respectively, with larger gains for
seven training records. This shows that SegPart creates too
many partitions, while FullBP performs too many rounds
of message passing. In terms of absolute runtime for three
training records, Base takes 11 seconds on average per dataset
and TreePart takes 75 seconds while providing a 26% er-
ror reduction. Another advantage of TreePart over FullBP
is that it is trivial to parallelize. We expect parallelized
TreePart to be adequately fast for interactive querying.

6.2 Comparison with the PR Objective
As discussed in Section 2, Posterior Regularization (PR)

aims at minimizing the Bhattacharayya distance between
the posteriors of the different views [12]. With only two
sources s and s′, and only one shared segment c, their term
is log

∑
yc

√
Ps(yc)Ps′(yc), P.(yc) being the marginal of c.

This is maximized when the two marginals are identical. In
contrast, our term of log

∑
yc
Ps(yc)Ps′(yc) is maximized



Table 2: Percent error reduction over Base of various collective training and inference schemes.
Scheme 50F 50M 40F 40M 30F 30M 20F 20M 10F 10M All 58

Train size = 3 records
Base Error 44.8 45.4 33.1 32.7 26.5 23.9 14.4 13.4 5.7 3.9 16.7

CI 1.7 3.2 10.4 3.3 -2.9 16.4 31.3 28.2 10.1 13.1 17.0
Staged -25.4 6.1 -10.0 -11.9 29.3 -2.8 -75.3 23.1 32.5 -68.0 -10.2

TreePart 6.0 2.3 11.2 9.5 4.4 28.0 38.0 40.6 43.4 13.8 25.5
TreePart (No CI) 8.4 6.0 4.9 9.3 4.6 24.0 30.1 34.2 49.2 6.4 21.5

SegPart 6.6 0.6 14.3 9.8 4.5 31.5 38.8 42.7 36.2 9.3 26.8
SegPart (No CI) 8.4 4.9 7.5 10.2 5.2 27.0 30.5 38.3 48.6 9.2 23.5

FullBP 6.0 2.4 10.6 9.3 3.6 28.7 38.6 42.0 43.3 14.9 26.0
FullBP (No CI) 6.6 6.7 4.7 11.4 5.3 26.3 30.8 40.5 48.2 11.4 23.8

TR1 1.6 2.1 11.8 3.5 -3.1 18.6 34.3 35.0 13.2 -0.5 19.1
TR1 (No CI) -1.3 3.9 3.0 0.1 -0.5 4.4 19.7 19.4 9.8 -5.9 8.9

PR 2.3 7.9 4.7 10.3 4.1 28.7 30.5 33.3 30.2 9.3 22.4
Train size = 7 records

Base Error 47.5 36.6 23.8 25.0 20.4 17.6 9.7 9.5 3.4 3.5 12.7
CI 6.6 7.3 10.4 2.1 1.3 13.4 23.7 16.6 5.7 13.7 12.7

Staged -20.2 -0.6 -0.9 -13.2 11.3 -13.2 -39.5 6.0 2.1 -20.2 -10.0
TreePart 4.5 7.8 11.4 7.0 4.0 21.5 25.4 20.7 14.7 12.7 16.5

TreePart (No CI) 5.7 3.7 3.3 8.7 5.5 16.9 13.8 15.5 17.0 9.6 11.6
SegPart 9.3 11.1 16.7 5.5 4.4 22.6 25.3 25.0 16.1 15.2 18.6

SegPart (No CI) 10.0 7.8 7.8 7.4 6.6 19.4 16.4 28.2 18.3 15.4 16.0
FullBP 7.9 6.8 9.6 7.4 1.2 20.5 23.8 22.2 15.2 11.4 15.8

FullBP (No CI) 8.8 2.0 2.6 8.8 1.8 18.2 16.1 22.1 18.6 6.9 12.8
TR1 7.0 5.7 12.7 3.0 1.3 14.8 25.9 21.1 4.6 6.1 14.0

TR1 (No CI) 1.0 1.7 2.8 2.1 -0.4 2.4 6.1 9.3 1.4 5.8 4.0
PR 7.1 7.3 5.1 9.5 12.3 21.5 16.8 25.4 22.2 14.7 16.6
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Figure 4: % error reduction of TreePart over Base,
plotted against (a) Base error (b) % of noisy seg-
ments in A. Each point represents a dataset.
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Figure 5: (a)F1-error of SegPart with single-token
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Figure 6: Comparing the agreement (left) and multi-
view (right) losses over two binomial posteriors.

when the marginals are identical and peaked. A maxima of
our term is a maxima of their term but not vice versa. For
example, starting with one peaked and one flat (i.e. weak)
model, PR might make the peaked model flat as well, but
our term will not and will strengthen the weak model in-
stead. Figure 6.2 plots the two terms for two binomial pos-
teriors. Empirically, PR is almost as accurate as TreePart
and SegPart (Table 2). However, PR is eight times slower
than TreePart, as its objective and gradient are quite hard
to approximate and methods like Belief Propagation do not
work with the Bhattacharayya distance. Hence EM is in-
stead used, where E and M steps are iterative, with each
iteration as costly as a gradient ascent step in TreePart.

6.3 Comparing Agreement Sets
We now compare our agreement set generation method

(Section 5) vs the traditional method of choosing repeating
unigrams as shared segments. For a fair comparison, we re-
place each of our shared segment of length two or more by
single-token shared segments. This ensures that we compare
only the quality of the unigrams. We also generate a third
agreement set by removing all the noisy shared segments
from our agreement set (using ground truth). Figure 5(a)
shows the result of using SegPart with these three agree-
ment sets. The traditional method generates 17.3% noisy
segments (rightmost point in the two curves), whereas our
method has a noise of only 5.6% (middle points). Further,



the error with our agreement set is very close to that with
the ideal noise-free agreement set, while the error with the
traditional agreement set is significantly higher.

Table 5(b) shows the error of TreePart, SegPart, and
FullBP with the original form of the agreement set, before
and after removing noisy shared segments. We find that the
limited noise in our agreement set causes only a slight error
increase of less than 0.6% over the ideal scenario.

7. CONCLUSION
Open domain extraction on the Web throws up new chal-

lenges of limited supervision and new opportunities of con-
tent redundancy, not seen in classical extraction tasks. This
paper addressed the challenge of training statistical extrac-
tion models jointly for multiple related Web sources to maxi-
mally exploit any content overlap. The basic premise of our
framework was simple — maximizing the probability that
the different sources agree on the labels of the overlapping
content. However, many challenges arise while applying the
premise on Web extraction tasks — designing a tractable
training algorithm to exploit arbitrary patterns of overlap,
scaling to many sources, and choosing a low-noise agreement
set.

We equated the joint agreement likelihood to the log-
partition of an aptly-defined graphical model. Instead of do-
ing approximate inference on this graph, we designed an ob-
jective and an efficient algorithm for partitioning the agree-
ment set into tree models. Through extensive experiments
on diverse domains we showed that our method of partition-
ing the agreement set, coupled with our principled agree-
ment set generation strategy provide the best trade-offs in
terms of runtime and accuracy. More importantly, we have
shown that a well-designed method of exploiting overlap can
indeed compensate for the lack of labeled data. Future work
includes parallelizing our algorithms and exploring the idea
of exploiting overlap to other extraction tasks.
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