Preference-Based Rank Elicitation using Statistical Models: The Case of Mallows

Robert Busa-Fekete ¹ Eyke Huellermeier ² Balzs Szrnyi ³

¹MTA-SZTE Research Group on Artificial Intelligence, Tisza Lajos krt. 103., H-6720 Szeged, Hungary

²Department of Computer Science, University of Paderborn, Warburger Str. 100, 33098 Paderborn, Germany

³INRIA Lille - Nord Europe, SequeL project, 40 avenue Halley, 59650 Villeneuve dAscq, France

> ICML 2014 June 24, 2014

1 / 21

Preference-based stochastic multi-armed bandit (PB-MAB)

PB-MAB Framework with Statistical Models over Ranking

3 Concrete implementations with Mallows model

- Exploiting revealed preferences to learn a ranking
- Example: Crowdsourcing
 - Amazon Mechanical Turk
 - Widely-used platform in Natural Language Processing (NLP) to annotate training database
 - Machine Translation: for each English sentence, there are given many possible translations
 - Goal: either to find a ranking which reflects to the quality of the translations, or the best translation
 - The annotators might be asked in terms of simple questions: Is translation A better than translation B?

- Give M items/arms: $\mathcal{A} = \{a_1, ..., a_M\}$
- Items/arms can only be compared in a pairwise manner
- In a time step t, the (online) learning algorithm selects a pair of items (i^t, j^t) to be compared \Rightarrow feedback
- Pairwise probability for items a_i and a_j :

$$p_{i,j} = \mathbb{P}(a_i \succ a_j) = \mathbb{E}[\mathbb{I}\{a_i \succ a_j\}]$$
(1)

follows a fixed probabilistic distribution

- If $p_{i,j} > 1/2$, then item a_i is preferred to item a_j
- If $p_{i,j} < 1/2$, then item a_j is preferred to item a_i

- Find the best item (with high probability)
- Find a ranking over item (with high probability)
- Minimize the number of pairwise comparisons

- Elicit a ranking based on probabilistic (noisy) feedback
- Establish a connection to statistical models of rank data
- Full ranking
 - $(r_1,, r_i,, r_j,, r_M) \sim \mathbb{P}(.|\wp)$
- Observation
 - $\mathbb{I}\{r_i < r_j\}$
- $\mathbb{P}(.|\wp)$ is a parametric probability distribution over the set of ranking \mathbb{S}_M
- Making inference about P based on sampled pairwise comparisons

• Pairwise probabilities can be written as

$$p_{i,j} = \mathbb{P}(a_i \succ a_j) = \sum_{r \in \mathcal{L}(r_j > r_i)} \mathbb{P}(r|\wp)$$
(2)

where
$$\mathcal{L}(r_j > r_i) = \{r \in \mathbb{S}_M | r_j > r_i\}$$

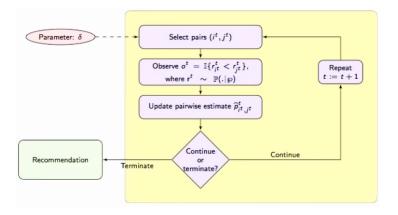
- Implicitly, we assume certain regularity properites on P induced by $\mathbb{P}(.|\wp)$
- Pairwise probability cannot be arbitrary

Strong Stochastic Transitivity

For any triplet of arms such that $a_i \succ a_j \succ a_k$, $p_{i,k} \ge max(p_{i,j}, p_{j,k})$

- If we know $a_i \succ a_j$ and $a_j \succ a_k$ then $a_i \succ a_k$
- Nice regularity property
- Reduce sample complexity

Online learning framework



æ

< ロ > < 同 > < 回 > < 回 > < 回 > <

• (MPI) Find the most preferred item (or arm) a_{i^*} defined as

$$i^{*} = \underset{1 \le i \le M}{\arg \max} \underset{r \sim \mathbb{P}(.|\wp)}{\mathbb{E}} [\mathbb{I}\{r_{i} = 1\}]$$
(3)

• (MPR) Find the most probable ranking r^* given the ranking model $\mathbb{P}(.|\wp)$

$$r^* = \arg\max_{r \in \mathbb{S}_M} \mathbb{P}(r|\wp) \tag{4}$$

- ullet All goals are meant to be achieved with probability at least $1-\delta$
- Based as few pairwise comparisons as possible

• The probability of observing a ranking r is

$$\mathbb{P}(r|\phi,\tilde{r}) = \frac{1}{Z(\phi)} \phi^{d(r,\tilde{r})}$$
(5)

• $\tilde{r} = (\tilde{r}_1, ..., \tilde{r}_M)$ is the center ranking

• d(.,.) is the Kendall's rank distance defined as

$$d(r,\tilde{r}) = \sum_{1 \le i < j \le M} \mathbb{I}\{(r_i - r_j)(\tilde{r}_i - \tilde{r}_j) < 0\}$$
(6)

• $\phi \in (0,1]$ is the spread parameter

- $\phi = 1 \Rightarrow$ uniform distribution
- $\phi
 ightarrow \mathsf{0} \Rightarrow \mathbb{P}(ilde{r} | \phi, ilde{r})
 ightarrow 1$ (becomes more peaky)
- $Z(\phi)$ is the normalisation factor

Find the most preferred item for Mallows model (MPI)

$$i^{*} = \underset{1 \le i \le M}{\arg \max} \underset{r \sim \mathbb{P}(.|\phi, \tilde{r})}{\mathbb{E}} [\mathbb{I}\{r_{i} = 1\}]$$
(7)

• Most preferred item (MPI) is the one for which $\tilde{r}_{i^*} = 1$

• The center ranking determines a total order on the set of items such that if $\tilde{r}_i < \tilde{r}_j$ then $p_{i,j} > 1/2$, and $\tilde{r}_i > \tilde{r}_j$ then $p_{i,j} < 1/2$

Find the most preferred item for Mallows model (MPI)

$$i^{*} = \underset{1 \le i \le M}{\arg \max} \underset{r \sim \mathbb{P}(.|\phi,\tilde{r})}{\mathbb{E}} [\mathbb{I}\{r_{i} = 1\}]$$
(7)

• Most preferred item (MPI) is the one for which $\tilde{r}_{i^*} = 1$

• The center ranking determines a total order on the set of items such that if $\tilde{r}_i < \tilde{r}_j$ then $p_{i,j} > 1/2$, and $\tilde{r}_i > \tilde{r}_j$ then $p_{i,j} < 1/2$

• MALLOWSMPI (δ)

- Pick a random item a_i
- Pick another item, say a_j, which has not selected yet, if there is no such, then break
- Sompare a_i and a_j until $1/2 \notin [\hat{p}_{i,j} c_{i,j}, \hat{p}_{i,j} + c_{i,j}]$, where

$$c_{i,j} = \sqrt{\frac{1}{2n_{i,j}} \log \frac{4n_{i,j}^2 M}{\delta}}$$
(8)

• if $1/2 < \hat{p}_{i,j} - c_{i,j}$, then keep a_i goto 2, otherwise keep a_j

12 / 21

• Most probable ranking is the center ranking

$$\tilde{r} = \arg\max_{r \in \mathbb{S}_M} \mathbb{P}(r|\phi, \tilde{r}) = \arg\max_{r \in \mathbb{S}_M} \frac{1}{Z(\phi)} \phi^{d(r, \tilde{r})}$$
(9)

• The center ranking determines a total order on the set of items such that if $\tilde{r}_i < \tilde{r}_j$ then $p_{i,j} > 1/2$, and $\tilde{r}_i > \tilde{r}_j$ then $p_{i,j} < 1/2$

Find the most probable ranking for Mallows model (MPR)

• MALLOWSMPR (δ)

- Follow the Merge sort strategy
- If the sorting algorithm compares two distinct items, say a_i and a_j , then compare them until $1/2 \notin [\hat{p}_{i,j} c_{i,j}, \hat{p}_{i,j} + c_{i,j}]$, where

$$c_{i,j} = \sqrt{\frac{1}{2n_{i,j}} \log \frac{4n_{i,j}^2 C_M}{\delta}}$$
(10)

• Worst case performance of merge sort algorithm: $C_{M} = \lceil M \log_{2} M - 0.91392 \cdot M + 1 \rceil$ (Theorem 1, Flajolet & Golin (1994))

• MallowsMPI(δ)

$$\mathcal{O}(\frac{M}{\rho^2}\log\frac{M}{\delta\rho}),\tag{11}$$

where
$$\rho = \frac{1-\phi}{1+\phi}$$

• $\lim_{\phi\to 0} 1/\rho^2 = 1$ (more peaky distribution \Rightarrow easier task)
• $\lim_{\phi\to 1} 1/\rho^2 = \infty$ (more uniform \Rightarrow harder task)

• MALLOWSMPR(δ)

$$\mathcal{O}(\frac{M\log_2 M}{\rho^2}\log\frac{M\log_2 M}{\delta\rho})$$
(12)

э

-

э

Numerical experiments for identifying **Most Preferred Item (MPI)**

- Verify that if the model assumptions are valid, the purposed algorithm is efficient.
- If Mallows model is assumed \Rightarrow best arm = most preferred item
 - Beat the mean (in PAC setting) [Yue and Joachims, 2011]
 - Interleaved Filter [Yue et al., 2012]
- Compare the algorithms in terms of sample complexity
 - Sample complexity: number of pairwise comparison take prior to the termination
- 100 repetitions
- The confidence parameter δ was set to 0.05, and thus, the accuracy was significantly higher than 0.95 in every case.

Numerical experiments for identifying MPI

M = 1010⁵[Number of pairwise comparisons 10^{4} 10³ ← MallowsMPI -BTM ➡ IF(100) -- IF(5000) IF(10000) 10^{2} 0 0.2 0.4 0.6 0.8 $\phi = \{0.05, 0.1, 0.3, 0.5, 0.7, 0.8\}$

17 / 21

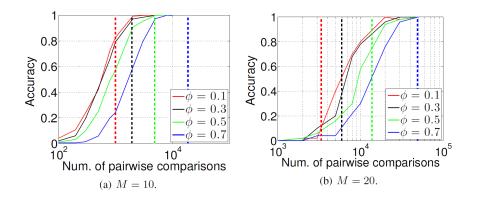
Numerical experiments for identifying **Most Probable Ranking (MPR)**

• Most probable ranking = center ranking

$$\widetilde{r} = \underset{r \in \mathbb{S}_M}{\operatorname{arg\,max}} \mathbb{P}(r|\phi, \widetilde{r})$$
 (13)

- Parameter estimation method for Mallows which can handle incomplete ranking [Cheng et al., 2009]
- Validated on datasets that consist of pairwise comparisons
- Assessed the accuracy of the estimator for center ranking on datasets with various size.

Numerical experiments for identifying MPR



- Solid Line: Parameter estimation method by Cheng et al. [2009]
- Dashed vertical lines: Merge sort-based MPR algorithm

- The purposed algorithms are efficient, if the modeling assumption holds
- Minimize sample complexity
- Guarantee a certain level of confidence

The End

- < ∃ →

Image: A matrix

2