
QuickScorer:

a

Fast Algorithm to Rank Documents with
Additive Ensembles of Regression Trees

Claudio Lucchese
ISTI–CNR, Pisa, Italy

c.lucchese@isti.cnr.it

Franco Maria Nardini
ISTI–CNR, Pisa, Italy
f.nardini@isti.cnr.it

Salvatore Orlando
Univ. di Venezia, Italy
orlando@unive.it

Raffaele Perego
ISTI–CNR, Pisa, Italy
r.perego@isti.cnr.it

Nicola Tonellotto
ISTI–CNR, Pisa, Italy

n.tonellotto@isti.cnr.it

Rossano Venturini
Univ. di Pisa, Italy

rossano@di.unipi.it

ABSTRACT
Learning-to-Rank models based on additive ensembles of re-
gression trees have proven to be very effective for ranking
query results returned by Web search engines, a scenario
where quality and efficiency requirements are very demand-
ing. Unfortunately, the computational cost of these rank-
ing models is high. Thus, several works already proposed
solutions aiming at improving the efficiency of the scoring
process by dealing with features and peculiarities of modern
CPUs and memory hierarchies. In this paper, we present
QuickScorer, a new algorithm that adopts a novel bitvec-
tor representation of the tree-based ranking model, and per-
forms an interleaved traversal of the ensemble by means of
simple logical bitwise operations. The performance of the
proposed algorithm are unprecedented, due to its cache-
aware approach, both in terms of data layout and access
patterns, and to a control flow that entails very low branch
mis-prediction rates. The experiments on real Learning-to-
Rank datasets show that QuickScorer is able to achieve
speedups over the best state-of-the-art baseline ranging from
2x to 6.5x.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search process

Keywords
Learning to Rank, Efficiency, Cache-aware Algorithms

1. INTRODUCTION
Ranking query results according to a relevance criterion is

a fundamental problem in Information Retrieval (IR). Nowa-
days, an emerging research area named Learning-to-Rank
(LtR) [7, 2] has shown that effective solutions to the ranking

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGIR ’15, August 09 - 13, 2015, Santiago, Chile
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3621-5/15/08 $15.00
DOI: http://dx.doi.org/10.1145/2766462.2767733.

problem can leverage machine learning techniques. A LtR-
based function, which scores a set of candidate documents
according to their relevance to a given user query, is learned
from a ground-truth composed of many training examples.
The examples are basically a collection of queries Q, where
each query q ∈ Q is associated with a set of assessed docu-
ments D = {d0, d1, . . .}. Each pair (q, di) is in turn labeled
by a relevance judgment yi, usually a positive integer in a
fixed range, stating the degree of relevance of the document
for the query. These labels induce a partial ordering over
the assessed documents, thus defining their ideal ranking [6].
The scoring function learned by a LtR algorithm aims to ap-
proximate the ideal ranking from the examples observed in
the training set.

The ranking process is particularly challenging for Web
search engines, which, besides the demanding requirements
for result pages of high quality in response to user queries,
have also to deal with efficiency constraints, which are not so
common in other ranking-based applications. Indeed, two of
the most effective LtR-based rankers are based on additive
ensembles of regression trees, namely Gradient-Boosted
Regression Trees (GBRT) [4], and Lambda-MART (λ-
MART) [18]. Due to the thousands of trees to be traversed
at scoring time for each document, these rankers are also the
most expensive in terms of computational time, thus impact-
ing on response time and throughput of query processing.
Therefore, devising techniques and strategies to speed-up
document ranking without losing in quality is definitely an
urgent research topic in Web search [14, 3, 10, 5, 19].

Usually, LtR-based scorers are embedded in complex two-
stage ranking architectures [3, 16], which avoid applying
them to all the documents possibly matching a user query.
The first stage retrieves from the inverted index a sufficiently
large set of possibly relevant documents matching the user
query. This phase is aimed at optimizing the recall and
is usually carried out by using a simple and fast ranking
function, e.g., BM25 combined with some document-level
scores [9]. LtR-based scorers are used in the second stage
to re-rank the candidate documents coming from the first
stage, and are optimized for high precision. In this two-
stage architecture, the time budget available to re-rank the
candidate documents is limited, due to the incoming rate of
queries and the users’ expectations in terms of quality-of-
service. Strongly motivated by time budget considerations,
the IR community has started to investigate low-level opti-
mizations to reduce the scoring time of the most effective LtR

A

73

l5e()

n0

n1 n2

n3 n4l0 l1

l2 l3 l4

x[2] � �0

x[0] � �1 x[3] � �2

x[0] � �3 x[2] � �4

Figure 1: A decision tree.

rankers based on ensembles of regression trees, by dealing
with features and peculiarities of modern CPUs and mem-
ory hierarchies [1, 12]. In this work we advance the state of
the art in this field, and propose QuickScorer (QS), a new
algorithm to score documents with an ensemble of regression
trees. The main contributions of our proposal are:

• a novel representation of an ensemble of binary regres-
sion trees based on bitvectors, allowing QS to perform
a fast interleaved traversal of the trees by using effi-
cient logical bitwise operations. The performance ben-
efits of the resulting traversal are unprecedented, due
to a cache-aware approach, both in terms of data lay-
out and access patterns, and to a program control flow
that entails very low branch mis-prediction rates;

• an extensive experimental assessment conducted on
publicly available LtR datasets with various λ-MART
models, differing for both the size of the ensemble and
the number of tree leaves. The results of the experi-
ments show that QS achieves impressive speedups over
the best state-of-the-art competitor, ranging from 2x
up to 6.5x. Moreover, to motivate the very good per-
formance of QS over competitors, we evaluate in-depth
some CPU counters that measure important perfor-
mance events, such as number of instructions executed,
cache-misses suffered, or branches mis-predicted;

• a block-wise version of QS for scoring large tree en-
sembles and large sets of documents. BlockWise-QS
(BWQS) splits the set of documents and the tree en-
semble in disjoint groups that can be processed sepa-
rately. Our experiments show that BWQS performs
up to 1.55 times better than the original QS, thanks
to cache reuse which reduces cache misses.

The rest of the paper is structured as follows: Section 2
provides background information and discusses the related
work, while Section 3 details the QS algorithm and its fea-
tures. Then, Section 4 reports on the results of our compre-
hensive evaluation. Finally, we conclude our investigation in
Section 5 by reporting some conclusions and suggestions for
future research.

2. BACKGROUND AND RELATED WORK
Gradient-Boosted Regression Trees (GBRT) [4] and

Lambda-MART (λ-MART) [18] are two of the most effec-
tive Learning-to-Rank (LtR) algorithms. They both gen-
erate additive ensembles of regression trees aiming at pre-
dicting the relevance labels yi of a query document pair

(q, di). The GBRT algorithm builds a model by approx-
imating the root mean squared error on a given training
set. This loss function makes GBRT a point-wise LtR al-
gorithm, i.e., query-document pairs are exploited indepen-
dently. The λ-MART algorithm improves over GBRT by
directly optimizing list-wise information retrieval measures
such as NDCG [6]. Thus, λ-MART aims at finding a scoring
function that generates an ordering of documents as close
as possible to the ideal ranking. In terms of scoring process
there is thus no difference between λ-MART and GBRT,
since they both generate a set of weighted regression trees.

In this work, we discuss algorithms and optimizations for
scoring efficiently documents by means of regression tree en-
sembles. Indeed, the findings of this work apply beyond LtR,
and in any application where large ensembles of regression
trees are used for classification or regression tasks.

Each query-document pair (q, di) is represented by a real-

valued vector x of features, namely x ∈ R|F| where F =
{f0, f1, . . .} is the set of features characterizing the candidate
document di and the user query q, and x[i] stores feature
fi. Let T be an ensemble of trees representing the ranking
model. Each tree T = (N,L) in T is a decision tree com-
posed of a set of internal nodes N = {n0, n1, . . .}, and a set
of leaves L = {l0, l1, . . .}. Each n ∈ N is associated with a
Boolean test over a specific feature with id φ, i.e., fφ ∈ F ,
and a constant threshold γ ∈ R. This test is in the form
x[φ] ≤ γ. Each leaf l ∈ L stores the prediction l.val ∈ R,
representing the potential contribution of tree T to the final
score of the document.

All the nodes whose Boolean conditions evaluate to False
are called false nodes, and true nodes otherwise. The scoring
of a document represented by a feature vector x requires the
traversing of all the trees in the ensemble, starting at their
root nodes. If a visited node inN is a false one, then the right
branch is taken, and the left branch otherwise. The visit
continues recursively until a leaf node is reached, where the
value of the prediction is returned. Such leaf node is named
exit leaf and denoted by e(x) ∈ L. We omit x when it is
clear from the context.

Hereinafter, we assume that nodes of T are numbered in
breadth-first order and leaves from left to right, and let φi
and γi be the feature id and threshold associated with i-th
internal node, respectively. It is worth noting that the same
feature can be involved in multiple nodes of the same tree.
For example, in the tree shown in Figure 1, the features
f0 and f2 are used twice. Assuming that x is such that
x[2] > γ0, x[3] ≤ γ2, and x[0] ≤ γ3, the exit leaf e of the
tree in the Figure 1 is the leaf l2.

The tree traversal process is repeated for all the trees of
the ensemble T , denoted by T = {T0, T1, . . .}. The score
s(x) of the whole ensemble is finally computed as a weighted
sum over the contributions of each tree Th = (Nh, Lh) in T
as:

s(x) =

|T |−1∑
h=0

wh · eh(x).val

where eh(x).val is the predicted value of tree Th, having
weight wh ∈ R.

In the following we review state-of-the-art optimization
techniques for the implementation of additive ensemble of
regression trees and their use in document scoring.

74

Tree traversal optimization. A näıve implementation of a
tree traversal may exploit a node data structure that stores
the feature id, the threshold and the pointers to the left and
right children nodes. The traversal starts from the root and
moves down to the leaves accordingly to the results of the
Boolean conditions on the traversed nodes. This method
can be enhanced by using the optimized data layout in [1].
The resulting algorithm is named Struct+. This simple
approach entails a number of issues. First, the next node
to be processed is known only after the test is evaluated.
As the next instruction to be executed is not known, this
induces frequent control hazards, i.e., instruction dependen-
cies introduced by conditional branches. As a consequence,
the efficiency of a code strongly depends on the branch mis-
prediction rate [8]. Finally, due to the unpredictability of
the path visited by a given document, the traversal has low
temporal and spatial locality, generating low cache hit ra-
tio. This is apparent when processing a large number of
documents with a large ensemble of trees, since neither the
documents nor the trees may fit in cache.

Another basic, but well performing approach is If-Then-
Else. Each decision tree is translated into a sequence of
if-then-else blocks, e.g., in C++ language. The resulting
code is compiled to generate an efficient document scorer.
If-Then-Else aims at taking advantage of compiler op-
timization strategies, which can potentially re-arrange the
tree ensemble traversal into a more efficient procedure. The
size of the resulting code is proportional to the total number
of nodes in the ensemble. This makes it impossible to ex-
ploit successfully the instruction cache. If-Then-Else was
proven to be efficient with small feature sets [1], but it still
suffers from control hazards.

Asadi et al. [1] proposed to rearrange the computation
to transform control hazards into data hazards, i.e., data
dependencies introduced when one instruction requires the
result of another. To this end, node ns of a tree stores, in
addition to a feature id φs and a threshold γs, an array idx

of two positions holding the addresses of the left and right
children nodes data structures. Then, the output of the test
x[φs] > γs is directly used as an index of such array in order
to retrieve the next node to be processed. The visit of a
tree of depth d is then statically “un-rolled” in d operations,
starting from the root node n0, as follows:

d steps


i← n0.idx [x[φ0] > γ0]

i← ni.idx [x[φi] > γi]

...
...

i← ni.idx [x[φi] > γi]

Leaf nodes are encoded so that the indexes in idx generate
self loops, with dummy φs and γs. At the end of the visit,
the exit leaf is identified by variable i, and a look-up table
is used to retrieve the prediction of the tree.

This approach, named Pred, removes control hazards as
the next instruction to be executed is always known. On
the other hand, data dependencies are not solved as the
output of one instruction is required to execute the subse-
quent. Memory access patterns are not improved either, as
they depend on the path along the tree traversed by a doc-
ument. Finally, Pred introduces a new source of overhead:
for a tree of depth d, even if document reaches a leaf early,
the above d steps are executed anyway.

To reduce data hazards the same authors proposed a vec-
torized version of the scoring algorithm, named VPred, by

interleaving the evaluation of a small set of documents (16
was the best setting). VPred was shown to be 25% to 70%
faster than Pred on synthetic data, and to outperform other
approaches. The same approach of Pred was also adopted
in some previous works exploiting GPUs [11], and a more re-
cent survey evaluates the trade-off among multi-core CPUs,
GPUs and FPGA [13].

In this work we compare against VPred which can be
considered the best performing algorithm at the state of the
art. In the experimental section, we show that the proposed
QS algorithm has reduced control hazard, smaller branch
mis-prediction rate and better memory access patterns.

Memory latency issues of scoring algorithms are tackled
in Tang et al. [12]. In most cases, the cache memory may be
insufficient to store the candidate documents to be scored
and/or the set of regression trees. The authors proposed
a cache-conscious optimization by splitting documents and
regression trees in blocks, such that one block of documents
and one block of trees can both be stored in cache at the
same time. Computing the score of all documents requires to
evaluate all the tree blocks against all the document blocks.
Authors applied this computational scheme on top of both
If-Then-Else and Pred, with an average improvement of
about 28% and 24% respectively. The blocking technique is
indeed very general and can be used by all algorithms. The
same computational schema is applied to QS in order to
improve the cache hit ratio when large ensembles are used.

Other approaches and optimizations. Unlike our method
that aims to devise an efficient strategy for fully evaluating
the ensemble of trees, other approaches tries to approximate
the computation over the ensemble for reducing the scoring
time. Cambazoglu et al. [3] proposed to early terminate the
scoring of documents that are unlikely to be ranked within
the top-k results. Their work applies to an ensemble of ad-
ditive trees like ours, but the authors aims to save scoring
time by reducing the number of tree traversals, and trades
better efficiency for little loss in raking quality. Although
our method is thought for globally optimizing the traversal
of thousands of trees, the idea of early termination can be
applied as well along with our method, by evaluating some
proper exit strategy after the evaluation of some subsets of
the regression trees.

Wang et al. [15, 17, 16] deeply investigated different effi-
ciency aspects of the ranking pipeline. In particular, in [16]
they propose a novel cascade ranking model, which unlike
previous approaches, can simultaneously improve both top-
k ranked effectiveness and retrieval efficiency. Their work is
mainly related to the tuning of a two-stage ranking pipeline.

3. QUICKSCORER: AN EFFICIENT TREE
ENSEMBLE TRAVERSAL ALGORITHM

In order to efficiently exploit memory hierarchies and to
reduce the branch mis-prediction rate, we propose an algo-
rithm based on a totally novel traversal of the trees ensem-
ble, called QuickScorer (QS). The building block of our
approach is an alternative method for tree traversal based
on bitvector computations, which is presented in Subsec-
tion 3.1. Given a tree and a vector of document features,
our traversal processes all its nodes and produces a bitvector
which encodes the exit leaf for the given document. In isola-
tion this traversal is not particularly advantageous over the

75

others, since in principle it requires to evaluate all the nodes
of a tree. However, it has the nice property of being insen-
sitive to the order in which the nodes are processed. This
makes it possible to interleave the evaluation of the trees
in the ensemble in a cache-aware fashion. In addition, the
proposed bitvector encoding allows to save the computation
of many test conditions.

The interleaved evaluation of a trees ensemble is discussed
in Subsection 3.2. Intuitively, rather than traversing the en-
semble tree after tree, our algorithm performs a global visit
of the ensemble by traversing portions of all the trees to-
gether, feature by feature. For each feature, we store all the
associated thresholds occurring anywhere in the ensemble in
a sorted array, to easily to compute the result of all the test
conditions involved. A bitvector for each tree is updated
after each test, in such a way to encode, at the end of the
process, the exit leaves in each tree for a given document.
These bitvector are eventually used to lookup the predicted
value of each tree.

3.1 Tree traversal using bitvectors
We start by presenting a simpler version of our tree traver-

sal and, then, we introduce two crucial refinements for the
performance of this algorithm when used in the interleaved
evaluation of all the trees as described in Subsection 3.2.

Given an input feature vector x and a tree Th = (Nh, Lh),
our tree traversal algorithm processes the internal nodes of
Th with the goal of identifying a set of candidate exit leaves,
denoted by Ch with Ch ⊆ Lh, which includes the actual
exit leaf eh. Initially Ch contains all the leaves in Lh, i.e.,
Ch = Lh. Then, the algorithm evaluates one after the other
in an arbitrary order the test conditions of all the internal
nodes of Th. Considering the result of the test for a certain
internal node n ∈ Nh, the algorithm is able to infer that
some leaves cannot be the exit leaf and, thus, it can safely
remove them from Ch. Indeed, if n is a false node (i.e., its
test condition is false), the leaves in the left subtree of n
cannot be the exit leaf and they can be safely removed from
Ch. Similarly, if n is a true node, the leaves in the right
subtree of n can be removed from Ch. It is easy to see that,
once all the nodes have been processed, the only leaf left in
Ch is the exit leaf eh.

The first refinement turns the above algorithm into a lazy
one. This lazy algorithm uses an oracle, called FindFalse,
that, given Th and x, returns the false nodes in Nh with-
out the need of evaluating all the associated test conditions.
Then, the algorithm removes from Ch the leaves in the left
subtrees of all the false nodes returned by the oracle. For
the moment we concentrate on the set Ch obtained at the
end of the algorithm and we defer the materialization of the
above oracle to Subsection 3.2 where the interleaved eval-
uation of all the trees makes its implementation possible.
Observe that Ch may now contain several leaves. As an ex-
treme example, the set Ch, in absence of false nodes, will
contain all the leaves in Lh. Interestingly, we can prove (see
Theorem 1 below) that the exit leaf eh is always the one as-
sociated with the smallest identifier in Ch, i.e., the leftmost
leaf in the tree. A running example is reported in Figure 2
which shows the actual traversal (bold arrows) for a vector
x, and also the true and false nodes. The figure shows also
the set Ch after the removal of the leaves of the left subtrees
of false nodes: Ch is {l2, l3, l5} and, indeed, the exit leaf is
the leftmost leaf in Ch, i.e., eh = l2.

vh = �
�
�
=

Candidate exit leaf

l5

n0

n1 n2

n3 n4l0 l1

l2 l3 l4eh

Figure 2: Tree traversal example.

The second refinement implements the operations on Ch
with fast operations on compact bitvectors. The idea is to
represent Ch with a bitvector vh, where each bit corresponds
to a distinct leaf in Lh, i.e., vh is the characteristic vector of
Ch. Every internal node n is associated with a node bitvector
(of the same length), acting as a bitmask that encodes (with
0’s) the set of leaves to be removed from Ch whenever n is
a false node. This way, the bitwise logical AND between vh
and the node bitvector of a false node n corresponds to the
removal of the leaves in the left subtree of n from Ch. We
finally observe that the exit leaf corresponds to the leftmost
bit set to 1 in vh. Figure 2 shows how the initial bitvector
vh is updated by using bitwise logical AND operations.

The full approach is described in Algorithm 1. Given a
binary tree Th = (Nh, Lh) and an input feature vector x, let
u.bitvector be the precomputed bitwise mask associated
with a generic n ∈ Nh. First the result bitvector vh is
initialized with all bits set to 1. Then, FindFalse(x, Th)
returns all the false nodes in Nh. For each of such nodes, vh
is masked with the corresponding node bitvector. Finally,
the position of the leftmost bit of vh identifies the exit leaf
eh, whose output value is returned. The correctness of this
approach is stated by the following theorem.

Theorem 1. Algorithm 1 is correct.

Proof. We prove that for each binary decision tree Th
and input feature vector x, Algorithm 1 always computes

Algorithm 1: Scoring a feature vector x using a binary
decision tree Th
Input :
• x: input feature vector
• Th = (Nh, Lh): binary decision tree, with

- Nh = {n0, n1, . . .}: internal nodes of Th
- Lh = {l0, l1, . . .}: leaves of Th
- n.bitvector: node bitvector associated with n ∈ Nh
- lj .val: output value associated with lj ∈ Lh

Output:
• tree traversal output value

Score(x,Th):
1 vh ← 11 . . . 11
2 U ← FindFalse(x, Th)
3 foreach node u ∈ U do
4 vh ← vh ∧ u.bitvector
5 j ← index of leftmost bit set to 1 of vh
6 return lj .val

76

a result bitvector vh, where the leftmost bit set to 1 corre-
sponds to the exit leaf eh.

First, we prove that the bit corresponding to the exit leaf
eh in the result bitvector vh is always set to 1. Consider
the internal nodes along the path from the root to eh, and
observe that only the bitvectors applied for those nodes may
change the eh’s bit to 0. Since eh is the exit leaf, it belongs
to the left subtree of any true node and to the right subtree
of any false node in this path. Thus, since the bitvectors are
used to set to 0 leaves in the left subtrees of false nodes, the
bit corresponding to eh remains unmodified, and, thus, will
be 1 at the end of Algorithm 1.

Second, we prove that the leftmost bit equal to 1 in vh
corresponds to the exit leaf eh. Let l← be the leaf corre-
sponding to the leftmost bit set to 1 in vh. Assume by
contradiction that eh is not the leftmost bit set to 1 in vh,
namely, l← 6= eh. Let u be their lowest common ancestor
node in the tree. Since l← is smaller than eh, the leaf l←
belongs to u’s left subtree while the leaf eh belongs to u’s
right subtree. This leads to a contradiction. Indeed, on one
hand, the node u should be a true node otherwise its bitvec-
tor would have been applied setting l←’s bit to 0. On the
other hand, the node u should be a false node since eh is in
its right subtree. Thus, we conclude that l← = eh proving
the correctness of Algorithm 1.

Algorithm 1 represents a general technique to compute
the output value of a single binary decision tree stored as
a set of precomputed bitvectors. Given an additive ensem-
ble of binary decision trees, to score a document x we have
to loop over all the trees Th ∈ T by repeatedly applying
Algorithm 1. Unfortunately, this näıve algorithm is ineffi-
cient, since this method does not permit us to implement
efficiently FindFalse(x, Th).

In the following section we present QS, which overcomes
this issue by performing a global visit of the whole tree en-
semble T . The QS algorithm realizes the goal of identifying
efficiently the false nodes of all the tree ensemble by exploit-
ing an interleaved evaluation of all the trees in the ensemble.

3.2 The QS Algorithm
Our QS algorithm scores a feature vector x with an inter-

leaved execution of several tree traversals, one for each tree
in the ensemble. The algorithm does not loop over all the
trees in T one at the time, as one would expect, but does
loop instead over all the features in F , hence incrementally
discovering for each fk ∈ F the false nodes involving fk in
any tree of the ensemble. This is a very convenient order
for two reasons: i) we are able to identify all the false nodes
for all the trees without even considering their true nodes,
thus effectively implementing the oracle introduced in the
previous section; ii) we are able to operate in a cache-aware
fashion with a small number of Boolean comparisons and
branch mis-predictions.

During its execution, QS has to maintain the bitvectors
vh’s, encoding the set Ch’s for all the tree Th in the ensem-
ble. The bitvector vh of a certain tree is updated as soon
as a false node for that tree is identified. Once the algo-
rithm has processed all the features in F , each of these vh
is guaranteed to encode the exit leaf in the corresponding
tree. Now the algorithm can compute the overall score of x
by summing up (and, possibly, weighting) the scores of all
these exit leaves.

Let us concentrate on the processing of a feature fk and
describe the portion of the data structure of interest for this
feature. The overall algorithm simply iterates this process
over all features in F . Each node involving fk in any tree
Th ∈ T is represented by a triple containing: (i) the feature
threshold involved in the Boolean test; (ii) the id of the
tree that contains the node, where the id is used to identify
the bitvector vh to update; (iii) the node bitvector used to
possibly update vh. We sort these triples in ascending order
of their feature thresholds.

This sorting is crucial for obtaining a fast implementation
of our oracle. Recall that all the conditions occurring in the
internal nodes of the trees are of the form x[k] ≤ γhs . Hence,
given the sorted list of all the thresholds involving fk ∈ F ,
the feature value x[k] splits the list in two, possibly empty,
sublists. The first sublist contains all the thresholds γhs for
which the test condition x[k] ≤ γhs evaluates to False, while
the second sublists contains all thresholds for which the test
condition evaluates to True. Thus, if we sequentially scan
the sorted list of the thresholds associated with fk, all the
values in the first sublist will cause negative tests. Asso-
ciated with these thresholds entailing false tests, we have
false nodes belonging to the trees in T . Therefore, for all
these false nodes we can take in sequence the correspond-
ing bitvector, and perform a bitwise logical AND with the
appropriate result bitvector vh.

This large sequence of tests that evaluates to False cor-
responds to the repeated execution of conditional branch in-
structions, whose behavior is indeed very predictable. This

Algorithm 2: The QuickScorer Algorithm

Input :
• x: input feature vector
• T : ensemble of binary decision trees, with

- w0, . . . , w|T |−1: weights, one per tree
- thresholds: sorted sublists of thresholds, one sublist per

feature
- tree_ids: tree’s ids, one per threshold
- bitvectors: node bitvectors, one per threshold
- offsets: offsets of the blocks of triples
- v: result bitvectors, one per each tree
- leaves: output values, one per each tree leaf

Output:
• Final score of x

QuickScorer(x,T):
1 foreach h ∈ 0, 1, . . . , |T | − 1 do
2 v[h]← 11 . . . 11

3 foreach k ∈ 0, 1, . . . , |F| − 1 do // Step À
4 i← offsets[k]
5 end← offsets[k + 1]
6 while x[k] > thresholds[i] do
7 h← tree_ids[i]
8 v[h] ← v[h] ∧ bitvectors[i]
9 i← i+ 1

10 if i ≥ end then
11 break

12 score← 0
13 foreach h ∈ 0, 1, . . . , |T | − 1 do // Step Á
14 j ← index of leftmost bit set to 1 of v[h]
15 l← h · |Lh|+ j
16 score← score+ wh · leaves[l]
17 return score

77

is confirmed by our experimental results, showing that our
code incurs in very few branch mis-predictions.

We now present the layout in memory of the required data
structure since it is crucial for the efficiency of our algorithm.
The triples of each feature are stored in three separate ar-
rays, one for each component: thresholds, tree_ids, and
bitvectors. The use of three distinct arrays solves some
data alignment issues arising when tuples of heterogeneous
data types are stored contiguously in memory. The arrays
of the different features are then juxtaposed one after the
other as illustrated in Figure 3. Since arrays of different fea-
tures may have different lengths, we use an auxiliary array
offsets which marks the starting position of each array in
the global array. We also juxtapose the bitvectors vh into a
global array v. Finally, we use an array leaves which stores
the output values of the leaves of each tree (ordered from
left to right) grouped by their tree id.

Algorithm 2 reports the steps of QS as informally de-
scribed above. After the initialization of the result bitvec-
tors of each tree (loop starting al line 1), we have the first
step of QS that exactly corresponds to what we discussed
above (loop starting at line 3). The algorithm iterates over
all features, and inspects the sorted lists of thresholds to up-
date the result bitvectors. Upon completion of the first step,
we have the second step of the algorithm (loop starting at
line 13), which simply inspects all the result bitvectors, and
for each of them identifies the position of the leftmost bit
set to 1, and uses this position to access the value associated
with the corresponding leaf stored array leaves. The value
of the leaf is finally used to update the final score.

f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

Figure 3: Arrays used by algorithm QS.

Implementation details. In the following we discuss some
details about our data structures, their size and access modes.

A few important remarks concern the bitvectors stored
in v and bitvectors. The learning algorithm controls the
accuracy of each single tree with a parameter Λ, which deter-
mines the maximal number of leaves for each Th = (Nh, Lh)
in T , namely |Lh| ≤ Λ. Usually, the value of Λ is kept small
(≤ 64). Thus, the length of bitvectors, which have to encode
tree leaves, is equal to (or less than) a typical machine word
of modern CPUs (64 bits). As a consequence, the bitwise
operations performed by Algorithm 2 on them can be real-
ized very efficiently, because they involve machine words (or
halfwords, etc).

We avoid any possible performance overhead due to shift-
ing operations to align the operands of bitwise logical ANDs
by forcing the bitvectors to have uniform length of B bytes.
To this end, we pad each bitvector on its right side with a
string of 0 bits, if necessary. We always select the minimum
number of bytes B ∈ {1, 2, 4, 8} fitting Λ.

Let us now consider Table 1, which shows an upper bound
for the size of each linear array used by our algorithm. The
array offsets has |F| entries, one entry for each distinct
feature. The array v, instead, has an entry for each tree
in T , thus, |T | entries overall. The sizes of the other data
structures depends on the number of total internal nodes or
leaves in the ensemble T , besides the datatype sizes. Any
internal node of some tree of T contributes with an entry in
each array thresholds, bitvectors and tree_ids. There-
fore the total number of entries of each of these arrays, i.e.,∑|T |−1

0 |Nh|, can be upper bounded by |T | · Λ, because for
every tree Th we have |Nh| < |Nh|+ 1 = |Lh| ≤ Λ. Finally,
the array leaves has an entry for each leaf in a tree of T ,
hence, no more than |T | · Λ in total.

Table 1: Data structures used by QS, the corre-
sponding maximum sizes, and the access modes.

Data structure Maximum Size (bytes) Data access modes

thresholds |T | · Λ · sizeof(float)

1. Sequential (R)
tree_ids |T | · Λ · sizeof(uint)
bitvectors |T | · Λ ·B
offsets |F| · sizeof(uint)

v |T | ·B 1. Random (R/W)
2. Sequential (R)

leaves |T | · Λ · sizeof(double) 2. Seq. Sparse (R)

The last column of Table 1 reports the data access modes
to the arrays, where the leading number, either 1 or 2, cor-
responds to the step of the algorithm during which the data
structures are read/written. Recall that the first step of QS
starts at line 3 of Algorithm 2, while the second at line 13.
We first note that v is the only array used in both phases
of function QuickScorer(x, T). During the first step v is
accessed randomly in reading/writing to update the vh’s.
During the second step the same array is accessed sequen-
tially in reading mode to identify the exit leafs lh of each tree
Th, and then to access the array leaves to read the contri-
bution of tree Th to the output of the regression function.
Even if the trees and their leaves are accessed sequentially
during the second step of QS, the reading access to array
leaves is sequential, but very sparse: only one leaf of each
block of |Lh| elements is actually read.

Finally, note that the arrays storing the triples, i.e., thresh-
olds, tree_ids, and bitvectors, are all sequentially read
during the first step, though not completely, since for each
feature we stop its inspection at the first test condition that
evaluates to True. The cache usage can greatly benefit from
the layout and access modes of our data structures, thanks
to the increased references locality.

We finally describe an optimization which aims at reduc-
ing the number of comparisons performed at line 6 of Al-
gorithm 2. The (inner) while loop in line 6 iterates over
the list of threshold values associated with a certain fea-
ture fk ∈ F until we find the first index j where the test
fails, namely, the value of the kth feature of vector x is
greater than thresholds[j]. Thus, a test on the feature

78

value and the current threshold is carried out at each it-
eration. Instead of testing each threshold in a prefix of
thresholds[i : end], our optimized implementation tests
only one every ∆ thresholds, where ∆ is a parameter. Since
the subvector thresholds[i : end] is sorted in ascending or-
der, if a test succeed the same necessarily holds for all the
preceding ∆ − 1 thresholds. Therefore, we can go directly
to update the result bitvector vh of the corresponding trees,
saving ∆− 1 comparisons. Instead, if the test fails, we scan
the preceding ∆−1 thresholds to identify the target index j
and we conclude. In our implementation we set ∆ equal to 4,
which is the value giving the best results in our experiments.
We remark that in principle one could identify j by binary
searching the subvector thresholds[i : end]. Experiments
have shown that the use of binary search is not profitable
because in general the subvector is not sufficiently long.

4. EXPERIMENTS
In this section we provide an extensive experimental eval-

uation that compares our QS algorithm with other state-of-
the-art competitors and baselines over standard datasets.

Datasets and experimental settings. Experiments are con-
ducted by using publicly available LtR datasets: the MSN1

and the Yahoo! LETOR2 challenge datasets. The first one
is split into five folds, consisting of vectors of 136 features
extracted from query-document pairs, while the second one
consists of two distinct datasets (Y!S1 and Y!S2), made up
of vectors of 700 features. In this work, we focus on MSN-1,
the first MSN fold, and Y!S1 datasets. The features vec-
tors of the two selected datasets are labeled with relevance
judgments ranging from 0 (irrelevant) to 4 (perfectly rele-
vant). Each dataset is split in training, validation and test
sets. The MSN-1 dataset consists of 6,000, 2,000, and 2,000
queries for training, validation and testing respectively. The
Y!S1 dataset consists of 19,944 training queries, 2,994 vali-
dation queries and 6,983 test queries.

We exploit the following experimental methodology. We
use training and validation sets from MSN-1 and Y!S1 to
train λ-MART [18] models with 8, 16, 32 and 64 leaves.
We use QuickRank3 an open-source parallel implementation
of λ-MART written in C++11 for performing the train-
ing phase. During this step we optimize NDCG@10. The
results of the paper can be also applied to analogous tree-
based models generated by different state-of-the-art learning
algorithms, e.g., GBRT [4].

In our experiments we compare the scoring efficiency of
QS4 with the following competitors:

• If-Then-Else is a baseline that translates each tree
of the forest as a nested block of if-then-else.

• VPred and Struct+ [1] kindly made available by the
authors5.

Given a trained model and a test set, all the above scoring
methods achieve the same result in terms of effectiveness.
Hence, we do not report quality measures.
1
http://research.microsoft.com/en-us/projects/mslr/

2
http://learningtorankchallenge.yahoo.com

3
http://quickrank.isti.cnr.it

4The C++11 implementation of QS is available at
http://github.com/hpclab/quickscorer.
5
http://nasadi.github.io/OptTrees/

All the algorithms are compiled with GCC 4.9.2 with the
highest optimization settings. The tests are performed by
using a single core on a machine equipped with an Intel Core
i7-4770K clocked at 3.50Ghz, with 32GiB RAM, running
Ubuntu Linux 3.13.0. The Intel Core i7-4770K CPU has
three levels of cache. Level 1 cache has size 32 KB, one for
each of the four cores, level 2 cache has size 256 KB for each
core, and at level 3 there is a shared cache of 8 MB.

To measure the efficiency of each of the above methods,
we run 10 times the scoring code on the test sets of the
MSN-1 and Y!S1 datasets. We then compute the average
per-document scoring cost. Moreover, to deeply profile the
behavior of each method above we employ perf6, a per-
formance analysis tool available under Ubuntu Linux dis-
tributions. We analyze each method by monitoring several
CPU counters that measure the total number of instruc-
tions executed, number of branches, number of branch mis-
predictions, cache references, and cache misses.

Scoring time analysis. The average time (in µs) needed
by the different algorithms to score each document of the
two datasets MSN-1 and Y!S1 are reported in Table 2. In
particular, the table reports the per-document scoring time
by varying the number of trees and the leaves of the ensem-
ble employed. For each test the table also reports between
parentheses the gain factor of QS over its competitors. At a
first glance, these gains are impressive, with speedups that
in many cases are above one order of magnitude. Depend-
ing on the number of trees and of leaves, QS outperforms
VPred, the most efficient solution so far, of factors ranging
from 2.0x up to 6.5x. For example, the average time required
by QS and VPred to score a document in the MSN-1 test
set with a model composed of 1, 000 trees and 64 leaves, are
9.5 and 62.2 µs, respectively. The comparison between QS
and If-Then-Else is even more one-sided, with improve-
ments of up to 23.4x for the model with 10, 000 trees and
32 leaves trained on the MSN-1 dataset. In this case the QS
average per-document scoring time is 59.6 µs with respect to
the 1396.8 µs of If-Then-Else. The last baseline reported,
i.e., Struct+, behaves worst in all the tests conducted. Its
performance is very low when compared not only to QS (up
to 38.2x times faster), but even with respect to the other two
algorithms VPred and If-Then-Else. The reasons of the
superior performance of QS over competitor algorithms are
manyfold. We analyse the most relevant in the following.

Instruction level analysis. We used the perf tool to mea-
sure the total number of instructions, number of branches,
number of branch mis-predictions, L3 cache references, and
L3 cache misses of the different algorithms by considering
only their scoring phase. Table 3 reports the results we ob-
tained by scoring the MSN-1 test set by varying the number
of trees and by fixing the number of leaves to 64. Exper-
iments on Y!S1 are not reported here, but they exhibited
similar behavior. As a clarification, L3 cache references ac-
counts for those references which are not found in any of
the previous level of cache, while L3 cache misses are the
ones among them which miss in L3 as well. Table 3 also
reports the number of visited nodes. All measurements are
per-document and per-tree normalized.

6
https://perf.wiki.kernel.org

79

Table 2: Per-document scoring time in µs of QS, VPred, If-Then-Else and Struct+ on MSN-1 and Y!S1
datasets. Gain factors are reported in parentheses.

Method Λ

Number of trees/dataset

1, 000 5, 000 10, 000 20, 000

MSN-1 Y!S1 MSN-1 Y!S1 MSN-1 Y!S1 MSN-1 Y!S1

QS

8

2.2 (–) 4.3 (–) 10.5 (–) 14.3 (–) 20.0 (–) 25.4 (–) 40.5 (–) 48.1 (–)

VPred 7.9 (3.6x) 8.5 (2.0x) 40.2 (3.8x) 41.6 (2.9x) 80.5 (4.0x) 82.7 (3.3) 161.4 (4.0x) 164.8 (3.4x)

If-Then-Else 8.2 (3.7x) 10.3 (2.4x) 81.0 (7.7x) 85.8 (6.0x) 185.1 (9.3x) 185.8 (7.3x) 709.0 (17.5x) 772.2 (16.0x)

Struct+ 21.2 (9.6x) 23.1 (5.4x) 107.7 (10.3x) 112.6 (7.9x) 373.7 (18.7x) 390.8 (15.4x) 1150.4 (28.4x) 1141.6 (23.7x)

QS

16

2.9 (–) 6.1 (–) 16.2 (–) 22.2 (–) 32.4 (–) 41.2 (–) 67.8 (–) 81.0 (–)

VPred 16.0 (5.5x) 16.5 (2.7x) 82.4 (5.0x) 82.8 (3.7x) 165.5 (5.1x) 165.2 (4.0x) 336.4 (4.9x) 336.1 (4.1x)

If-Then-Else 18.0 (6.2x) 21.8 (3.6x) 126.9 (7.8x) 130.0 (5.8x) 617.8 (19.0x) 406.6 (9.9x) 1767.3 (26.0x) 1711.4 (21.1x)

Struct+ 42.6 (14.7x) 41.0 (6.7x) 424.3 (26.2x) 403.9 (18.2x) 1218.6 (37.6x) 1191.3 (28.9x) 2590.8 (38.2x) 2621.2 (32.4x)

QS

32

5.2 (–) 9.7 (–) 27.1 (–) 34.3 (–) 59.6 (–) 70.3 (–) 155.8 (–) 160.1 (–)

VPred 31.9 (6.1x) 31.6 (3.2x) 165.2 (6.0x) 162.2 (4.7x) 343.4 (5.7x) 336.6 (4.8x) 711.9 (4.5x) 694.8 (4.3x)

If-Then-Else 34.5 (6.6x) 36.2 (3.7x) 300.9 (11.1x) 277.7 (8.0x) 1396.8 (23.4x) 1389.8 (19.8x) 3179.4 (20.4x) 3105.2 (19.4x)

Struct+ 69.1 (13.3x) 67.4 (6.9x) 928.6 (34.2x) 834.6 (24.3x) 1806.7 (30.3x) 1774.3 (25.2x) 4610.8 (29.6x) 4332.3 (27.0x)

QS

64

9.5 (–) 15.1 (–) 56.3 (–) 66.9 (–) 157.5 (–) 159.4 (–) 425.1 (–) 343.7 (–)

VPred 62.2 (6.5x) 57.6 (3.8x) 355.2 (6.3x) 334.9 (5.0x) 734.4 (4.7x) 706.8 (4.4x) 1309.7 (3.0x) 1420.7 (4.1x)

If-Then-Else 55.9 (5.9x) 55.1 (3.6x) 933.1 (16.6x) 935.3 (14.0x) 2496.5 (15.9x) 2428.6 (15.2x) 4662.0 (11.0x) 4809.6 (14.0x)

Struct+ 109.8 (11.6x) 116.8 (7.7x) 1661.7 (29.5x) 1554.6 (23.2x) 3040.7 (19.3x) 2937.3 (18.4x) 5437.0 (12.8x) 5456.4 (15.9x)

We first observe that VPred executes the largest number
of instructions. This is because VPred always runs d steps
if d is the depth of a tree, even if a document might reach an
exit leaf earlier. If-Then-Else executes much less instruc-
tions as it follows the document traversal path. Struct+
introduces some data structures overhead w.r.t. If-Then-
Else. QS executes the smallest number instructions. This
is due to the different traversal strategy of the ensemble,
as QS needs to process the false nodes only. Indeed, QS
always visits less than 18 nodes on average, out of the 64
present in each tree of the ensemble. Note that If-Then-
Else traverses between 31 and 40 nodes per tree, and the
same trivially holds for Struct+. This means that the in-
terleaved traversal strategy of QS needs to process less nodes
than in a traditional root-to-leaf visit. This mostly explains
the results achieved by QS.

As far as number of branches is concerned, we note that,
not surprisingly, QS and VPred are much more efficient
than If-Then-Else and Struct+ with this respect. QS
has a larger total number of branches than VPred, which
uses scoring functions that are branch-free. However, those
branches are highly predictable, so that the mis-prediction
rate is very low, thus, confirming our claims in Section 3.

Observing again the timings in Table 2 we notice that, by
fixing the number of leaves, we have a super-linear growth
of QS’s timings when increasing the number of trees. For
example, since on MSN-1 with Λ = 64 and 1, 000 trees QS
scores a document in 9.5 µs, one would expect to score a
document 20 times slower, i.e., 190 µs, when the ensemble
size increases to 20, 000 trees. However, the reported timing
of QS in this setting is 425.1 µs, i.e., roughly 44 times slower
than with 1000 trees. This effect is observable only when the
number of leaves Λ = {32, 64} and the number of trees is
larger than 5, 000. Table 3 relates this super-linear growth
to the numbers of L3 cache misses.

Considering the sizes of the arrays as reported in Table
1 in Section 3, we can estimate the minimum number of
trees that let the size of the QS’s data structure to exceed
the cache capacity, and, thus, the algorithm starts to have
more cache misses. This number is estimated in 6, 000 trees
when the number of leaves is 64. Thus, we expect that

the number of L3 cache miss starts increasing around this
number of trees. Possibly, this number is slightly larger,
because portions of the data structure may be infrequently
accessed at scoring time, due the the small fraction of false
nodes and associated bitvectors accessed by QS.

These considerations are further confirmed by Figure 4,
which shows the average per-tree per-document scoring time
(µs) and percentage of cache misses QS when scoring the
MSN-1 and the Y!S1 with Λ = 64 by varying the number of
trees. First, there exists a strong correlation between QS’s
timings and its number of L3 cache misses. Second, the
number of L3 cache misses starts increasing when dealing
with 9, 000 trees on MSN and 8, 000 trees on Y!S1.

BWQS: a block-wise variant of QS
The previous experiments suggest that improving the cache
efficiency of QS may result in significant benefits. As in
Tang et al. [12], we can split the tree ensemble in disjoint
blocks of size τ that are processed separately in order to let
the corresponding data structures fit into the faster levels of
the memory hierarchy. This way, we are essentially scoring
each document over each tree blocks that partition the origi-
nal ensemble, thus inheriting the efficiency of QS on smaller
ensembles. Indeed, the size of the arrays required to score
the documents over a block of trees depends now on τ in-
stead of |T | (see Table 1 in Section 3). We have, however,
to keep an array that stores the partial scoring computed so
far for each document.

The temporal locality of this approach can be improved by
allowing the algorithm to score blocks of documents together
over the same block of trees before moving to the next block
of documents. To allow the algorithm to score a block of δ
documents in a single run we have to replicate in δ copies the
array v. Obviously, this increases the space occupancy and
may result in a worse use of the cache. Therefore, we need
to find the best balance between the number of documents δ
and the number of trees τ to process in the body of a nested
loop that first runs over the blocks of trees (outer loop) and
then over the blocks of documents to score (inner loop).

This algorithm is called BlockWise-QS (BWQS) and its
efficiency is discussed in the remaining part of this section.

80

Table 3: Per-tree per-document low-level statistics
on MSN-1 with 64-leaves λ-MART models.

Method
Number of Trees

1, 000 5, 000 10, 000 15, 000 20, 000

Instruction Count

QS 58 75 86 91 97

VPred 580 599 594 588 516

If-Then-Else 142 139 133 130 116

Struct+ 341 332 315 308 272

Num. branch mis-predictions (above)

Num. branches (below)

QS
0.162 0.035 0.017 0.011 0.009

6.04 7.13 8.23 8.63 9.3

VPred
0.013 0.042 0.045 0.049 0.049

0.2 0.21 0.18 0.21 0.21

If-Then-Else
1.541 1.608 1.615 1.627 1.748

42.61 41.31 39.16 38.04 33.65

Struct+
4.498 5.082 5.864 6.339 5.535

89.9 88.91 85.55 83.83 74.69

L3 cache misses (above)

L3 cache references (below)

QS
0.004 0.001 0.121 0.323 0.51

1.78 1.47 1.52 2.14 2.33

VPred
0.005 0.166 0.326 0.363 0.356

12.55 12.6 13.74 15.04 12.77

If-Then-Else
0.001 17.772 30.331 29.615 29.577

27.66 38.14 40.25 40.76 36.47

Struct+
0.039 12.791 17.147 15.923 13.971

7.37 18.64 20.52 19.87 18.38

Num. Visited Nodes (above)

Visited Nodes/Total Nodes (below)

QS
9.71 13.40 15.79 16.65 18.00

15% 21% 25% 26% 29%

VPred
54.38 56.23 55.79 55.23 48.45

86% 89% 89% 88% 77%

Struct+ 40.61 39.29 37.16 36.15 31.75

If-Then-Else 64% 62% 59% 57% 50%

Table 4 reports average per-document scoring time in µs
of algorithms QS, VPred, and BWQS. The experiments
were conducted on both the MSN-1 and Y!S1 datasets by
varying Λ and by fixing the number of trees to 20, 000. It
is worth noting that our QS algorithm can be thought as a
limit case of BWQS, where the blocks are trivially composed
of 1 document and the whole ensemble of trees. VPred
instead vectorizes the process and scores 16 documents at
the time over the entire ensemble. With BWQS the sizes of
document and tree blocks can be instead flexibly optimized
according to the cache parameters. Table 4 reports the best
execution times, along with the values of δ and τ for which
BWQS obtained such results.

The blocking strategy can improve the performance of QS
when large tree ensembles are involved. Indeed, the largest
improvements are measured in the tests conducted on mod-
els having 64 leaves. For example, to score a document of
MSN-1, BWQS with blocks of 3, 000 trees and a single docu-
ment takes 274.7 µs in average, against the 425.1 µs required
by QS with an improvement of 1.55x.

Table 4: Per-document scoring time in µs of BWQS,
QS and VPred algorithms on MSN-1.

MSN-1 Y!S1

Λ Method Block
Time

Block
Time

δ τ δ τ

8

BWQS 8 20,000 33.5 (–) 8 20,000 40.5 (–)

QS 1 20,000 40.5 (1.21x) 1 20,000 48.1 (1.19x)

VPred 16 20,000 161.4 (4.82x) 16 20,000 164.8 (4.07x)

16

BWQS 8 5,000 59.6 (–) 8 10,000 72.34 (–)

QS 1 20,000 67.8 (1.14x) 1 20,000 81.0 (1.12x)

VPred 16 20,000 336.4 (5.64x) 16 20,000 336.1 (4.65x)

32

BWQS 2 5,000 135.5 (–) 8 5,000 141.2 (–)

QS 1 20,000 155.8 (1.15x) 1 20,000 160.1 (1.13x)

VPred 16 20,000 711.9 (5.25x) 16 20,000 694.8 (4.92x)

64

BWQS 1 3,000 274.7 (–) 1 4,000 236.0 (–)

QS 1 20,000 425.1 (1.55x) 1 20,000 343.7 (1.46x)

VPred 16 20,000 1309.7 (4.77x) 16 20,000 1420.7 (6.02x)

The reason of the improvements highlighted in the ta-
ble are apparent from the two plots reported in Figure 4.
These plots report for MSN-1 and Y!S1 the per-document
and per-tree average scoring time of BWQS and its cache
misses ratio. As already mentioned, the plot shows that
the average per-document per-tree scoring time of QS is
strongly correlated to the cache misses measured. The more
the cache misses, the larger the per-tree per-document time
needed to apply the model. On the other hand, the BWQS
cache misses curve shows that the block-wise implementa-
tion incurs in a negligible number of cache misses. This
cache-friendliness is directly reflected in the per-document
per-tree scoring time, which is only slightly influenced by
the number of trees of the ensemble.

5. CONCLUSIONS
We presented a novel algorithm to efficiently score docu-

ments by using a machine-learned ranking function modeled
by an additive ensemble of regression trees. Our main con-
tribution is a new representation of the tree ensemble based
on bitvectors, where the tree traversal, aimed to detect the
leaves that contribute to the final scoring of a document,
is performed through efficient logical bitwise operations. In
addition, the traversal is not performed one tree after an-
other, as one would expect, but it is interleaved, feature by
feature, over the whole tree ensemble. Our tests conducted
on publicly available LtR datasets confirm unprecedented
speedups (up to 6.5x) over the best state-of-the-art com-
petitor. The motivations of the very good performance fig-
ures of our QS algorithm are diverse. First, linear arrays are
used to store the tree ensemble, while the algorithm exploits
cache-friendly access patterns (mainly sequential patterns)
to these data structures. Second, the interleaved tree traver-
sal counts on an effective oracle that, with a few branch
mis-predictions, is able to detect and return only the in-
ternal node in the tree whose conditions evaluate to False.
Third, the number of internal nodes visited by QS is in most
cases consistently lower than in traditional methods, which
recursively visits the small and unbalanced trees of the en-
semble from the root to the exit leaf. All these remarks are
confirmed by the deep performance assessment conducted
by also analyzing low-level CPU hardware counters. This
analysis shows that QS exhibits very low cache misses and
branch mis-prediction rates, while the instruction count is

81

1000 5000 10000 15000 20000

Number of Trees (64 leaves)

0.000

0.005

0.010

0.015

0.020

0.025

S
co

ri
ng

ti
m

e
p

er
do

cu
m

en
t

p
er

tr
ee

(µ
s)

QS Scoring Time

BWQS Scoring Time

QS Cache Misses

BWQS Cache Misses

0

10

20

30

40

C
ac

he
M

is
se

s
(%

)

(a) MSN-1

1000 5000 10000 15000 20000

Number of Trees (64 leaves)

0.000

0.005

0.010

0.015

0.020

0.025

S
co

ri
ng

ti
m

e
p

er
do

cu
m

en
t

p
er

tr
ee

(µ
s)

QS Scoring Time

BWQS Scoring Time

QS Cache Misses

BWQS Cache Misses

0

10

20

30

40

C
ac

he
M

is
se

s
(%

)

(b) Y!S1

Figure 4: Per-tree per-document scoring time in µs and percentage of cache misses of QS and BWQS on MSN-1
(left) and Y!S1 (right) with 64-leaves λ-MART models.

consistently smaller than the counterparts. When the size of
the data structures implementing the tree ensemble becomes
larger the last level of the cache (L3 in our experimental set-
ting), we observed a slight degradation of performance. To
show that our method can be made scalable, we also present
BWQS, a block-wise version of QS that splits the sets of fea-
ture vectors and trees in disjoint blocks that entirely fit in
the cache and can be processed separately. Our experiments
show that BWQS performs up to 1.55 times better than the
original QS on large tree ensembles.

As future work, we plan to apply the same devised algo-
rithm to other contexts, when a tree-based machine learned
model must be applied to big data for classification/predic-
tion purposes. Moreover, we aim at investigating whether
we can introduce further optimizations in the algorithms,
considering that the same tree-based model is applied to a
multitude of feature vectors, and thus we could have the
chance of partially reusing some work. Finally, we plan to
investigate the parallelization of our method, which can in-
volve various dimensions, i.e., the parallelization of the scor-
ing task of each single feature vector, or the parallelization
of the simultaneous scoring of many feature vectors.

Acknowledgements
We acknowledge the support of Tiscali S.p.A. In particu-
lar, we wish to warmly thank Domenico Dato and Monica
Mori (Istella) for fruitful discussions and valuable feedbacks
helping us in concretizing this paper.

6. REFERENCES
[1] N. Asadi, J. Lin, and A. P. de Vries. Runtime optimizations

for tree-based machine learning models. IEEE Trans.
Knowl. Data Eng., 26(9):2281–2292, 2014.

[2] C. J. Burges. From ranknet to lambdarank to lambdamart:
An overview. Technical Report MSR-TR-2010-82, 2010.

[3] B. B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen,
C. Liao, Z. Zheng, and J. Degenhardt. Early exit
optimizations for additive machine learned ranking systems.
In Proc. ACM WSDM, pages 411–420. ACM, 2010.

[4] J. H. Friedman. Greedy function approximation: a gradient
boosting machine. Annals of Statistics, pages 1189–1232,
2001.

[5] Y. Ganjisaffar, R. Caruana, and C. V. Lopes. Bagging
gradient-boosted trees for high precision, low variance
ranking models. In Proc. ACM SIGIR, pages 85–94, New
York, NY, USA, 2011. ACM.

[6] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of ir techniques. ACM Trans. Inf. Syst.,
20(4):422–446, 2002.

[7] T.-Y. Liu. Learning to rank for information retrieval.
Foundations and Trends in Information Retrieval,
3(3):225–331, 2009.

[8] D. Patterson and J. Hennessy. Computer Organization and
Design (4th ed.). Morgan Kaufmann, 2009.

[9] S. Robertson and H. Zaragoza. The probabilistic relevance
framework: Bm25 and beyond. Found. Trends Inf. Retr.,
3(4):333–389, 2009.

[10] I. Segalovich. Machine learning in search quality at yandex.
ACM SIGIR, Industry track, 2010.

[11] T. Sharp. Implementing decision trees and forests on a gpu.
In Proc. Computer Vision, pages 595–608. Springer, 2008.

[12] X. Tang, X. Jin, and T. Yang. Cache-conscious runtime
optimization for ranking ensembles. In Proc. ACM SIGIR,
pages 1123–1126, 2014.

[13] B. Van Essen, C. Macaraeg, M. Gokhale, and R. Prenger.
Accelerating a random forest classifier: Multi-core, gp-gpu,
or fpga? In Proc. IEEE FCCM, pages 232–239. IEEE, 2012.

[14] P. Viola and M. J. Jones. Robust real-time face detection.
Int. J. Comput. Vision, 57(2):137–154, 2004.

[15] L. Wang, J. J. Lin, and D. Metzler. Learning to efficiently
rank. In Proc. ACM SIGIR, pages 138–145, 2010.

[16] L. Wang, J. J. Lin, and D. Metzler. A cascade ranking
model for efficient ranked retrieval. In Proc. ACM SIGIR,
pages 105–114, 2011.

[17] L. Wang, D. Metzler, and J. J. Lin. Ranking under
temporal constraints. In Proc. ACM CIKM, pages 79–88,
2010.

[18] Q. Wu, C. Burges, K. Svore, and J. Gao. Adapting
boosting for information retrieval measures. Information
Retrieval, 2010.

[19] Z. Xu, K. Weinberger, and O. Chapelle. The greedy miser:
Learning under test-time budgets. In Proc. ICML, pages
1175–1182, New York, NY, USA, 2012. ACM.

82

