
Probabilistic Latent Preference Analysis for Collaborative
Filtering

Nathan N. Liu
Department of Computer
Science and Engineering
Hong Kong University of
Science and Technology,

Hong Kong, China
nliu@cse.ust.hk

Min Zhao
NEC Labs China

Beijing, China
zhaomin@research.nec.c-

om.cn

Qiang Yang
Department of Computer
Science and Engineering
Hong Kong University of
Science and Technology,

Hong Kong, China
qyang@cse.ust.hk

ABSTRACT
A central goal of collaborative filtering (CF) is to rank items
by their utilities with respect to individual users in order to
make personalized recommendations. Traditionally, this is
often formulated as a rating prediction problem. However,
it is more desirable for CF algorithms to address the rank-
ing problem directly without going through an extra rating
prediction step. In this paper, we propose the probabilistic
latent preference analysis (pLPA) model for ranking predic-
tions by directly modeling user preferences with respect to
a set of items rather than the rating scores on individual
items. From a user’s observed ratings, we extract his pref-
erences in the form of pairwise comparisons of items which
are modeled by a mixture distribution based on Bradley-
Terry model. An EM algorithm for fitting the correspond-
ing latent class model as well as a method for predicting
the optimal ranking are described. Experimental results on
real world data sets demonstrated the superiority of the pro-
posed method over several existing CF algorithms based on
rating predictions in terms of ranking performance measure
NDCG.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval—Information Filtering

General Terms
Algorithms, Experimentation

Keywords
Collaborative Filtering, Ranking, Latent Class Model

1. INTRODUCTION
With the explosive growth of easily accessible informa-

tion on the web, technologies for helping people efficiently

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

sift through huge amount of information is becoming indis-
pensable in order to overcome the resulted information over-
load problem. Recommender system is a promising technol-
ogy that aims to automatically generate item recommenda-
tions from a huge collection of items based on users’ past
feedback. Broadly speaking, existing technologies underly-
ing recommender systems fall into either of the following
two categories: content-based filtering versus collaborative
filtering. Content-based filtering approach analyzes the con-
tent information associated with the items and users such as
product descriptions, user profiles etc., in order to represent
users and items using a set of features. To recommend new
items to a user, content-based filters match their representa-
tions to those items the user has expressed interests on. In
contrast, the collaborative filtering(CF) approach does not
require any content information about the items, it works
by collecting ratings on the items by a large number of users
and make recommendations to a user based on the prefer-
ence patterns of other users. The CF approach is based on
the assumption that a user is often interested in those items
that have been selected by some users with similar tastes.
Besides avoiding the need for collecting extensive informa-
tion about items or users, the CF approach does not require
domain knowledge and can be easily adopted in different
recommender systems.

A very important function of most recommender systems
is the generation of the Top-N item list for each user in
order to make personalized recommendations, which essen-
tially involves solving a ranking problem. To rank items,
most collaborative filtering algorithms formulate this as a
rating prediction problem in which a user’s potential rat-
ings on the items are first predicted and then used to order
the items. However, there are several drawbacks with such
rating prediction based framework. Firstly, the rating pre-
diction accuracy, which has been optimized in most existing
methods, is not always consistent with ranking effectiveness.
Suppose the true ratings on a pair of items are 3 and 4 re-
spectively and the predicted ratings by method A are 2 and
5 while method B’s predictions are 4 and 3. In terms of rat-
ing prediction accuracy as measured by the absolute devia-
tion from the true ratings, the two methods are indifferent.
However, the resulted ranking of the two items based on
method B’s predictions is incorrect while method A can still
ensure the correct order of the two items. So models that
solely focus on improving rating prediction accuracies may
be suboptimal for ranking applications. Secondly, ratings

759



are often predicted independently for each item while rank-
ings are inherently about relations among multiple items.
For example, one common form of such relations is a pair-
wise preference which indicates which one of a pair of items
is more preferred by the user. This form of relational infor-
mation is clearly more relevant to task of ranking than the
rating scores. Therefore, it is more desirable for a model
to explicitly take such interdependencies into account and
conduct collective inference which computes the ranking as
a function of the whole set of items. Finally, in many in-
teractive applications such as web search, explicit user feed-
backs in the form of ratings are often unavailable while it
is very easy to collect abundant implicit feedbacks such as
user click-throughs, from which one can often extract pair-
wise preferences regarding items[12, 19]. Therefore models
for preferences are much more general and can handle both
implicit and explicit user feedbacks.

In this paper, we propose a ranking prediction based ap-
proach to collaborative filtering named probabilistic latent
preference analysis (pLPA), which directly addresses the
item-ranking problem without going through the interme-
diate step of rating prediction. The pLPA model is a latent
class model that simultaneously captures user preferences
as well as the user community structures. Unlike previous
memory based methods[14], the pLPA model is based on a
compact statistical model of the data, which allows learning
and inference to be efficiently conducted on large scale data
sets.

2. RELATED WORKS
Generally speaking, there are two common approaches to

collaborative filtering. One is the memory-based approach
and the other is the model-based approach.

2.1 Memory-based Approach
Memory-based approach conducts certain forms of nearest

neighbor search in order to predict the rating for particular
user-item pair. A most common method is the user-based
model, which estimate the unknown ratings of a target user
based on the ratings by a set of neighboring users that tend
to rate similarly to the target user. A crucial component
of the user-based model is the user-user similarity for de-
termining the set of neighbors. Popular similarity measures
include the Pearson Correlation Coefficient(PCC)[21, 6]and
the vector similarity(VS)[2].

One difficulty in measuring the user-user similarity is that
the raw ratings may contain biases caused by the different
rating behaviors of different users. For example, some users
may tend to give high ratings. To correct such biases, differ-
ent methods have been proposed to normalize or center the
data prior to measuring user similarities. [21, 2] showed that
by correcting for user-specific means the prediction quality
could be improved. Later, Jin et al. proposed a technique
for normalizing the user ratings based on the halfway accu-
mulative distribution[11].

Another difficulty in user-based models arises from the
fact that the known user-item ratings data is typically highly
sparse, which makes it very hard to find highly similar neigh-
bors for making accurate predictions. To alleviate such spar-
sity problem, different techniques have been proposed to fill
in some of the unknown ratings in the matrix such as di-
mensionality reduction[5] and data-smoothing methods[24,
15].

An alternative form of the neighborhood-based approach
is the item-based model[22, 13]. Here the item-item simi-
larity is used to select a set of neighboring items that have
been rated by the target user and the ratings on the unrated
items are predicted based on his ratings on the neighboring
items. Since the number of items is usually much less than
the number of users in most applications, item-item similari-
ties are less sensitive to the data sparsity problem. Sarwar et
al.[22] recommended using the adjusted cosine similarity to
compute the item-item similarity and found that the item-
based model could obtain higher accuracy than the user-
based model, while allowing more efficient computations.

EigenRank[14] is a recently proposed memory based method
which also views CF as a ranking problem rather than a
regression problem(i.e., rating prediction). It adapts tradi-
tional user-based model by measuring user similarity using
rank correlations and using user dependent rank aggrega-
tion methods to produce rankings by fusing the preferences
of a user’s neighbors. It was empirically demonstrated that
such ranking oriented approach can produce better rank-
ings than traditional rating prediction methods. However,
like any memory based methods, it requires nearest neigh-
bor search in the entire rating database at prediction time,
which is very time consuming on large data sets.

2.2 Model-based Approach
Memory based methods became popular because they are

conceptually simple and intuitive. However, there are sev-
eral shortcomings with these methods. First, the accuracies
of memory-based methods are often suboptimal. Secondly,
while memory-based methods can produce prediction, they
do not involve much learning, thus little knowledge or in-
sights about the users or items can be gained from the data.
Thirdly, memory-based methods often require direct manip-
ulation the full ratings database at prediction time, which
can be very computationally expensive. Finally, without a
proper model, it is hard to adapt memory-based methods to
optimize different objectives associated with specific tasks
or application domains.

The model-based approach to CF uses the observed user-
item ratings to train a compact model that explains the
given data so that ratings could be predicted via the model
instead of directly searching in the rating database as the
memory-based approach does. Models in this category in-
clude matrix factorization[17], probabilistic latent semantic
analysis[8] and Bayesian networks[18].

Model based methods can effectively address the limita-
tions of memory based methods. They are often found to
yield superior performance. By compressing the full data
into a very compact statistical model, predictions can be
made in constant time although there involves an additional
model building stage that can be done off-line. Besides mak-
ing predictions, a model also has well defined semantics and
structures that can capture useful information such as user
communities. Moreover, by designing appropriate loss func-
tions and optimization procedures, models can be systemat-
ically tuned to suit task-dependent objectives.

In this work, we also take the model based approach con-
sidering its many attractive properties described above. In
the following sections, we will first review several existing
model based methods for rating prediction and then describe
our probabilistic latent preference analysis model for rank-
ing prediction.

760



3. MODEL-BASED RATING PREDICTION
The general problem setting for collaborative filtering is

as follows. Suppose we are given a set of m users and a set
of n items. Each observed rating record is a triple (u, i, rui)
denoting the rating assigned to item i by user u, where the
user index u ∈ {1, 2, ..., m}, the item index i ∈ {1, 2, ..., n}
and the rating values rui ∈ R. We assume each user can
rate each item only once so all the ratings can be arranged
into an m × n matrix R whose ui-th entry equals rui. If
a user has not rated an item, the corresponding entry in
R is unknown. We let R denote the set of all (u, i) pairs
associated with the observed ratings. Typically, |R| is much
smaller than m×n since each user only rate very few items,
this is commonly known as the sparsity problem

3.1 Matrix Factorization
The goal of matrix factorization (MF) techniques is to

approximate the observed rating matrix R as the product
of two low-rank matrices:

R ≈ U>V, (1)

where U is an k × m matrix, V is an k × n matrix. The
parameter k controls the number of latent features for each
user and movie which is typically much smaller than m and
n.

Under this model, each user u is represented by a k-
dimensional feature vector uu ∈ Rk, the u-th column of U,
while each item i is modeled by vi ∈ Rk, the i-th column of
V. The predicted rating on item i by user u is equal to the
inner product of the corresponding user and item features:

r̂ui =

K∑

k=1

ukuvki = u>u vi (2)

Once the matrices U and V have been learnt, each predic-
tion can be made in just O(k) time. The parameter matrices
U and V can be found by solving the following optimization
problem:

min
U∈Rk×m,V∈Rk×n

∑

(u,i)∈R
(rui − u>u vi)

2 + λ(‖U‖2F + ‖V‖2F ),

(3)
where ‖.‖2F denotes the Frobenius 2-norm, (i.e., ‖U‖2F =∑

ui u2
ui) and λ is the parameter controlling the strength of

regularization in order to avoid over-fitting. The problem
(3) can be solved using an EM like algorithm[23], where we
update U and V alternately while holding the other ma-
trix fixed. When U (or V) is fixed, minimizing L over V
(or U) simply involves solving an unconstrained quadratic
optimization problem which can be done very efficiently.

3.2 Probabilistic Latent Semantic Analysis
Compared with matrix factorization methods, statistical

models are able to capture the complex dependencies among
different factors such as user clusters, item clusters and rat-
ings using well-defined probabilistic semantics. They are
thus much easier to interpret in order to gain insights about
the data and can also rely on rich existing statistical tech-
niques for doing learning and inferences.

Probabilistic latent semantic analysis (pLSA)[7] is a widely
used latent variable model for co-occurrence data based on
mixture distributions. To apply the pLSA framework to col-
laborating filtering applications, Hofmann [8] proposed to

introduce a hidden state variable z for each observed rating
rui the distribution of which is decomposed as:

P (rui|u, i) =

k∑
z=1

P (rui|i, z)P (z|u) (4)

where the sum over z runs over all latent classes and k is
a parameter controlling the number of latent classes. The
latent classes can capture the user communities while the
mixing proportions P (z|u) capture the strength of a user’s
membership in each community.

For rating values that are of numeric scale, the Gaussian
distribution can be used to model the rating value for each
item i in each latent class z by introducing a mean parameter
µki ∈ R and a variance parameter σ2

ki ∈ R+, so the model
defined in (4) becomes a gaussian mixture model:

P (rui|u, i) =

k∑
z=1

P (z|u)P (rui; µzi, σzi) (5)

P (rui; µzi, σzi) =
1√

2πσzi

exp

[
− (rui − µzi)

2

σ2
zi

]
(6)

To make predictions, we can compute the expected rating
that would be assigned to item i by user u:

r̂ui =

∫
rP (r|u, i) =

k∑
z=1

P (z|u)

∫
rP (r; µzi, σzi)dr

=
∑

z

P (z|u)µzi (7)

which again can be computed in O(k) time.
The model parameters in (5) thus consist of n× k means

µzi, n× k variances σ2
zi and the m× k user dependent mix-

ing proportions P (z|u). Using the maximum likelihood ap-
proach, we can estimate these parameters by maximizing
the log-likelihood of all the observed ratings:

L =
∑

(u,i)∈R
log(P (rui|u, i)) (8)

=
∑

(u,i)∈R
log

{ k∑
z=1

P (rui; µzi, σzi) P (z|u, i)
}

where the expansion follows equation (5) and (6).
The above loss function can be optimized using the EM

algorithm which alternates between a expectation step and
a maximization step. Let there be a latent variable z asso-
ciated with each observed rating (u, i) ∈ R. In the expecta-
tion step, the posterior probabilities of the latent variables
are computed:

P (z|u, i) =
P (z|u)P (rui; µzi, σzi)∑k

z′=1 P (z′|u)P (rui; µz′i, σz′i)
(9)

In the maximization step, the parameters µzi, σ2
zi and

P (z|u) can be obtained by maximizing the expected com-
plete log-likelihood E[Lc]:

E[Lc] =
∑

(u,i)∈R

k∑
z=1

P (z|u, i) log
[
P (rui; µzi, σzi)P (z|u)

]

(10)
When class conditional rating distributions are modeled by
gaussian distributions, the above optimization problem can
be readily solved by introducing an additional Lagrange

761



multiplier to enforce that user specific mixing proportions
P (z|u) sum to 1 and solve the resulting constrained opti-
mization problem, which has the following closed form solu-
tions:

P (z|u) =

∑
(u′,i)∈R:u′=u P (z|u, i)

∑k
z′=1

∑
(u′,i)∈R:u′=u P (z′|u, i)

(11)

µzi =

∑
(u,i′)∈R:i′=i ruiP (z|u, i)∑

(u,i′)∈R:i′=i P (z|u, i)
(12)

σ2
zi =

∑
(u,i′)∈R:i′=i(rui − µzi)

2P (z|u, i)∑
(u,i′)∈R:i′=i P (z|u, i)

(13)

The expectation and maximization are alternated until a
termination condition is met, for example, by checking the
convergence of the log-likelihood defined in (4) is reached.
In the experiments, we found that 30-50 iterations are often
sufficient.

4. PROBABILISTIC LATENT PREFERENCE
ANALYSIS

u

i

z

rui i

z

j

u

u
ijd

(a) (b)

Figure 1: Graphical model representation of (a)
probabilistic latent semantic analysis and (b) prob-
abilistic latent preference analysis

Both matrix factorization (MF) and probabilistic latent
semantic analysis (pLSA) are based on models of the under-
lying mechanism of how a user would assign a particular rat-
ing score to an item. However as we argued in the previous
sections, a more important goal of collaborative filtering is
to rank items correctly. Therefore we propose a new latent
class model named probabilistic latent preference analysis
(pLPA) for modeling user’s preferences regarding the items
rather than the ratings scores. In particular, we focus on
modeling user preferences in the form of paired comparisons
which are binary responses that indicate whether a user likes
an item more than another. In contrast to pLSA, which em-
ploys a Gaussian distribution for the rating on each item for
each latent class, pLPA uses the Bradley-Terry model for
each latent class’s preferences on pairs of items.

4.1 Bradley-Terry Model
Consider the situation when there is a set of n items which

are compared to each other in pairs to yield binary outcomes
δij which is equal to 1 if i is preferred to j and 0 otherwise.
The Bradley-Terry model for the probability distribution of
δij with parameters γ ∈ R+

n :

P (δij = 1; γ) =
γi

γi + γj
(14)

where the γi’s are nonnegative item parameters indicating

the utility of an item such that the higher γi is compared to
γj the more likely item i will be preferred to j.

The Bradley-Terry model for paired comparisons can be
used to define a probability distribution over rankings[9, 16].
Let Pn denote the set of all possible permutations on the set
of integers from 1 to n. A vector π ∈ Pn defines a ranking
for a set of n items such that πi = 1 means that item i is
ranked first. Given a ranking π, we can define a variable
δπ

ij with respect to π such that δπ
ij = 1 if πi < πj and 0

otherwise. The probability distribution over the set of all
possible rankings Pn is therefore:

P (π; γ) =
1

C(γ)

n−1∏
i=1

n∏
j=i+1

P (δπ
ij ; γ) (15)

where C(γ) =
∑

π∈Pn

∏n−1
i=1

∏n
j=1+1 P (δπ

ij ; γ) is a normal-
ization constant that guarantees it is a probability measure
on Pn, the set of valid ranking with no ties. Inserting (14)
into (15) yields

P (π; γ) =
1

C∗(γ)

n∏
i=1

γn−πi
i (16)

where C∗(γ) = C(γ)
∏n−1

i=1

∏n
j=i+1(γi + γj) is a constant

factor not depending on π. From (16), we can easily see
that under a Bradley-Terry model there is a single most
probable ranking π∗ = arg maxπ P (π; γ) that is equal to
arg sort(γ), which orders {1, 2, ..., n} by the corresponding
γi’s into decreasing order.

4.2 Latent Class Models for User Preferences
In collaborative filtering, given a user’s observed ratings

rui, we can extract his preferences on item pairs by defining
variables δu

ij such that δu
ij = 1 if rui > ruj and 0 otherwise.

Note that δu
ij is unknown if either rui or ruj is unknown or

rui = ruj . We let Q denote the set of (u, i, j) triples for
which the preference is δu

ij is observed.
Similar to pLSA, we model each observed pairwise pref-

erence by a mixture distribution:

P (δu
ij |u, i, j) =

k∑
z=1

P (δu
ij |i, j, z)P (z|u) (17)

The graphical model representations for both pLSA and
pLPA are depicted in Figure 1. In pLPA, we designate a
Bradley-Terry Model with parameter γz ∈ R+

n to model
P (δu

ij |i, j, z):

P (δu
ij = 1|z, i, j) = P (δu

ij = 1; γz) =
γzi

γzi + γzj
(18)

The parameters of the pLPA model thus consist of n×k item
parameters γzi and m × k user mixing proportions P (z|u).
Like pLSA, we can use the EM algorithm to obtain maxi-
mum likelihood estimates of the parameters by maximizing
the log-likelihood of the observed user pairwise preferences
δu

ij ’s. In the expectation step, the posterior probability of
the latent variable for each observed pairwise preference is
computed:

P (z|u, i, j) =
P (z|u)P (δu

ij ; γz)∑k
z′=1 P (z′|u)P (δu

ij ; γz′)
(19)

For the maximization step, we first derive the expected com-

762



plete log-likelihood E[Lc]:

∑

(u,i,j)∈Q

k∑
z=1

P (z|u, i, j)
[
log P (δu

ij ; γz) + log P (z|u)
]

(20)

Optimizing E[Lc] with respect to P (z|u) while enforcing the

normalization constraint
∑k

z=1 P (z|u) = 1 yields the follow-
ing update equations for P (z|u):

P (z|u) =

∑
(u′,i,j)∈Q:u′=u P (z|u, i, j)

∑k
z′=1

∑
(u′,i,j)∈Q:u′=u P (z′|u, i, j)

(21)

Unfortunately, unlike in pLSA, there is no closed form
solutions for the parameters γzi in the maximization step
for pLPA. We therefore has to resort to numeric methods to
obtain maximum likelihood estimates of γzi’s. To estimate
the parameter vector γz for each latent class z, the only
relevant part in (20) is:

Lc
z(γz) =

∑

(u,i,j)∈Q

k∑
z=1

P (z|u, i, j) log P (δu
ij ; γz)

=

n∑
i=1

n∑
j=1

wz
ij

[
log γzi − log(γzi + γzj)

]
(22)

where wz
ij =

∑
(u,i,j)∈Q P (z|u, i, j) is the expected number

of times item i is preferred to item j in latent class z. Each
Lc

z(γz) could be maximized separately to obtain estimates
of γz in the current maximization step.

We use a recently proposed iterative algorithm for obtain-
ing maximum likelihood estimates of parameters in Bradley-
Terry models known as the minorization-maximization (MM)
algorithm[9], which has guaranteed convergence to the unique

maximum likelihood estimator. Suppose γ(t)
z is the estimate

at the t-th iteration. Fix γ(t)
z , we can define the function:

Qt(γz) =

n∑
i=1

n∑
j=1

wz
ij

[
log γi− γi + γj

γ
(t)
i + γ

(t)
j

− log(γ
(t)
i +γt

j)+1

]

(23)
Utilizing the strict concavity of the logarithm function, which
implies for positive x and y that − log x ≥ 1− log y− (x/y).
We can show that the function Qt(γz) is a minorization of

Lc
z(γz) at point γ(t)

z such that Qt(γz) ≤ Lc
z(γz) with equal-

ity only if γz = γ(t)
z , As a result, we can easily verify that

Qt(γz) ≥ Qt(γ
(t)
z ) implies Lc

z(γz) ≥ Lc
z(γ

(t)
z ). This prop-

erty suggests an iterative algorithm in which we maximize
Qt(γz) at each iteration and let γt+1

z be the maximizer of
Qt(γz), which yields the following update equation:

γ
(t+1)
zi = W z

i

[∑

j 6=i

Nz
ij

γ
(t)
zi + γ

(t)
zj

]
(24)

where W z
i =

∑n
j=1 wz

ij and Nz
ij = wz

ij + wz
ji.

The above algorithm for fitting Bradley-Terry Models does
not require any second-order information like the Newton
algorithm does, thus each iteration can be computed very
efficiently. In the experiments, we have found it normally
takes 30-50 iteration to converge to the maximum likelihood
estimations.

4.3 Ranking Prediction
Following the pairwise decomposition approach in (15),

the pLPA model can be used to obtain the following proba-

bility distribution over rankings π ∈ Pn:

P (π|u) =
1

C(u)

n−1∏
i=1

n∏
j=i+1

P (δπ
ij |u) (25)

=
1

C(u)

n−1∏
i=1

n∏
j=i+1

k∑
z=1

P (δπ
ij ; γz)P (z|u)

where C(u) is a user-dependent normalization constant. Un-
like rating scores, a ranking π is a discrete combinatorial
structure, thus we could not take expectations of π as in
(7). Instead we need to find the ranking with the maximum
a posteriori (MAP) probabilities under (26):

π̂u = arg max
π∈Pn

P (π|u) (26)

However, unlike the case of a single Bradley-Terry model,
(26) is a mixture of Bradley-Terry models each of which
has its respective MAP ranking determined by γz. So the
MAP ranking has to be obtained by performing combinato-
rial search in the set Pn. Taking the logarithm of P (π|u)
and remove all factors not dependent on π, the MAP rank-
ing π∗ is the ranking that maximizes the following function:

Vu(π) =
∑

(i,j):πi<πj

ωu
ij (27)

where ωu
ij = log P (δij = 1|u). Roughly speaking, we want

to obtain the ranking that maximizes the probabilities of
a higher ranked item being more preferred to those items
ranked lower. Unfortunately, finding the optimal ranking
to maximize a function of the form in (27) turn out to be
a NP-complete problem, which can be shown via reduction
from the cyclic-ordering problem[4].

In the following, we describe a strategy for efficiently pro-
ducing a ranking for the pLPA model inspired by the rank
aggregation problem in meta search. In the meta search
scenario, there are multiple judges each of which provides a
list of ranked results and the goal of rank aggregation is to
effectively combine the individual judges’ scores to produce
a good overall ranking. Most methods for rank aggregation
rely on the following information: (i) the scores assigned to
each item by different judges; and/or (ii) the ordinal ranks
of each item in different result lists. Different methods have
been proposed to compute an overall score for each item
based on the original scores, ranks or some transformation
of these values so that items could be ordered by the overall
scores[20]. To apply rank aggregation to produce rankings
from the pLPA model, we consider the Bradley-Terry model
of each latent class, P (δij ; γz), as a judge which assigns the
scores γz1, ..., γz2 to the n items accordingly. Here the item
parameters γzi are a natural measure for ranking since items
with higher γzi values are more likely to be more preferred
under the Bradley-Terry model. To produce user dependent
rankings, we also consider user-dependent weights on each of
the judges using the mixing proportions P (z|u). This leads
to the following formula for item scores used for ranking:

θui =

k∑
z=1

P (z|u)γzi (28)

which can be computed in O(k) time, the same as the time
complexity of making predictions using the rating oriented
pLSA model.

763



Note that we can also first perform normalization on the
raw values of the item parameters γzi in different Bradley-
Terry models before combining them. However, in the ex-
periments, this was not found to yield any improvement over
just using the raw scores. This is probably because in the
pLPA models all the parameters γzi are learnt jointly based
on the data so the different scales of the γzi’s are actually
capturing certain useful properties of the data rather than
being a kind of bias associated with different judges that
needs to be corrected like in the meta search setting.

4.4 Comparison with Other Models
The pLPA and pLSA models are closely related as both

are latent class models with different choice of the mixture
component distributions. pLSA focuses on modeling the rat-
ing scores, which makes gaussian distribution a natural use.
pLPA is designed to capture relative ordering of items, for
which Bradley-Terry model is more appropriate. One ad-
vantage for the pLPA model over the pLSA model is that it
can handle both explicit feedback in the form of ratings as
well as implicit feedback such as click-through, etc. Many
previous works have shown how pairwise preferences regard-
ing item-pairs may be derived from implicit user feedbacks
such as click-throughs[12]. The pLPA model can be natu-
rally applied to analyze such pairwise preference data. In
contrast, the pLSA model as well as most existing CF algo-
rithms are not able to handle implicit feedback data which
contains no numeric ratings.

The training time complexity of pLPA is higher than pLSA.
The E-step of pLPA involves doing the computation in 19
on every pair of rated items by the same users, which re-
quires O(knm2) time while for pLSA the E-step only takes
O(knm). The M-step of pLSA has closed form solutions
while pLPA involves running numerical optimization to find
the maximum likelihood parameters. At prediction time,
both pLSA and pLPA can efficiently generate scores for all
items in O(mk) time.

EigenRank[14] is another ranking oriented algorithm for
collaborative filtering. Unlike pLPA, it is memory based and
have high complexity at prediction time. After determining
the n nearest neighbors of a target user, it first needs to
compare every pair of rated items by each neighbor to esti-
mate the user’s pairwise preferences on the set of m items
and then applies a random walk model to obtain the item
scores, which would requires O(m2) time complexity, much
higher than the O(mk) complexity of pLPA since m À k.
This makes EigenRank impractical for applications that re-
quires computing recommendation list in real time.

5. EXPERIMENTS

5.1 Data Sets
We evaluated the proposed model on two real world movie

ratings data sets: EachMovie and Netflix. The EachMovie
data set consists of about 2.8 million ratings made by more
than 72 thousand users on 1628 movies. The Netflix data
set contains over 100 million ratings from over 480 thousand
users on around 18000 titles. The EachMovie data contains
6 rating classes from 1 to 6 while the Netflix ratings fall
into 5 rating classes from 1 to 5. For the experiments in
this work, we only used the ratings on the 1000 and 2000
most frequently rated movies in the EachMovie and Netflix
datasets respectively.

5.2 Baseline Methods
We compared the proposed pLPA algorithm with 5 exist-

ing algorithms. For memory based methods we implemented
the item based model using vector similarity (IVS)[22] and
the user based model using Pearson Correlation Coefficient
(UPCC)[2]. We also implemented the two model based
methods in section 3 including matrix factorization (MF)[17]
and the probabilistic latent semantic analysis using gaus-
sian rating model (pLSA)[8]. We also compare pLPA with
another recently proposed algorithm, EigenRank (ER)[14],
which adapted the memory-based methods for ranking ori-
ented collaborative filtering.

5.3 Evaluation Metric
Traditionally, collaborative filtering algorithms are evalu-

ated by the accuracy of their predicted ratings. One com-
monly used performance metric for rating accuracy is the
Mean Absolute Error (MAE):

MAE =

∑
(u,i)∈R |rui − r̂ui|

|R|
However, as we argued previously, ranking effectiveness

is a more suitable criterion for evaluating CF algorithms.
Therefore, we choose the Normalized Discounted Cumula-
tive Gain (NDCG) [10] as the performance measure, which is
widely used for evaluating ranked results in information re-
trieval when the documents are assigned graded rather than
binary relevance judgements. To use it for collaborative fil-
tering, we simply treat the ratings on the items assigned by
users as graded relevance judgements.

The NDCG is evaluated over some number k of the top
items on a ranked item list. Let Q be the set of users in-
cluded in the test data and R(u, p) be the rating assigned
by u to the item at the p-th position on the ranked list pro-
duced for user u. The NDCG at the k-th rank position with
respect to the set of users Q is:

NDCG(Q, k) =
1

|Q|
∑
u∈Q

Zu

k∑
p=1

2R(u,p) − 1

log(1 + p)

where Zu is a normalization factor calculated so that the
NDCG of the optimal ranking has a value of 1. The value of
NDCG ranges from 0 to 1 with a higher value indicates bet-
ter ranking effectiveness. An attractive property of NDCG
is that it is more sensitive to the ratings of the items at
higher rank positions, which is consistent with requirements
in real recommender systems where only few items can be
recommended each time.

5.4 Evaluation Protocol
From both data sets, we randomly picked a set of 10600

users with the most ratings from both data sets. In or-
der the better assess ranking effectiveness, we computed the
variance of the observed ratings for each user and chose the
500 users with highest rating variances from both data sets
to form the testing data since the NDCG on these data are
more sensitive to item ordering. For the remaining 10100
users, we use 10000 as the training data and the other 100
for parameter tuning. For the 500 active users, we use 5-
fold cross-validation to evaluate different algorithm’s per-
formance, where in each run a user’s model is trained using
80% of his ratings and tested on the remaining 20%.

764



5.5 Results and Discussion

5.5.1 Performance Comparison between pLPA and
other algorithms

The evaluation results on both EachMovie and Netflix
data sets are shown in Table 2 (a) and (b) respectively,
where all the performances are calculated via 5-fold cross
validation. On both data sets, we vary the amount of train-
ing users from 2,000 to 10,000 to study the performances of
different algorithms under different sparsity conditions. For
each method, we measure the NDCG values at the 5th, 10th
and 20th positions respectively. We also report the MAE for
the 4 rating prediction algorithms.

Based on the results, we have made the following inter-
esting observations:

1. For the 4 rating prediction algorithms, it is interesting
to note that the two metrics MAE and NDCG often
lead to inconsistent judgements on the algorithms. For
example, on EachMovie 2000 users dataset, the item
based method IVS, despite having worst MAE, have
achieved best NDCG10 and NDCG20 scores out of all
the rating prediction methods. Similarly, on the net-
flix datasets, while the MAE of UPCC and IVS are
very close to each other, a much bigger difference in
NDCG scores were observed between the two algo-
rithms. These results provide support to our belief
in designing and evaluating CF algorithms from the
ranking perspective.

2. The two ranking oriented methods ER and pLPA gen-
erally outperform the other rating prediction methods
in terms of NDCG scores. On the eachmovie dataset,
pLPA achieves best NDCG scores at all different po-
sitions in most settings. On the netflix dataset, ER
appeared to be highly effective at finding top items as
evidenced by its high NDCG@5 scores. On the other
hand, the pLPA method was more effective for longer
ranked list as shown by its high NDCG@20 scores.
Overall, the results indicate that the proposed pLPA
model is very effective for ranking items in collabora-
tive filtering.

5.5.2 Efficiency Comparison between EigenRank and
pLPA

As noted in the analysis in section 4.4, the time complexity
of the prediction operation using the EigenRank algorithm
is much higher than that of pLPA. In this set of experiments,
we measured the amount of time that it takes to generate
rankings for all the 500 test users in both EachMovie and
Netflix datasets under different parameter settings. The re-
sults are shown in Table 1. We have varied the number of
nearest neighbors, denoted by n, in EigenRank from 100 to
400 and the number of latent classes, denoted by k, in pLPA
model from 10 to 40, which are the typical ranges for n and
k. We can clearly see that making predictions using pLPA is
several orders of magnitude more efficient than using Eigen-
Rank.

5.5.3 Effect of the Number of Latent Classes in pLPA
Figure 2 shows the ranking performances of pLPA on test

data as a function of the number of latent classes when
trained on the 5000 users datasets for EachMovie and Net-
flix. The graphs show that the optimal performances are ob-

EachMovie Netflix
ER(n=100) 223.8 426.8
ER(n=200) 289.3 573.5
ER(n=400) 345.9 806.2
pLPA(k=10) 0.4 0.9
pLPA(k=20) 1.1 2.1
pLPA(k=40) 2.0 5.3

Table 1: Prediction Time Comparison between
EigenRank and pLPA (in seconds)

tained with k equals 6 and 8 on the EachMovie and Netflix
data sets respectively after which the performances on test
data tend to degrade, which indicates that the model suffers
from overfitting when the number of parameters increases.
To address over-fitting, one possible solution is to introduce
hyper-prior distributions over model parameters for regular-
ization as in the latent Dirichlet allocation model[1]. We will
leave this for our future work.

2 6 10 14 18 22 26 30
0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

Num of Latent Classes (k)

 

 

NDCG@1
NDCG@3
NDCG@5

(a) Eachmovie

2 6 10 14 18 22 26 30
0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

Num of Latent Classes (k)

 

 

NDCG@1
NDCG@3
NDCG@5

(b) Netflix
Figure 2: Performance of pLPA as a function of the
number of latent classes

6. CONCLUSIONS AND FUTURE WORK
In this paper, we propose the probabilistic latent prefer-

ence analysis model for ranking-oriented collaborative filter-
ing. The pLPA model addresses the item ranking problem
directly by modeling pairwise preferences on items using a
latent class model based on the Bradley-Terry Model for
paired comparisons. Experimental results show that our ap-
proach can effectively improve the ranking performance.

For future work, we would like to investigate several ex-
tensions of the current pLPA model. Firstly, in addition to
modeling pairwise preferences, we would also consider prob-
ability models on listwise preferences such as the Placket-
Luce models for ranked data[3]. Thirdly, we will consider
introducing hyper-prior distributions over model parameters
for regularization. Finally, we also plan to test the pLPA

765



Table 2: Cross Validated Performances of Different Algorithms
2000 Training Users 5000 Training Users 10000 Training Users

mae ndcg5 ndcg10 ndcg20 mae ndcg5 ndcg10 ndcg20 mae ndcg5 ndcg10 ndcg20
UPCC 1.450 0.648 0.688 0.752 1.410 0.679 0.713 0.782 1.381 0.682 0.716 0.781
IVS 1.491 0.669 0.712 0.770 1.494 0.669 0.714 0.781 1.494 0.668 0.712 0.780
pLSA 1.261 0.688 0.700 0.749 1.222* 0.701 0.719 0.789 1.210 0.705 0.710 0.788
MF 1.233* 0.691* 0.708 0.750 1.279 0.703 0.725 0.794 1.187* 0.711 0.720 0.793
ER – 0.675 0.696 0.762 – 0.704 0.727 0.792 – 0.713 0.723 0.797
pLPA – 0.690 0.728* 0.792* – 0.738* 0.748* 0.809* – 0.743* 0.755* 0.815*

(a) Results on EachMovie Data Set (* indicates best performance)

2000 Training Users 5000 Training Users 10000 Training Users
mae ndcg5 ndcg10 ndcg20 mae ndcg5 ndcg10 ndcg20 mae ndcg5 ndcg10 ndcg20

UPCC 0.916 0.651 0.660 0.698 0.902 0.670 0.651 0.690 0.884 0.711 0.704 0.728
IVS 0.888* 0.621 0.625 0.681 0.890 0.627 0.631 0.686 0.891 0.628 0.634 0.689
pLSA 0.906 0.698 0.672 0.707 0.826 0.704 0.674 0.719 0.802 0.704 0.706 0.738
MF 0.891 0.705 0.675 0.708 0.812* 0.703 0.693 0.732 0.796* 0.703 0.711 0.745
ER – 0.718* 0.689* 0.720 – 0.747* 0.704 0.730 – 0.760* 0.725 0.741
pLPA – 0.706 0.684 0.728* – 0.730 0.709* 0.741* – 0.743 0.728* 0.759*

(b) Results on Netflix Data Set (* indicates best performance)

model on implicit user feedback data such as query logs from
which pairwise preferences of items can be extracted.

7. REFERENCES
[1] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent

dirichlet allocation. Journal of Machine Learning
Research, 3:993–1022, 2003.

[2] J. S. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative
filtering. In Proceedings of UAI 1998, 1998.

[3] Z. Cao and T. yan Liu. Learning to rank: From
pairwise approach to listwise approach. In In
Proceedings of the 24th International Conference on
Machine Learning, pages 129–136, 2007.

[4] W. W. Cohen, R. E. Schapire, and Y. Singer.
Learning to order things. Journal of Artificial
Intelligence Research, 5:243–270, 1999.

[5] K. Y. Goldberg, T. Roeder, D. Gupta, and C. Perkins.
Eigentaste: A constant time collaborative filtering
algorithm. Information Retrieval, 4(2):133–151, 2001.

[6] J. Herlocker, J. A. Konstan, and J. Riedl. An
empirical analysis of design choices in
neighborhood-based collaborative filtering algorithms.
Information retrieval, 5(4), 2002.

[7] T. Hofmann. Probabilistic latent semantic analysis. In
UAI, pages 289–296, 1999.

[8] T. Hofmann. Latent semantic models for collaborative
filtering. ACM Trans. Inf. Syst., 22(1):89–115, 2004.

[9] D. R. Hunter. MM algorithms for generalized
Bradley-Terry models. Annals of Statistics,
32(1):384–406, 2004.

[10] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of ir techniques. ACM Trans. Inf. Syst.,
20(4):422–446, 2002.

[11] R. Jin, L. Si, C. Zhai, and J. Callan. Collaborative
filtering with decoupled models for preferences and
ratings. In Proceedings of CIKM 2003, 2003.

[12] T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of SIGKDD 2002,
pages 133–142, 2002.

[13] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: Item-to-item collaborative filtering.
IEEE Internet Computing, 7(1):76–80, 2003.

[14] N. N. Liu and Q. Yang. Eigenrank: a ranking-oriented
approach to collaborative filtering. In SIGIR, pages
83–90, 2008.

[15] H. Ma, I. King, and M. R. Lyu. Effective missing data
prediction for collaborative filtering. In Proc. of SIGIR
2007, pages 39–46, 2007.

[16] J. I. Marden. Analyzing and Modeling Rank Data.
Chapman & Hall, New York, 1995.

[17] A. Paterek. Improving regularized singular value
decomposition for collaborative filtering. Proceedings
of KDD Cup and Workshop, 2007.

[18] D. M. Pennock, E. Horvitz, S. Lawrence, and C. L.
Giles. Collaborative filtering by personality diagnosis:
A hybrid memory and model-based approach. In Proc.
of UAI, pages 473–480, 2000.

[19] F. Radlinski and T. Joachims. Query chains: learning
to rank from implicit feedback. In KDD, pages
239–248, 2005.

[20] M. E. Renda and U. Straccia. Web metasearch: Rank
vs. score based rank aggregation methods. In
Proceedings of the 2003 ACM Symposium on Applied
Computing (SAC), pages 841–846, 2003.

[21] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. Grouplens: An open architecture for
collaborative filtering of netnews. In Proc. of ACM
Conference on Computer Supported Cooperative Work,
pages 175–186, 1994.

[22] B. M. Sarwar, G. Karypis, J. A. Konstan, and
J. Riedl. Item-based collaborative filtering
recommendation algorithms. In WWW, pages
285–295, 2001.

[23] N. Srebro and T. Jaakkola. Weighted low-rank
approximations. In ICML, pages 720–727, 2003.

[24] G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng, Y. Yu,
and Z. Chen. Scalable collaborative filtering using
cluster-based smoothing. In Proc. of SIGIR 2005,
pages 114–121, 2005.

766


