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Social Network Temporal Dynamics

Temporal dynamics of networks:

Short diameter, densification, clustering, heavy tail degree

distribution, ... [Leskovec et al. 2007, Barabasi et al. 1999, Kossinets et
al. 2009, ...]

Useful for:
* Link prediction
* Detecting influential nodes
* Finding communities
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Hedge Fund Data

Instant Messages (IM):

* Full record of IMs: content,
sender, recipient, timestamp

* 182 internal decision makers,
8646 outside contacts

e 22 Million IMs
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Hedge Fund Data

Instant Messages (IM):

* Full record of IMs: content,
sender, recipient, timestamp

* 182 internal decision makers,
8646 outside contacts

e 22 Million IMs
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Stock Trading:

* Full record of all transactions:
stock, price, number of stocks,
type of transaction (Buy, Sell),

timestamp

* 600K trades

« 2008 — 2012
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In This Talk

Market Movements
(Shocks)

Social Network
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Turtled-up network

30



Open network

31



Theoretical Expectations

Networks may turtle-up during shocks:
e Trust (Granovetter 1985, Coleman 1988)

* Expertise knowledge, repeated
information channels (Coleman 1990)

e Threat rigidity (Staw 1981)

Open network

32



Theoretical Expectations

Networks may turtle-up during shocks:
 Trust [Granovetter 1985, Coleman 1988]

* Expertise knowledge, repeated
information channels [Coleman 1990]

* Threat rigidity [Staw 1981]

Networks may open-up during shocks:

* New information through weak ties
[Granovetter 1973]

* Diverse information from different groups
(structural holes) [Burt 92]

Open network
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Findings: Size
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Findings: Clustering Coefficient

Average Clustering Coefficient

05—10 ‘ 0 ‘ 10 ‘

Change in stock price (%)

Clustering coefficient of a node n: the ratio of the existing and
possible number of edges among the neighbors of n.
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Clustering coefficient of a node n: the ratio of the existing and
possible number of edges among the neighbors of n.
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Findings: Clustering Coefficient

C=4/10

Average Clustering Coefficient

0‘5-10 ‘ 0 ‘ 10 ‘

Change in stock price (%)

Shocks >  Higher Clustering coefficient

Clustering coefficient of a node n: the ratio of the existing and
possible number of edges among the neighbors of n.
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Findings: Tie Strength
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Networks “Turtle-up” During Shocks

* Higher clustering
e Stronger edges
* More internal communication

Consistent with theories of: O
* Trust
* Expertise knowledge, repeated ‘
information channels Turtled-up network
* Threat rididity

/]
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LIWC Categories

Linguistic Inquiry Word Count (LIWC): text analysis tool, which
identifies words that belong to various categories.

Affective Processes Cognitive Processes
Positive Love, nice Insight Think, Consider
Negative Hurt, ugly Causation | Because, Hence

Anxiety Worried, fearful Discrepancy = Should, Could
Anger Hate, kill Tentative Maybe, Guess
Sadness Crying, sad Certainty = Always, Never
Inhibition | Block, Constrain

Inclusive With, Include

Exclusive But, Exclude



Price Changes vs. Emotions
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Price Changes vs. Emotions
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Positive price changes > Higher positive emotions
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Emotions are asymmetric with respect to price change.
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Price Changes vs. Cognitive Processes
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Predicting Sentiment and Cognition

Task: For a fixed stock s and day d, predict if IMs that mention s on
day d contain more words in the category than average.
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Predicting Sentiment and Cognition

B Combined
Bl Network
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Network variables are more predictive of type of content than
price changes.

54



Predicting Stock Trading



Predicting Stock Trading

Task: Predict whether a
stock that has not been
traded for k weeks will be
traded.



Predicting Stock Trading

| | | ‘H AII fea u‘res com‘bined |
0.80 b @ Previotus Trades and Network | |
é—& Previous Trades and Prices
¢—¢ Previous Trades
)
© 0.707 Task: Predict whether a
>
2 stock that has not been
060! traded for k weeks will be
traded.
osoL—. . . . 0
0 2 4 6 8

Number of weeks without a trade

Network variables are more predictive of type of sudden stock
trading than price changes.
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Conclusions

Relationship between stock market shocks and social network
structure

Competing hypotheses: turtle up vs. open network structure
Communication “turtles-up” during shocks.

Network structure is predictive of trading, performance, and
emotional and cognitive content.

Stock market changes do not improve prediction accuracy.
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Predicting Performance

=4 Combined

Suboptimal trade: Worse

T e price than the worst price
the next day.
] Task: For a fixed stock s
- traded on day d, predict if
' it’s suboptimal
N-serial trades: A trade of
stock s that has occurred
5 5 A : for at least N consecutive
Num. days consecutive transaction days

Network variables are more predictive of performance than

price changes.
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