Preference-Based Rank Elicitation using Statistical Models: The Case of Mallows

Robert Busa-Fekete ${ }^{1} \quad$ Eyke Huellermeier ${ }^{2}$ Balzs Szrnyi ${ }^{3}$
${ }^{1}$ MTA-SZTE Research Group on Artificial Intelligence, Tisza Lajos krt. 103., H-6720 Szeged, Hungary
${ }^{2}$ Department of Computer Science, University of Paderborn, Warburger Str. 100, 33098 Paderborn, Germany
${ }^{3}$ INRIA Lille - Nord Europe, SequeL project, 40 avenue Halley, 59650 Villeneuve dAscq, France

ICML 2014
June 24, 2014

Outline

(1) Preference-based stochastic multi-armed bandit (PB-MAB)
(2) PB-MAB Framework with Statistical Models over Ranking
(3) Concrete implementations with Mallows model
(4) Numerical Experiments

Motivation

- Exploiting revealed preferences to learn a ranking
- Example: Crowdsourcing
- Amazon Mechanical Turk
- Widely-used platform in Natural Language Processing (NLP) to annotate training database
- Machine Translation: for each English sentence, there are given many possible translations
- Goal: either to find a ranking which reflects to the quality of the translations, or the best translation
- The annotators might be asked in terms of simple questions: Is translation A better than translation B ?

Preference-based stochastic multi-armed bandit setup

- Give M items/arms: $\mathcal{A}=\left\{a_{1}, \ldots, a_{M}\right\}$
- Items/arms can only be compared in a pairwise manner
- In a time step t , the (online) learning algorithm selects a pair of items $\left(i^{t}, j^{t}\right)$ to be compared \Rightarrow feedback
- Pairwise probability for items a_{i} and a_{j} :

$$
\begin{equation*}
p_{i, j}=\mathbb{P}\left(a_{i} \succ a_{j}\right)=\mathbb{E}\left[\mathbb{I}\left\{a_{i} \succ a_{j}\right\}\right] \tag{1}
\end{equation*}
$$

follows a fixed probabilistic distribution

- If $p_{i, j}>1 / 2$, then item a_{i} is preferred to item a_{j}
- If $p_{i, j}<1 / 2$, then item a_{j} is preferred to item a_{i}

Goal of the online learner (decision maker/agent)

- Find the best item (with high probability)
- Find a ranking over item (with high probability)
- Minimize the number of pairwise comparisons

Modeling assumptions

- Elicit a ranking based on probabilistic (noisy) feedback
- Establish a connection to statistical models of rank data
- Full ranking
- $\left(r_{1}, \ldots \ldots, r_{i}, \ldots \ldots, r_{j}, \ldots \ldots, r_{M}\right) \sim \mathbb{P}(. \mid \wp)$
- Observation
- $\mathbb{I}\left\{r_{i}<r_{j}\right\}$
- $\mathbb{P}(. \mid \wp)$ is a parametric probability distribution over the set of ranking \mathbb{S}_{M}
- Making inference about P based on sampled pairwise comparisons

Modeling assumptions

- Pairwise probabilities can be written as

$$
\begin{equation*}
p_{i, j}=\mathbb{P}\left(a_{i} \succ a_{j}\right)=\sum_{r \in \mathcal{L}\left(r_{j}>r_{i}\right)} \mathbb{P}\left(\left.r\right|_{\wp}\right) \tag{2}
\end{equation*}
$$

where $\mathcal{L}\left(r_{j}>r_{i}\right)=\left\{r \in \mathbb{S}_{M} \mid r_{j}>r_{i}\right\}$

- Implicitly, we assume certain regularity properites on P induced by $\mathbb{P}(. \mid \wp)$
- Pairwise probability cannot be arbitrary

Modeling assumptions

Strong Stochastic Transitivity

For any triplet of arms such that $a_{i} \succ a_{j} \succ a_{k}$, $p_{i, k} \geq \max \left(p_{i, j}, p_{j, k}\right)$

- If we know $a_{i} \succ a_{j}$ and $a_{j} \succ a_{k}$
then $a_{i} \succ a_{k}$
- Nice regularity property
- Reduce sample complexity

Online learning framework

How to make the setup complete

- (MPI) Find the most preferred item (or arm) $a_{i^{*}}$ defined as

$$
\begin{equation*}
i^{*}=\underset{1 \leq i \leq M}{\arg \max } \underset{r \sim \mathbb{P}(\cdot \mid \wp))}{\mathbb{E}}\left[\mathbb{I}\left\{r_{i}=1\right\}\right] \tag{3}
\end{equation*}
$$

- (MPR) Find the most probable ranking r^{*} given the ranking model $\mathbb{P}(. \mid \wp)$

$$
\begin{equation*}
r^{*}=\underset{r \in \mathbb{S}_{M}}{\arg \max } \mathbb{P}(r \mid \wp) \tag{4}
\end{equation*}
$$

- All goals are meant to be achieved with probability at least $1-\delta$
- Based as few pairwise comparisons as possible

Mallows ϕ-model

- The probability of observing a ranking r is

$$
\begin{equation*}
\mathbb{P}(r \mid \phi, \tilde{r})=\frac{1}{Z(\phi)} \phi^{d(r, \tilde{r})} \tag{5}
\end{equation*}
$$

- $\tilde{r}=\left(\tilde{r}_{1}, \ldots, \tilde{r}_{M}\right)$ is the center ranking
- $d(.,$.$) is the Kendall's rank distance defined as$

$$
\begin{equation*}
d(r, \tilde{r})=\sum_{1 \leq i<j \leq M} \mathbb{I}\left\{\left(r_{i}-r_{j}\right)\left(\tilde{r}_{i}-\tilde{r}_{j}\right)<0\right\} \tag{6}
\end{equation*}
$$

- $\phi \in(0,1]$ is the spread parameter
- $\phi=1 \Rightarrow$ uniform distribution
- $\phi \rightarrow 0 \Rightarrow \mathbb{P}(\tilde{r} \mid \phi, \tilde{r}) \rightarrow 1$ (becomes more peaky)
- $Z(\phi)$ is the normalisation factor

Find the most preferred item for Mallows model (MPI)

$$
\begin{equation*}
i^{*}=\underset{1 \leq i \leq M}{\arg \max } \underset{\sim \sim \mathbb{P}(. \mid \phi, \tilde{r})}{\mathbb{E}}\left[\mathbb{I}\left\{r_{i}=1\right\}\right] \tag{7}
\end{equation*}
$$

- Most preferred item (MPI) is the one for which $\tilde{r}_{i^{*}}=1$
- The center ranking determines a total order on the set of items such that if $\tilde{r}_{i}<\tilde{r}_{j}$ then $p_{i, j}>1 / 2$, and $\tilde{r}_{i}>\tilde{r}_{j}$ then $p_{i, j}<1 / 2$

Find the most preferred item for Mallows model (MPI)

$$
\begin{equation*}
i^{*}=\underset{1 \leq i \leq M}{\arg \max } \underset{r \sim \mathbb{P}(. \mid \phi, \tilde{r})}{\mathbb{E}}\left[\mathbb{I}\left\{r_{i}=1\right\}\right] \tag{7}
\end{equation*}
$$

- Most preferred item (MPI) is the one for which $\tilde{r}_{i^{*}}=1$
- The center ranking determines a total order on the set of items such that if $\tilde{r}_{i}<\tilde{r}_{j}$ then $p_{i, j}>1 / 2$, and $\tilde{r}_{i}>\tilde{r}_{j}$ then $p_{i, j}<1 / 2$
- MALLOWSMPI (δ)
(1) Pick a random item a_{i}
(2) Pick another item, say a_{j}, which has not selected yet, if there is no such, then break
(3) Compare a_{i} and a_{j} until $1 / 2 \notin\left[\hat{p}_{i, j}-c_{i, j}, \hat{p}_{i, j}+c_{i, j}\right]$, where

$$
\begin{equation*}
c_{i, j}=\sqrt{\frac{1}{2 n_{i, j}} \log \frac{4 n_{i, j}^{2} M}{\delta}} \tag{8}
\end{equation*}
$$

(9) if $1 / 2<\hat{p}_{i, j}-c_{i, j}$, then keep a_{i} goto 2 , otherwise keep a_{j}

Find the most probable ranking for Mallows model (MPR)

- Most probable ranking is the center ranking

$$
\begin{equation*}
\tilde{r}=\underset{r \in \mathbb{S}_{M}}{\arg \max } \mathbb{P}(r \mid \phi, \tilde{r})=\underset{r \in \mathbb{S}_{M}}{\arg \max } \frac{1}{Z(\phi)} \phi^{d(r, \tilde{r})} \tag{9}
\end{equation*}
$$

- The center ranking determines a total order on the set of items such that if $\tilde{r}_{i}<\tilde{r}_{j}$ then $p_{i, j}>1 / 2$, and $\tilde{r}_{i}>\tilde{r}_{j}$ then $p_{i, j}<1 / 2$

Find the most probable ranking for Mallows model (MPR)

- MALLOWSMPR (δ)
- Follow the Merge sort strategy
- If the sorting algorithm compares two distinct items, say a_{i} and a_{j}, then compare them until $1 / 2 \notin\left[\hat{p}_{i, j}-c_{i, j}, \hat{p}_{i, j}+c_{i, j}\right]$, where

$$
\begin{equation*}
c_{i, j}=\sqrt{\frac{1}{2 n_{i, j}} \log \frac{4 n_{i, j}^{2} C_{M}}{\delta}} \tag{10}
\end{equation*}
$$

- Worst case performance of merge sort algorithm:
$C_{M}=\left\lceil M \log _{2} M-0.91392 \cdot M+1\right\rceil$
(Theorem 1, Flajolet \& Golin (1994))

Sample complexity

- MallowsMPI (δ)

$$
\begin{equation*}
\mathcal{O}\left(\frac{M}{\rho^{2}} \log \frac{M}{\delta \rho}\right) \tag{11}
\end{equation*}
$$

where $\rho=\frac{1-\phi}{1+\phi}$

- $\lim _{\phi \rightarrow 0} 1 / \rho^{2}=1$ (more peaky distribution \Rightarrow easier task)
- $\lim _{\phi \rightarrow 1} 1 / \rho^{2}=\infty$ (more uniform \Rightarrow harder task)
- MALLOWSMPR(δ)

$$
\begin{equation*}
\mathcal{O}\left(\frac{M \log _{2} M}{\rho^{2}} \log \frac{M \log _{2} M}{\delta \rho}\right) \tag{12}
\end{equation*}
$$

Numerical experiments for identifying Most Preferred Item (MPI)

- Verify that if the model assumptions are valid, the purposed algorithm is efficient.
- If Mallows model is assumed \Rightarrow best arm $=$ most preferred item
- Beat the mean (in PAC setting) [Yue and Joachims, 2011]
- Interleaved Filter [Yue et al., 2012]
- Compare the algorithms in terms of sample complexity
- Sample complexity: number of pairwise comparison take prior to the termination
- 100 repetitions
- The confidence parameter δ was set to 0.05 , and thus, the accuracy was significantly higher than 0.95 in every case.

Numerical experiments for identifying MPI

Numerical experiments for identifying Most Probable Ranking (MPR)

- Most probable ranking $=$ center ranking

$$
\begin{equation*}
\tilde{r}=\underset{r \in \mathbb{S}_{M}}{\arg \max } \mathbb{P}(r \mid \phi, \tilde{r}) \tag{13}
\end{equation*}
$$

- Parameter estimation method for Mallows which can handle incomplete ranking [Cheng et al., 2009]
- Validated on datasets that consist of pairwise comparisons
- Assessed the accuracy of the estimator for center ranking on datasets with various size.

Numerical experiments for identifying MPR

(a) $M=10$.

(b) $M=20$.

- Solid Line: Parameter estimation method by Cheng et al. [2009]
- Dashed vertical lines: Merge sort-based MPR algorithm

Conclusion

- The purposed algorithms are efficient, if the modeling assumption holds
- Minimize sample complexity
- Guarantee a certain level of confidence

The End

