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ABSTRACT
One common predictive modeling challenge occurs in text
mining problems is that the training data and the oper-
ational (testing) data are drawn from different underlying
distributions. This poses a great difficulty for many statis-
tical learning methods. However, when the distribution in
the source domain and the target domain are not identi-
cal but related, there may exist a shared concept space to
preserve the relation. Consequently a good feature repre-
sentation can encode this concept space and minimize the
distribution gap. To formalize this intuition, we propose a
domain adaptation method that parameterizes this concept
space by linear transformation under which we explicitly
minimize the distribution difference between the source do-
main with sufficient labeled data and target domains with a
large amount of unlabeled data, while at the same time min-
imizing the empirical loss on the labeled data in the source
domain. Another characteristic of our method is its capa-
bility for considering multiple classes and their interactions
simultaneously. We have conducted extensive experiments
on two common text mining problems, namely, information
extraction and document classification to demonstrate the
effectiveness of our proposed method.1.
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1. INTRODUCTION
Traditional statistical learning techniques rely on the ba-

sic assumption that the training data and the operational
(testing) data are drawn from the same underlying distri-
bution. However, in many text mining applications involv-
ing high-dimensional feature space, it is difficult to collect
sufficient training data for different domains. For example,
consider a text information extraction problem whose objec-
tive is to automatically extract precise job information such
as job title, duty, requirement, etc. from recruitment Web
sites in different industries supporting intelligent analysis of
employment information. Usually we may just have few ex-
perts who can accurately annotate the information in one
specific industry like accounting for preparing the training
data. The learnt model deployed obviously cannot perform
well in other domains (industries) such as logistic or health
care due to the distribution of the terms in each domain is
different. One strategy to tackle this problem is to adapt
the trained model from one domain known as the source do-
main with sufficient labeled data to another domain known
as the target domain where only a small amount or even no
labeled data is available.

It can be observed that domain adaptation is reasonable
and practical if the distributions between the source domain
and the target domain is related, which is mainly based on
the fact that there exists a shared concept space in which
the embedded distribution of each domain is close enough.
Consequently it is very reasonable to believe that a good
feature representation is able to encode this concept space
and provide strong adaptive power from the source domain
to the target domain. On the other hand, such a changed
representation may encode less information leading to an
increase of the empirical loss on the labeled data. To cope
with this problem, we try to learn the ideal shared concept
space with respect to two criteria: the empirical loss in the
source domain, and the embedded distribution gap between
the source domain and the target domain. Consider again
the job information extraction example. For the task of ex-
tracting the job requirement information in the domain of
accounting, the most representative terms are “qualified”,
“year”, “experience”, “CPA”, “CA”, “ACCA”, etc. Similarly
for the domain of health care, the corresponding terms shift
to “qualified”, “degree”, “year”, “CCP”, “Physiology”, “ex-
perience”, etc. If we can extract the shared domain inde-
pendent features such as “qualified”, “year”, “experience” for
the specific task, then the learnt extractor can be effectively
adapted to the domain of health care.

In this paper we propose a domain adaptation method



which directly minimizes both the distribution gap between
the source domain and the target domain, as well as the
empirical loss on the labeled data in the source domain by
extracting the low-rank concept subspace. Maximum Mean
Discrepancy (MMD) [5] is adopted to measure the embed-
ded distribution difference between the source domain with
sufficient but finite labeled data and the target domain with
sufficient unlabeled data. Then our objective is to minimize
the empirical loss and the MMD measurement with respect
to the parametric family (linear transformation) which pa-
rameterizes the embedded feature subspace. Furthermore,
we apply the graph Laplacian [1] to exploit the predictive
power for some domain dependent representative features
in the target domain based on the co-occurrence with the
shared features. This technique can help improve the per-
formance especially when the common features are not suf-
ficient in the target domain.

In fact, there have several domain adaptation methods
been proposed to learn a reasonable representation so as to
make the distributions between the source domain and the
target domain more closer [3, 12, 13, 11]. However, none
of them can automatically learn the concept space where
the prediction power in the source domain and the adaptive
power from the source domain to the target domain are both
considered.

Our main contributions can be summarized as follows:
(1) We propose a domain adaptation method to extract the
low-rank concept space shared by the source domain and the
target domain, which can ensure both the predictive power
and adaptive power are maximized.
(2) We can transfer the predictive power from the extracted
common features to the characteristic features in the target
domain by the feature graph Laplacian.
(3) We theoretically analyze the expected error in the target
domain showing that the error bound can be controlled by
the expected loss in the source domain, and the embedded
distribution gap, so as to prove that what we minimize in the
objective function is very reasonable for domain adaptation.
(4) Our domain adaptation method is capable of considering
multiple classes and their interactions simultaneously. It
can be applied to high dimensional text mining applications
due to two major properties of text: latent semantic and
sparseness. The first property ensures that low-rank concept
space can still preserve enough information, and the second
property contributes to the computation speed.

We have conducted extensive experiments on two com-
mon text mining problems, namely, information extraction
and document classification to demonstrate the effectiveness
of our proposed method. Experiment results show that our
method can get better performance than other existing com-
petitive methods.

2. DOMAIN ADAPTATION

2.1 Related Work
Domain adaptation is a widely studied area. It addresses a

common situation when applying the trained model to a dif-
ferent domain. Many works try to learn a new representation
which can bridge the source domain and the target domain.
Blitzer et al. [3] proposed a heuristic method to select some
domain independent pivot features to learn an embedded
space where the data comeing from both domains can share
the same feature structure. Daumé III [4] proposed the Fea-

ture Augmentation method to augment features for domain
adaptation. The augmented features are used to construct a
kernel function for kernel methods. Raina et al. [12] learned
the sparse basis from the unlabeled data which is not nec-
essary in the same domain as the labeled data. Then it
represents the labeled data by those learned high-level basis
for further classification. Several domain adaptation meth-
ods [6, 14, 15, 8, 2] suggested to apply the instance weight-
ing technique for domain adaption in various applications.
Recently, Pan et al. [11] applied the Maximum Mean Dis-
crepancy (MMD) to learn the embedded space where the
distribution between the source domain and the target do-
main is minimized.

2.2 Problem Statement and Preliminaries
In this paper, we focus on the setting where the testing

samples come from another domain, which is different from
the training set. In the sequel, we refer the training set to
as the source domain DS = {(xi, yi)}n1

i=1, where xi ∈ Rd is
the d dimensional input space, and yi is the output label.
We also assume that the testing samples are available. De-
note the testing set as DT = {x′i}n2

i=1 and x′i ∈ Rd is the
input. Let P(x) and Q(x′) (or P and Q for short) be the
marginal distributions of the input sets {xi} and {x′i} from
the source and target domains, respectively. In general, P
and Q can be different. The task of domain adaptation is
to predict the labels y′i’s corresponding to the inputs x′i’s
in the target domain. Note that domain adaptation is dif-
ferent from Semi-Supervised Learning (SSL). SSL methods
employ both labeled and unlabeled data for better classifi-
cation, in which the labeled and unlabeled data are assumed
to be drawn from the same domain. Unlike SSL, the key as-
sumption in domain adaptation is that P 6= Q, but the class
conditional distribution of the source and target domains
remains unchanged, i.e., P (y|x) = P (y′|x′).

2.3 Maximum Mean Discrepancy
Recall that, in domain adaptation, the fundamental ques-

tion is how to evaluate the difference in distribution be-
tween two domains given finite observations of {xi} and
{x′i}. There exists many criteria (such as the Kullback-
Leibler (KL) divergence) that can be used to measure their
distance. However, many of these estimators are paramet-
ric and require an intermediate density estimate. To avoid
this non-trivial task, a non-parametric distance estimate be-
tween distributions is more desirable. Recently, Gretton et
al. [5] introduced the Maximum Mean Discrepancy (MMD)
for comparing distributions based on the Reproducing Ker-
nel Hilbert Space (RKHS) distance. Let the kernel-induced
feature map be φ : R 7→ H, where H is the corresponding
feature space. The MMD between the source domain DS
and the target domain DT is defined as follows:

MMD[DS , DT] = sup
‖f‖H≤1

(EQ[f(x′)− EP [f(x)]])

= ‖EQ[φ(x′)]− EP [φ(x)]‖H .
(1)

The empirical measure of the MMD in (1) is defined as:

MMD[DS , DT] =







1

n2

P
x′∈DT

φ(x′)− 1
n1

P
x∈DS

φ(x)







H

. (2)

Therefore, the distance between two distributions of two
samples is simply the distance between the two mean ele-
ments in the RKHS.



2.4 Kernel Mean Matching
Due to the change of distribution from different domains,

training with samples from the source domain may degrade
the generalization performance in the another target do-
main. To reduce the mismatch between the two different
domains, Huang et al. [6] proposed a two-step approach
Kernel Mean Matching (KMM). The first step is to dimin-
ish the difference of means of samples in RKHS between the
two domains by re-weighting the samples φ(xi) in the source
domain as βiφ(xi), where βi is learned by using the MMD
criterion in (2).

Then the second step is to learn a decision classifier f(x) =
w>φ(x)+ b that separates patterns of opposite classes using
the loss function re-weighted by βi in the objective.

2.5 Maximum Mean Discrepancy Embedding
However, the simple re-weighting scheme may have a lim-

ited improvement in the target domain when the dimen-
sionality of the data is high. In particular, some features
may cause the data distribution between domains to be dif-
ferent, while others may not. Some features may preserve
the structure of data for adaptation, while others may not.
To address this problem, Pan et al. [11] proposed Maximum
Mean Discrepancy Embedding (MMDE) for domain adapta-
tion by embedding both the source and target domain data
onto a shared low-dimensional latent space. The key idea
is to formulate this as a kernel learning problem using the
kernel trick Kij = K(xi, xj) = φ(xi)

>φ(xj), and to learn
the kernel matrix defined on all the data:

K =

�
KS,S KS,T

KT,S KT,T

�
∈ R(n1+n2)×(n1+n2), (3)

where KS,S , KT,T and KS,T are the Gram matrices defined
on the source domain, target domain, and cross domain
data, respectively. By minimizing the distance (measured
by MMD) between the source and target domain data. The
square of the MMD in (2) can be written as

trace(KD), (4)

where

Dij =

8
>><
>>:

1
n2
1

when xi, xj ∈ DS
1

n2
2

when xi, xj ∈ DT
−1

n1n2
otherwise.

(5)

This leads to a Semi-Definite Programming (SDP) problem.
After that, the embedding of data can be extracted by

performing eigen-decomposition on the learned kernel ma-
trix K in (3), and can be used for training classifiers.

3. FEATURE EXTRACTION FOR MULTI-
CLASS DOMAIN ADAPTATION

In previous domain adaptation methods [6, 11], the weights
βi’s in KMM or the kernel matrix K of samples in MMDE
are learned separately using the MMD criterion in (2) de-
fined on the input data only without considering any labels.
While the use of labels in linear discriminant analysis usually
helps extract more discriminative features, the label infor-
mation from the source domains may be also useful to learn
kernels or extract features for a better domain adaptation.

In addition, there are two main limitations associated with
MMDE. First, MMDE is transductive and cannot generalize
on unseen patterns. Second, it requires to solve an expen-
sive SDP problem, which takes O((n1 +n2)

6.5) time to solve
the optimization problem (4). Although polynomial-time
solvers are available, current interior-point methods are still

too computationally intensive for large-scale SDPs in real
applications. Note that only the low dimensional embed-
ding of the data is extracted from the learned kernel matrix
K in MMDE, and is then used for the training of the de-
cision classifiers. Therefore, not all components from the
learned kernel matrix K are required to train the classifiers
for domain adaptation.

3.1 Proposed Framework
Based on the above discussions, instead of using two-step

approaches as in [6, 11], we propose a unified domain adap-
tation learning framework to find the discriminative feature
subspace Θ, and to learn decision classifiers fl(x)’s simulta-
neously. In particular, our proposed method minimizes the
distribution difference between the samples of the source
and target domains after the projection into the subspace
Θ (i.e. Θxi), as well as the structural risk functional of the
n1 labeled data from the source domain DS . Moreover, we
suppose that the learning problem is in multiclass setting,
and there are m decision classifiers fl(x)’s. Let us denote
the label indicator matrix as Y ∈ Rn1×m, and Yil = 1 if the
i-th sample belongs to the l-th class, and 0 if it is labeled
as others. Similar to other feature extraction methods, we
also suppose Θ is orthogonal on rows so that ΘΘT = I. The
optimization problem is then formulated as follows:

min

 
mX

l=1

n1X

i=1

`(fl, Yil, xi) + α

mX

l=1

Ω(fl)

!
+βdistΘ(DS , DT ), (6)

subject to ΘΘT = I. Here, the first term is the empirical
risk functional of the decision functions fl’s on the labeled
data from the source domain DS , and `(·) is the empirical
loss function. The regularizer Ω(·) controls the complexity
of fl, and the last term measures the distribution difference
between the embedding of DS and DT . Two tradeoff pa-
rameters α > 0 and β > 0 are introduced to control the
fitness of the decisions functions, and to balance the differ-
ence of distribution from the two domains and the structural
risk functional for the labeled patterns, respectively. Hence,
using (6), the subspace Θ and the decision functions fl’s can
be learned at the same time.

3.1.1 Shared Subspace for Label Dependency
To capture the label dependency, we follow [7] to define

the m decision functions:

fl(x) = w>l x = u>l x + v>l Θx, l = 1, · · ·, m (7)

where wl ∈ Rd is the weight vector for the decision function,
Θ ∈ Rr×d is the matrix of the shared subspace for the m de-
cision functions, and vl ∈ Rr is the weight vector defined in
the projected subspace Θ, and ul ∈ Rd is the weight vector
defined in the original input space. With the parametric
form (7) of the m decision classifiers, the learned subspace
Θ can capture the intrinsic structure of label dependency in
multiclass problems [7], the weight vector vl is the discrimi-
native direction in the subspace Φ for each class, while the
weight vector ul can be used to fit the residue wl−Θ>vl for
each class independently.

Though we learn a linear shared subspace in (7), the lin-
ear subspace is usually more efficient and also achieves good
generalization performance for high dimensional data such
as text documents. Moreover, one can simply replace the
input x by the feature mapped input φ(x) in (7) and ap-
ply the Representer Theorem for wl, ul and Θ, which gives
rise to the kernel variant of the proposed framework for the
nonlinear generalization performance, which is beyond the



scope of this paper. For simplicity, we use the notation x
instead of φ(x) in the sequel.

3.1.2 Loss Function and Regularization
For the empirical loss on the labeled data, we apply the

square loss function:

`(fl, Yil, xi) = (fl(xi)− Yil)
2

= (w>l xi − Yil)
2

= (u>l xi + v>l Θxi − Yil)
2.

Suppose XS = [x1, · · ·, xn1 ] ∈ Rd×n1 is the data matrix
of the source domain, W = [w1, · · ·, wm] ∈ Rd×m, U =
[u1, · · · , um] ∈ Rd×m, and V = [v1, · · ·, vm] ∈ Rr×m, then
the first term in (6) can be rewritten as:

mX

l=1

n1X

i=1

`(fl, Yil, xi) =



W>XS − Y >





2

=



U>XS + V >ΘXS − Y >





2

.

Based on the parametric form (7) of the decision function
fl, we introduce the following regularizer:

Ω(fl) = ‖ul‖2 =



wl −Θ>vl





2

,

which controls the complexity of each classifier indepen-
dently. The second term in (6) can be rewritten as:

mX

l=1

Ω(fl) = ‖U‖2 =



W −Θ>V





2

.

3.1.3 Distribution Gap between Domains
Recall that the last term in (6) measures the mismatch be-

tween the embedding of the source and target domain. Here,
we use the MMD criterion in (4) as the nonparametric mea-
sure for the mismatch. Suppose XT = [x′1, · · ·, x′n2 ] ∈ Rd×n2

and X = [XS , XT ] ∈ Rd×(n1+n2), are the data matrices de-
fined on the target domain and all input data, respectively,
and assume φ(x) = Θx, and so K = X>Θ>ΘX. Then, the
criterion (4) becomes

MMD2[DS , DT ] = trace(X>Θ>ΘXD)

= trace(ΘXDX>Θ>). (8)

3.1.4 Final Formulation
Combining all the above, we arrive at the following mini-

mization problem:

minΘ,W,V




W>XS−Y >




2
+α



W−Θ>V





2
+βtrace(ΘXDX>Θ>)

s.t. ΘΘ>=I, (9)

which learns both the shared subspace Θ, and the parame-
ters W and V in decision functions simultaneously.

3.2 Detailed Algorithm
In this section, we show that the optimization problem (9)

can be solved efficiently by alternatively finding the optimal
subspace matrix Θ, and the matrices V and W of the weight
vectors.

3.2.1 ComputingV ∗

First, we show that the optimal V ∗ in the optimization
problem (9) can be expressed in term of Θ and W .

Proposition 1. For the fixed W and Θ, the optimal V ∗

that solves the optimization problem (9) is

V ∗ = ΘW. (10)

Proof. Setting the derivative of the optimization prob-
lem (9) w.r.t. V to zeros, we have:

Θ(W −Θ>V ) = 0 or ΘΘ>V = ΘW.

Using ΘΘ> = I, this completes the proof.

3.2.2 ComputingW ∗

Second, we show that the optimal W ∗ in the optimization
problem (9) has a closed-form solution in term of Θ and V .

Proposition 2. For the fixed Θ and V , the optimal W ∗

has a closed-form solution:

W =(αI+XSX>
S )−1(XSY+αΘ>V ). (11)

Proof. As shown in the optimization problem (9), the
last term does not depend on W , so we can simplify the
objective function as follows:



W>XS −Y >





2
+α



W−Θ>V





2

= trace(W>XS−Y >)(W>XS−Y >)>+αtrace(W−Θ>V)(W−Θ>V)>

= trace(Y >Y−2W>(Y >X>
S+αV >Θ)>+W>(αI+XSX>

S )W ) (12)

Setting the derivatives of (12) w.r.t. W to zeros, we have:

−(Y >X>
S+αV >Θ)> + (αI+XSX

>
S )W = 0.

This completes the proof.

Since the matrix inversion (αI + XSX>
S )−1 can be pre-

computed, and the data matrix XS is usually sparse for text
documents, this inversion can be computed by performing
Singular Value Decomposition (SVD) on the data matrix XS
in O(dn1 min(d, n1)) time. Using (11) and (10), the update
of W can be computed in O(d2m) time.

3.2.3 ComputingΘ∗

Moreover, we can show that the optimal Θ∗ in (9) can be
solved efficiently by performing SVD on a matrix in term of
W .

Proposition 3. For the fixed W and V , the optimal Θ∗

can be obtained by solving the following SVD problem:

minΘ Θ(βXDX>−αWW T )Θ>

s.t. ΘΘ>=I, (13)

and the matrix Θ∗ has the rank at most min(d, m + 1).

Proof. As shown in the optimization problem (9), the
first term does not depend on Θ, and using (10), we can
rewrite the objective function as follows:

α



W−Θ>ΘW





2
+βtrace

�
ΘXDX>Θ>

�
.

Moreover, using ΘΘ> = I, the objective is simplified as:

αtrace
�
W>W−W>Θ>ΘW

�
+βtrace

�
ΘXDX>Θ>

�
,

so that we can arrive at the optimization problem (13).



Note that D in (5) can be decomposed as D = ee>, where
e ∈ Rn1+n2 is a vector with the first n1 entries equal 1/n1

and the remaining entries equal −1/n2, and so XDX> is
of rank one. Moreover, the matrix WW> has rank at most
min(d, m). Thus, the matrix βXDX>−αWW> has rank at
most min(d, m + 1).

Combining all of the above, the optimization problem (9)
can be solved by updating the matrices W , Θ, and V iter-
atively until convergence. The detailed algorithm to solve
the optimization problem (9) is summarized in Algorithm 1.

Moreover, based on the Proposition 3, one can perform
SVD on the low rank matrix βXDX>−αWW> to obtain the
optimal Θ∗ efficiently. Assuming that the input dimension is
very high, i.e. d À m, the time complexity is O(d2m) only.
The update of V takes O(dm2) time. Therefore, the overall
time complexity of Algorithm 1 is only O(d2m) assuming
the inverse of the matrix (αI + XSX>

S ) is pre-computed.

Algorithm 1: The Algorithm of Our Proposed Domain
Adaptation
Input: labeled patterns {(xi, yi)}n1

i=1 in DS , unlabeled pat-

terns {(x′i)}n2
i=1 in DT , regularization parameters α and β.

Output: The optimal projection matrix Θ for feature sub-
space, the matrix V of weight vectors in the embedded space,
and the matrix W of weight vectors of m decision classifiers.
Initialize Θ←I, V ←0.
repeat

1 Update W using (11).

2 Compute Θ by solving SVD in (13).

3 Set V =ΘW .

until convergence

3.3 Prediction
After extracting the shared subspace Θ, and the weight

vectors wl and vl for each class, one can perform prediction
using (7). However, the weight vector wl is learned to min-
imize the empirical loss of the labeled data in the source
domain DS , and may not be the discriminative direction for
the testing data in the target domain DT .

Recall that the subspace Θ is learned to minimize the
MMD criterion in (8), and captures the intrinsic structure
of data for domain adaptation. Moreover, the weight vector
vl is the discriminative direction defined on the projected
subspace Φ, so the prediction on the testing data in the
target domain DT can be performed by a decision classi-
fier fTl(x

′) = v>l Θx′ instead of fl(x
′) in (7), and Θ>vl is

the discriminative direction for the l-th class in the target
domain.

3.4 Discriminative Features Propagation
However, one major problem in text mining is the spar-

sity of features in the high dimensional space. Specifically,
some discriminative features occur frequently in the target
domain DT but seldom appear or even are absent in the
source domain DS . For example, for the task of extract-
ing sentences corresponding to job requirements from job
Web sites, some common terms may be “qualified”, “year”,
“experience” and so on. However, some characteristic words
are dependent of the job nature. For instance, “CPA”, “CA”,
“ACCA”are the discriminative term for the“accounting”do-
main whereas “CCP”, “physiology” are discriminative terms

for the domain of “health care”. To address this issue, we
develop the following propagation strategy.

According to the discussion in Section 3.2, we can extract
a common feature set F from the both domains for each
specific task l by selecting the features with high weight in
Θ′vl. Based on the co-occurrence information in the target
domain, we can compute the similarity between the com-
mon features in the set F and the remaining features (non-
common features) in another set F̄ . For each non-common
features, we can sum up its similarity with all the common
features. Finally we rank all the non-common features by
its similarity weight with the common feature set in the de-
scending order. By selecting the top K high similarity non-
common terms, combined with all the existing common fea-
tures, we can get a set of characteristic features Fc ⊂ F ∪F̄
for the target domain.

Based on the assumption that similar features should have
similar prediction power in the target domain, we can con-
struct a feature similarity graph G. In G, each vertex v
represents a feature, and edge weights are given by a sym-
metric matrix E ∈ Rd×d, whose entries Euv = 〈πu, πv〉 ≥ 0,
where 〈·, ·〉means the inner product, πi represents the vector
of normalized occurrence in the target domain. Define the
degree of vertex v as dv =

P
u∼v Euv, then we can define

the normalized graph Laplacian matrix:

Luv =

8
><
>:

1− Euv/du if u = v and du 6= 0

−Euv/
√

dudv if u and v are adjacent

0 otherwise.

(14)

We also define a column vector ρ = [ρ1, . . . , ρd]> ∈ Rd

representing the discriminative weight vector of characteris-
tic features. Intuitively, similar features should have similar
weights. Therefore, we introduce a manifold regularizer us-
ing the feature graph Laplacian matrix in (14) as:

ρTLρ =
X
u,v

Euv

�
ρu√
du

− ρv√
dv

�2

,

which propagates the weight of the common features to other
characteristic features via the manifold structure of the fea-
ture graph.

Moreover, we also require the discriminative weight vector
ρ be close to the discriminative direction learned for each
class in the target domain. Thus, we arrive at the following
optimization problem:

min


ρl −Θ>vl



2 + γρT
l Llρl, (15)

where the first term minimizes the difference between ρl and
Θ>vl, and the second term enforces that the assignment of
the weight of the characteristic features is propagated from
the common features. In addition, the optimization problem
(15) can be solved according to the following lemma:

Proposition 4. Let vl be the classifier for the class l on
the shared feature subspace Θ, therefore the corresponding
optimal ρl has a closed form in term of Θ and vl.

Proof. We first rewrite the objective function as fol-
lows: 

ρl −Θ>vl



2 + γρ>l Llρl

= ρ>l ρl − 2v>l Θρl + v>l vl + γρ>l Llρl

= ρ>l (I + γLl)ρl − 2v>l Θρl + v>l vl

(16)

Setting the derivation of (16) with respect to ρl to zeros,
we have:

ρl = (I + γLl)
−1Θ>vl.

This completes the proof.



Therefore, the prediction on the testing patterns in the tar-
get domain can be performed by:

fTl(x
′) = v>l (I + γLl)

−1Θx′.

However, computing the matrix inversion (I + γLl)
−1 is

still computational intensive (with complexity O(d3)). Note
that when the predefined parameter γ satisfies 0 < γ < 1,
we have the following Taylor expansion:

(I + γLl)
−1 = I − γLl + γ2L2

l − γ3L3
l + ...

As Ll is usually very sparse, especially when γ is small,
one can approximate (I +γLl)

−1 as I−γLl and the revised
discriminative direction is:

ρl = Θ>vl − γLlΘ
>vl,

Then the decision function on the testing patterns in the
target domain becomes:

fTl(x
′) = v>l (I − γLl)Θx′,

As a result, the computation of the prediction is much re-
duced.

As discussed above, Θ>vl is the optimal discriminative
direction of the l-th class in (9). From the propagation of the
feature graph G, the discriminative information from other
characteristic features Fc can be used to compute the weight
vector −γLlΘ

>vl to correct the discriminative direction.

3.5 Error Analysis on Domain Adaptation
In this section, we study the error analysis of our proposed

domain adaptation method in the target domain. First, we
denote the labeling function in DT as follows:

gT (x) =

8
><
>:

vT Θx if 0 ≤ vT Θx ≤ 1,

1 if 1 < vT Θx,

0 if vT Θx < 0,

and h(x) : X → {0, 1} is the truth labeling function. Let
sigma(x) be a continuous loss function defined as:

σ(x)=|h(x)−gT (x)|. (17)

The expected loss of gT in DT is defined as:

εT (h, gT (x′)) = Ex′∼DT [|h(x′)− gT (x′)|] = Ex′∼DT [σ(x′)].

Note that fS(x) = u>x + v>Θx is the proposed decision
function in (7) for the labeled data in the source domain,
then we also define the expected loss of fS in DS as:

εS(h, fS(x)) = Ex∼DS [|h(x)− u>x− v>Θx|].
For simplicity, we denote Ex∼DS = EP and Ex′∼DT = EQ.
Based on the definition of σ(x) in (17), we know that 0 ≤
σ(x) ≤ 1. With a mild assumption that ‖σ‖H is bounded
by a finite number C, where H is a RKHS, we obtain the
following theorem:

Theorem 1. Suppose ‖x‖ = 1, the expected loss of gT in
DT is bounded by

εT (h, gT (x′)) ≤ εS(h, fS(x)) + MMD[DS , DT ]C + ‖u‖. (18)

Proof.

εT (h, gT (x′))
= εS(h, fS(x))+εT (h, gT (x′))−εS(h, fS(x))
= εS(h, fS(x))+εT (h, gT (x′))−EP [|h(x)−u>x−v>Θx|]
≤ εS(h, fS(x))+εT (h, gT (x′))−EP [|h(x)−v>Θx|]+ EP [|u>x|]
≤ εS(h,fS(x))+EQ[|h(x′)−gT(x′)|]−EP [|h(x)−gT(x)|]+EP [|u>x|].

(19)

The second last inequality holds because of the triangle
inequality

|h(x)− v>Θx| ≤ |h(x)− u>x− v>Θx|+ |u>x|,
and the last inequality holds due to

|h(x)− gT (x)| ≤ |h(x)− v>Θx|.
Moreover, using the Cauchy-Schwarz inequality, we have:

EP [|u>x|] ≤ EP [‖u‖‖x‖] = ‖u‖EP [‖x‖].
Since ‖x‖ = 1, so that

EP (|u>x|) ≤ ‖u‖. (20)

By the virtual of RKHS property, for any function σ(x) in
the RKHS can be expressed as σ(x) = 〈σ, φ(x)〉H. Then, we
can obtain the following bound:

EQ[|h(x′)−gT (x′)|]−EP [|h(x)−gT (x)|]
= EQ[σ(x′)]−EP [σ(x)]
= EQ[〈φ(x′), σ〉H]−EP [〈φ(x), σ〉H]
= 〈EQ[φ(x′)]− EP [φ(x)], σ〉H.

Assume ‖σ‖H ≤ C, similar to (1), we have:

〈EQ[φ(x′)]− EP [φ(x)], σ〉H ≤


EQ[φ(x′)]− EP [φ(x)]




H C

= MMD[DS , DT ]C. (21)

Substitute (20) and (21) into (19). This completes the
proof.

Based on the expected error bound in (18), we can con-
clude that minimizing the MMD in (8), the empirical loss of
labeled data in the source domain DS , and the regularizer
‖u‖ simultaneously as in (9) can also minimize the expected
loss in the target domain DT .

4. EXPERIMENTS
We demonstrate the effectiveness of our proposed domain

adaptation method by conducting experiments on various
data sets covering two common text mining problems: doc-
ument classification and information extraction.

4.1 Document Classification

4.1.1 Experiment Setup
We use the 20-Newsgroup corpus to conduct experiments

on document classification. This corpus consists of 18,846
newsgroup articles harvested from 20 different Usenet news-
groups. It can be observed that the marginal distributions
of the articles among different newsgroups are not identical.
There exists distribution shift from one newsgroup to any
other newsgroups. However, we observe that some news-
groups are related. For example, the newsgroups rec.autos
and rec.motorcycles are related to car. The newsgroups
comp.sys.mac.hardware and comp.sys.ibm.pc.hardware are
related to hardware, etc. Table 1 depicts the detailed infor-
mation of the data sets, derived from 20-Newsgroup, used
in our experiments. There are four class labels, namely, car,
ball game, hardware, and OS. For each class label, there are
two related newsgroups, and we can select the articles in one
newsgroup as labeled data in the source domain and the ar-
ticles in the other newsgroup as unlabeled data in the target
domain. The data sets NG1-2class, NG2-2class, and NG3-
2class have only two class labels. For example, the NG1-
2class data set has the class labels car and ball game. The



source domain contains 400 random articles selected from
the newsgroup rec.auto and rec.baseball for the class label
car and ball game respectively. There are 800 articles in to-
tal for the source domain. The target domain contains 400
random articles selected from the newsgroup rec.motorcycle
and rec.hockey for the corresponding class label car and ball
game respectively. There are also 800 articles in the tar-
get domain. The datasets NG4-4class and NG5-4class both
have 4 class labels, namely, car, ball game, hardware, and
OS. The composition of articles in each label in the source
and target domains is clearly shown in Table 1. Pay atten-
tion that all the articles are represented by the vector space
model and normalized to unit length.

In order to verify the effectiveness of our method, we com-
pare with three typical classification methods: SVM, Trans-
ductive SVM, and CDSC as presented in [10]. They repre-
sent supervised classification, semi-supervised classification,
and a recent domain adaptation method respectively. SVM
and TSVM [9]are implemented by2 SVMlight and the param-
eters are all set as default in the package. The parameters
setting in CDSC is the same as those reported in the pa-
per. For those three comparison algorithms, since they can
only handle binary classification, we transform the multi-
class problems to the 1-VS-rest problem setting for training.
For each data set, we repeated all the algorithms 10 times by
randomly sampling the articles in each run and calculate the
average performance, so as to decrease the sampling bias.

4.1.2 Result and Discussion
We adopt the recall, precision, and F1-measure as the

evaluation metrics. Recall is defined as the number of arti-
cles that are correctly classified, divided by the actual num-
ber of articles in each class. Precision is defined as the num-
ber of articles that are correctly classified, divided by the
number of all the articles predicted as the same class. F1-
measure is defined as the harmonic mean of recall and pre-
cision. Results of all the methods on all data sets depicted
in Table 1 are summarized in Table 2 with the best results
shown in bold font. It can be observed that the supervised
method, namely, SVM, which trains only in the source do-
main and tests in the target domain always gets the worst
performance among the four algorithms. Semi-supervised
learning method TSVM outperforms the supervised learn-
ing method SVM by take advantages of the unlabeled data
in the target domain. Because the articles in the source do-
main and target domain are related, then the unlabeled data
in target domain will supply some distribution information
for the training so as to improve the prediction in the tar-
get domain. CDSC has been reported for the good perfor-
mance in two-class cross-domain adaptation. Those results
are verified again in our experiments especially when the
two classes in the target domain are well separated such as
the data set NG3-2class. However, for multiclass problems
especially when the multiple classes in the target domain are
not very easy to separate such as the data set NG4-4class
and NG5-4class, the performance of CDSC is not as good as
that in two-class problems. On the other hand, our domain
adaptation method can get comparable results with CDSC
for the well separated two-class problems and achieve better
performance for all the other data sets.

4.2 Information Extraction
2http://svmlight.joachims.org

Domain Domain # of Job # of Text
Label Name Advertisements Fragments
D1 Accounting 273 7462
D2 Logistic 202 5636
D3 Health 201 6402

Table 3: The details of the data collected for the information

extraction experiments.

4.2.1 Experiment Setup
We conducted a set of experiments in the area of infor-

mation extraction. The objective of information extraction
is to extract precise chunks of consecutive tokens for each
field of interest from a semi-structured text document. In
our experiments, we target at extracting the job related in-
formation from Web pages in some employment Web sites.
The fields of interest are job title, company, location, salary,
post-date, education, experience, and duty. We have collected
online job advertisement documents from recruitment Web
sites in 3 different domains (or industries). Table 3 shows
the details of the collected data. The first, second, and third
columns refer to the domain label, domain name, and the
number of job advertisements collected in the domain re-
spectively. For each online job advertisement collected, we
automatically segment the document into a number of text
fragments by applying the document object model (DOM)3

and extract the text contained in the text nodes of the DOM
structure. The fourth column of the table shows the number
of text fragments in the domain after segmentation. Each
text fragment should be labeled as one of the eight job fields
mentioned above, or the “not-a-field” label. We can observe
that the distribution of the text fragments in one domain
is related to the distribution in the other domains. In our
experiments, For evaluation purpose, all text fragments in
the three domains are manually labeled by two human ac-
cessors. If there is a disagreement on the judgment of the
two human accessors, it is resolved by a discussion among
them.

In each domain, we have conducted different sets of exper-
iments to demonstrate the performance and compare with
existing methods. The first set of experiment is to use the
labeled training example in the source domain and the un-
labeled data in the target domain to learn the extraction
model using our domain adaptation method. The learned
model is then applied to the testing data in the target do-
main and the performance is measured. For example, let D1
and D2 be the source and target domains respectively. We
use the labeled training fragments in D1 and the unlabeled
fragments in D2 to learn a model. Then the learned model
is applied to predict the fields of the text fragments in the
testing data. The other sets of experiments are designed in
a similar manner as the first set. In the second set of ex-
periments, we use transductive support vector machine for
model training. As can be seen, in each training, the total
number of text fragments in the source domain and target
domain is larger than 10,000. Since CDSC needs to compute
and store the pairwise similarity for any two fragments, it
cannot handle this information extraction data set. Then
we do not compare with it because of out of memory. Note
that each text fragment is represented by the vector space
model and normalized to unit length.

3The details of the document object model can be found in
http://www.w3.org/DOM.



Data set Domain class label .# doc.
car ball game hardware OS

NG1-2class source rec.auto rec.baseball N/A N/A 800
target rec.motorcycle rec.hockey N/A N/A 800

NG2-2class source N/A N/A comp.sys.ibm.pc.hardware comp.windows.x 800
target N/A N/A comp.sys.mac.hardware comp.os.ms-windows.misc 800

NG3-2class source rec.auto N/A comp.sys.ibm.pc.hardware N/A 800
target rec.motorcycle N/A comp.sys.mac.hardware N/A 800

NG4-4class source rec.auto rec.baseball comp.sys.ibm.pc.hardware comp.windows.x 1600
target rec.motorcycle rec.hockey comp.sys.mac.hardware comp.os.ms-windows.misc 1600

NG5-4class source rec.motorcycle rec.hockey comp.sys.mac.hardware comp.os.ms-windows.misc 1600
target rec.auto rec.baseball comp.sys.ibm.pc.hardware comp.windows.x 1600

Table 1: The details of the data collected for the document classification experiments.

Data set class label SVM TSVM CDSC Our approach
P R F1 P R F1 P R F1 P R F1

car 0.788 0.960 0.867 0.812 0.966 0.884 0.841 0.985 0.907 0.912 0.985 0.947
NG1-2class ball game 0.949 0.744 0.833 0.957 0.778 0.863 0.982 0.815 0.891 0.984 0.905 0.943

average 0.869 0.852 0.850 0.884 0.869 0.774 0.912 0.900 0.899 0.948 0.945 0.945
hardware 0.652 0.760 0.702 0.743 0.641 0.693 0.767 0.810 0.788 0.855 0.835 0.845

NG2-2class OS 0.707 0.589 0.643 0.762 0.782 0.772 0.799 0.755 0.776 0.840 0.859 0.849
average 0.680 0.674 0.672 0.753 0.713 0.732 0.783 0.783 0.782 0.847 0.847 0.847

car 0.876 0.884 0.880 0.934 0.912 0.923 0.984 0.910 0.945 0.984 0.907 0.944
NG3-2class hardware 0.874 0.885 0.879 0.916 0.937 0.927 0.916 0.985 0.949 0.914 0.985 0.948

average 0.880 0.880 0.880 0.925 0.925 0.925 0.950 0.948 0.947 0.949 0.946 0.946
car 0.710 0.845 0.771 0.803 0.854 0.828 0.730 0.890 0.802 0.773 0.903 0.833

ball game 0.818 0.899 0.854 0.873 0.905 0.889 0.955 0.955 0.955 0.920 0.917 0.918
NG4-4class hardware 0.637 0.630 0.634 0.669 0.633 0.650 0.633 0.700 0.665 0.819 0.792 0.805

OS 0.623 0.441 0.517 0.666 0.633 0.649 0.815 0.550 0.657 0.796 0.692 0.741
average 0.696 0.704 0.694 0.753 0.756 0.754 0.783 0.774 0.770 0.827 0.826 0.824

car 0.743 0.435 0.549 0.745 0.628 0.682 0.862 0.750 0.802 0.750 0.916 0.825
ball game 0.832 0.819 0.825 0.856 0.760 0.805 0.913 0.835 0.872 0.891 0.843 0.866

NG5-4class hardware 0.552 0.715 0.623 0.550 0.697 0.615 0.577 0.820 0.678 0.763 0.779 0.771
OS 0.507 0.574 0.538 0.579 0.577 0.578 0.623 0.495 0.552 0.734 0.596 0.658

average 0.658 0.636 0.634 0.683 0.665 0.670 0.743 0.725 0.726 0.785 0.783 0.780

Average 0.757 0.749 0.746 0.800 0.786 0.791 0.834 0.826 0.825 0.871 0.870 0.869

Table 2: The classification performance of different sets of experiments. P, R, and F1 refer to the precision, recall, and

F1-measure respectively.

4.2.2 Result and Discussion
We adopt the recall, precision, and F1-measure as the

evaluation metrics. Recall is defined as the number of text
fragments that are correctly labeled by our framework, di-
vided by the actual number of text fragments. Precision is
defined as the number of text fragments that are correctly
labeled by our framework, divided by the number of pre-
dicted text fragments using our framework. F1-measure is
defined as the harmonic mean of recall and precision.

In each set of experiments, we have conducted 6 runs us-
ing different combination of the source and target domains.
Table 4 depicts the performance of the experiments. In each
run, we measure the recall, precision, and F1-measure for
each field. The figure in each cell of Table 4 is the aver-
age performance among the 8 fields of interest in the corre-
sponding experiment. For example, our approach achieves
an average precision, recall, and F1-measure of 0.814, 0.845,
and 0.825 respectively in the target domain when the source
and target domains are D1 and D2 respectively. Our ap-
proach achieves an average precision, recall, and F1-measure
of 0.820, 0.802, and 0.799. It outperforms TSVM which ob-
tains a F1-measure of 0.744.

Figure 1 depicts the detailed comparison between our meth-
od and TSVM. The x-axis denotes the eight job fields and
the y-axis denotes the extraction performance measured by
F-measure. In each plot, we show the F-measure on each job
field when training in one domain and adapt to the other two
domains. For example, “TSVM-D1-D2” and “Our-D1-D2”

Experiment Setting
TSVM Our Approach

Source Target
Domain Domain P R F1 P R F1

D1 D2 0.730 0.815 0.759 0.814 0.845 0.825
D1 D3 0.717 0.771 0.731 0.813 0.804 0.800
D2 D1 0.782 0.772 0.766 0.866 0.789 0.807
D2 D3 0.782 0.796 0.770 0.830 0.762 0.765
D3 D1 0.742 0.739 0.731 0.790 0.789 0.779
D3 D2 0.727 0.784 0.737 0.793 0.791 0.786

Average 0.743 0.775 0.744 0.820 0.800 0.799

Table 4: The extraction performance of different sets of

experiments. P, R, and F1 refer to the precision, recall, and

F1-measure respectively.

represent the result of TSVM and our method respectively
on the data set in which D1 is the source domain and D2
is the target domain. It can be observed that our domain
adaptation method can get better extraction performance
than TSVM in almost all of the fields in each data set.

5. CONCLUSIONS
In this paper, we present a domain adaptation method

by extracting the shared concept space between the source
domain with sufficient labeled data and the target domain
with a large amount of unlabeled data. In our method, we
parameterize the shared space by a linear transformation
and finding the optimal solution by considering the combi-
nation of the two criteria: the empirical loss on the source
domain, and the embedded distribution gap between the
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Figure 1: Comparison of the extraction performance of each job field with different source domain and target
domain. From left to right: the source domain is D1, D2, and D3 respectively. The fields in the x-axis from
left to right are company, location, job title, salary, post-time, education, experience and duty.

source domain and the target domain. Theoretical analy-
sis of the adaption error bound in the target domain shows
that it can be well controlled by the criteria in our objective
function. Experimental results on document classification
and information extraction demonstrate that our method
can outperform other competitive methods in the domain
adaptation setting.

In the future, we will extend our method to extract dis-
criminative concepts in multiple source domain adaptation
problems. Exploration of other domain knowledge for ex-
tracting the more discriminative concepts is also one of ma-
jor directions to our domain adaptation method.
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