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ABSTRACT
Current research on web search has focused on optimizing
and evaluating single queries. However, a significant fraction
of user queries are part of more complex tasks [20] which
span multiple queries across one or more search sessions [26,
24]. An ideal search engine would not only retrieve rele-
vant results for a user’s particular query but also be able to
identify when the user is engaged in a more complex task
and aid the user in completing that task [29, 1]. Toward
optimizing whole-session or task relevance, we characterize
and address the problem of intrinsic diversity (ID) in re-
trieval [30], a type of complex task that requires multiple in-
teractions with current search engines. Unlike existing work
on extrinsic diversity [30] that deals with ambiguity in intent
across multiple users, ID queries often have little ambiguity
in intent but seek content covering a variety of aspects on a
shared theme. In such scenarios, the underlying needs are
typically exploratory, comparative, or breadth-oriented in
nature. We identify and address three key problems for ID
retrieval: identifying authentic examples of ID tasks from
post-hoc analysis of behavioral signals in search logs; learn-
ing to identify initiator queries that mark the start of an ID
search task; and given an initiator query, predicting which
content to prefetch and rank.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—retrieval models, search process

General Terms
Algorithms, Experimentation

Keywords
Search session analysis, diversity, proactive search

1. INTRODUCTION
Information retrieval research has primarily focused on

improving retrieval for a single query at a time. However,
many complex tasks such as vacation planning, comparative

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGIR’13, July 28–August 1, 2013, Dublin, Ireland.
Copyright 2013 ACM 978-1-4503-2034-4/13/07 ...$15.00.

shopping, literature surveys, etc. require multiple queries to
complete the task [20].

Initiator query Successor queries

snow leopards

snow leopard pics
where do snow leopards live
snow leopard lifespan
snow leopard population
snow leopards in captivity

remodeling ideas

cost of typical remodel
hardwood flooring
earthquake retrofit
paint colors
kitchen remodel

Table 1: Examples of intrinsically diverse search
tasks, showing the first (initiator) query and several
successor queries from the same search session.

Within the context of this work, we focus on one spe-
cific type of information seeking need that drives interaction
with web search engines and often requires issuing multiple
queries – namely intrinsically diverse tasks [30]. Table 1
gives examples of two intrinsically diverse tasks observed in
a commercial web search engine. Intrinsic diversity, where
diversity is a desired property of the retrieved set of results
to satisfy the current user’s immediate information need, is
meant to indicate that diversity is intrinsic to the need it-
self; this is in contrast to techniques that provide diversity
to cope with uncertainty in query intent (e.g., [jaguar]).

Intrinsically diverse tasks typically are exploratory, com-
prehensive, survey-like, or comparative in nature. They may
result from users seeking different opinions on a topic, ex-
ploring or discovering aspects of a topic, or trying to ascer-
tain an overview of a topic [30]. While a single, comprehen-
sive result on the topic may satisfy the need when available,
several or many results may be required to provide the user
with adequate information [30]. As seen in the examples, a
user starting with [snow leopards] may be about to engage
in an exploratory task covering many aspects of snow leop-
ards including their lifespan, geographic dispersion, and ap-
pearance. Likewise when investigating remodeling ideas, a
user may wish to explore a variety of aspects including cost,
compliance with current codes, and common redecoration
options. Note that the user may in fact discover these as-
pects to explore through the interaction process itself. Thus
intrinsic diversity shares overlap with both exploratory and
faceted search [9, 37]. However, unlike the more open-ended
paradigm provided by exploratory search, we desire a solu-
tion that is shaped by the current user’s information need
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and is able to discover and associate relevant aspects for a
topic automatically in a data-driven fashion. For example,
for the query [snow leopards], our goal is to enable deeper
user-driven exploration of that topic, by proactively search-
ing for the relevant information that the user might want
during the course of a session on that topic, thus reducing
the time and effort involved in manual reformulations, as-
pect discovery, and so on.

To this end, we aim to design a system that addresses two
key problems needed for ID retrieval: detecting the start of
an ID task, and computing an optimal set of ID documents
to return to the user given engagement on an ID task. For
the former, the system must be capable of predicting when a
user is likely to issue multiple queries to accomplish a task,
based on seeing their first “initiator query”. To do this, we
first develop a set of heuristic rules to mine examples of au-
thentic intrinsic diversity tasks from the query logs of a com-
mercial search engine. The resulting tasks provide a source
of weak supervision for training classification methods that
can predict when a query is initiating an intrinsically diverse
task. With these predictive models, we characterize how ID
initiators differ from typical queries. We then present our
approach to intrinsically diversifying for a query. In par-
ticular, rather than simply considering different intents of a
query, we incorporate queries that give rise to related aspects
of a topic by estimating the relevance relationship between
the aspect and the original query. Given the intrinsically
diverse sessions identified through log analysis, we demon-
strate that our approach to intrinsic diversification is able
to identify more of the relevant material found during a ses-
sion given less user effort, and furthermore, the proposed
approach outperforms a number of standard baselines.

2. RELATED WORK
The distinction between extrinsic and intrinsic diversity

was first made by Radlinski et al. who coined these terms [30].
In contrast to extrinsically-oriented approaches, which diver-
sify search results due to ambiguity in user intent, intrinsic
diversification requires that results are both relevant to a
single topical intent as well as diverse across aspects, rather
than simply covering additional topical interpretations. Ex-
isting methods like maximal marginal relevance (MMR) do
not satisfy these requirements well (cf. Sec. 5.3). Most di-
versification research has focused primarily on extrinsic di-
versity: this includes learning [39, 34] and non-learning ap-
proaches [6, 40, 7, 8]. Recent work [2], however, indicates
real-world Web search tasks are commonly intrinsically di-
verse and require significant user effort. For example, con-
sidering average number of queries, total time, and preva-
lence of such sessions, common tasks include: discovering
more information about a specific topic (6.8 queries, 13.5
min, 14% of sessions); comparing products or services (6.8
q, 24.8 m, 12%); finding facts about a person (6.9 q, 4.8
m, 3.5%); and learning how to perform a task (13 q, 8.5 m,
2.5%). Thus, improvements in retrieval quality that address
intrinsically diverse needs have potential for broad impact.

Some previous TREC tracks, including the Interactive,
Novelty and QA tracks, studied intrinsic diversity-like prob-
lems in which retrieval effectiveness was partly measured in
terms of coverage of relevant aspects of queries, along with
the interactive cost to a user of achieving good coverage.
However, our task and data assumptions differ from these
tracks. For example, the Interactive tracks focused more on

coverage of fact- or website-oriented answers, while our def-
inition of query aspect is broader and includes less-focused
subtopics. In addition to optimizing rankings to allow ef-
ficient exploration of topics, we also predict queries that
initiate intrinsically diverse tasks, and show how to mine
candidates for ID tasks from large-scale search log data.

Session-based retrieval is a topic that has become increas-
ingly popular. For example, Radlinski et al. [31] studied the
benefit of using query chains in a learning-to-rank framework
to improve ranking performance. Others have proposed dif-
ferent session-level evaluation metrics [17, 21]. Research in
this area has been aided by the introduction of the Session
track at TREC [22]; this has led to papers on session anal-
ysis and classification [27]. In particular, He et al. use a
random walk on a query graph to find other related queries,
which are then clustered and used as subtopics in their diver-
sification system [16]. In our re-ranking approach, we also
use related queries to diversify the results, but maintain co-
herence with the original query. Specifically, we identify a
common type of information need that often leads to longer,
more complex search sessions. However, in contrast to pre-
vious work, rather than using the session interactions up to
the current point to improve retrieval for the current query,
we use a query to improve retrieval for a user’s future session
and use sessions from query logs to evaluate the effective-
ness of the proposed methods. While the TREC Session
track evaluated the number of uncovered relevant examples
for the final query, the emphasis was on the impact of ses-
sion context up to the present query; in our case, we assume
no previous context, but instead are able to characterize the
need for intrinsic diversity based on the single query alone.

Session data has also been used to identify and focus on
complex, multi-stage user search tasks that require multiple
searches to obtain the necessary information [36, 24]. This
has led to research on task-based retrieval [14, 15] where
tasks are the unit of interest (as opposed to queries or ses-
sions). Trail-finding research studies the influence of factors
such as relevance, topic coverage, diversity and expertise [33,
38]. While these problems are certainly related to ours, tasks
and trails tend to be more specialized and defined in terms
of specific structures: e.g. tasks are characterized as a set
or sequence of sub-tasks to be accomplished, while trails are
defined in terms of specific paths of user behavior on the web
graph. However, intrinsically diverse search sessions, e.g. as
in Table 1, represent a broader, less structured category of
search behavior. Similarly, our approach complements work
on faceted search [23] and exploratory search [37] by pro-
viding a data-driven manner of discovering common facets
dependent on the particular topic.

Query suggestions are a well-established component of
web search results with a large research literature: common
approaches include using query similarity (e.g.[42]) or query-
log based learning approaches (e.g. [19]). Query suggestions
can play an important role for intrinsically diverse needs, be-
cause they provide an accessible and efficient mechanism for
directing users towards potentially multiple diverse sets of
relevant documents. Therefore, query suggestion techniques
that do not merely provide simple reformulation of the ini-
tial query, but correctly diversify across multiple facets of
a topic may be particularly helpful for intrinsically diverse
needs. Thus, recent research on diversifying query sugges-
tions [28] has partly inspired our retrieval approach.

Our approach is also motivated by recent work on interac-
tive ranking. Brandt et al. [5] propose the notion of dynamic
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rankings, where users navigate a path through the search
results, to maximize the likelihood of finding documents rel-
evant to them. Our objective formulation closely relates
to another recent work on two-level dynamic rankings [32],
which studied the benefit of interaction for the problem of
extrinsic diversity. Similarly, user interaction has been found
to help in more structured and faceted search tasks [41, 13],
in cases such as product search. However, while presenting
interactive, dynamic rankings is one user experience that of-
fers a way to surface the improved relevance to users, our
techniques are more general: they may be used to present
a summary of the topic to the user, recommend unexplored
options, anticipate and then crowdsource queries to trade
off latency and quality by prefetching, and more.

In contrast to previous work, we provide a way to not
only identify complex search tasks that will require multiple
queries but to proactively retrieve for future queries before
the user has searched for them. Importantly, these future
queries are neither simple reformulations nor completely un-
related, but are queries on the particular task that the user
has started. Finally, we introduce diversification methods
which, unlike previous methods, maintain coherence around
the current theme while diversifying. Using these methods
we demonstrate that we can improve retrieval relevance for a
task by detecting an intrinsically diverse need and providing
whole-session retrieval at that point.

3. INTRINSICALLY DIVERSE TASKS
An intrinsically diverse task is one in which the user re-

quires information about multiple, different aspects of the
same topical information need. In practice, a user most
strongly demonstrates this interest by issuing multiple queries
about different aspects of the same topic. We are particu-
larly interested in identifying the common theme of an in-
trinsically diverse task and when a user initiated the task.
We unify these into the concept of an initiator query where,
given a set of queries on an intrinsically diverse task, the
query among them that is most general and likely to have
been the first among these set of queries is called the ini-
tiator query. If multiple such queries exist, then the first
among them from the actual sequence (issued by the user)
is considered the initiator. We give importance to the tem-
poral sequence since the goal is to detect the initiation of
the task and provide support for it as soon as possible.

While previous work has defined the concept of intrinsic
diversity, there has been no further understanding of the
problem or means to obtain data. We now identify and ana-
lyze authentic instances of intrinsically diverse search behav-
ior, extracted from large-scale mining and analysis of query
logs from a commercial search engine.

3.1 Mining intrinsically diverse sessions
Intuitively, intrinsically diverse (ID) tasks are topically co-

herent but cover many different aspects. To automatically
identify ID tasks in situ where a user is attempting to ac-
complish the task, we seek to codify this intuition. Further-
more, rather than trying to cover all types of ID tasks, we
focus on extracting with good precision and accuracy a set of
tasks where each task is contained within a single search ses-
sion. As a “session” we take the commonly used approach of
demarcating session boundaries by 30 minutes of user inac-
tivity [35]. Once identified, these mined instances could po-
tentially be used to predict broader patterns of cross-session

intrinsic diversity tasks [24, 1], but we restrict this study to
mining and predicting the initiation of an ID task within a
search session and performing whole-session retrieval at the
point of detection.

To mine intrinsically diverse sessions from a post-hoc anal-
ysis of behavioral interactions signals with the search results,
we developed a set of heuristics to detect when a session is
topically coherent but covering many aspects. These can
be summarized as finding sessions that are: (1) longer – the
user must display evidence of exploring multiple aspects; (2)
topically coherent – the identified aspects should be related
to the same overall theme rather than disparate tasks or top-
ics; (3) diverse over aspects – the queries should demonstrate
a pattern beyond simple reformulation by showing diversity.
Furthermore, since the user’s interaction with the results
will be used in lieu of a contextual relevance judgment for
evaluation, we also desire that we have some “satisfied” or
“long-click” results where we define a satisfied (SAT) click
similar to other work as having a dwell of ≥ 30s or termi-
nating the search session [11, 12].

Given these criteria, we propose a simple algorithm to col-
lect intrinsically diverse user sessions. Our algorithm uses a
series of filters, explained in more detail below. When we re-
fer to “removing” queries, we mean they were treated as not
having occurred for any subsequent analysis steps. For ses-
sions, with the exception of those we “remove” from further
analysis in Step 4, we label all other sessions as intrinsically
diverse or regular (i.e., not ID). We identify the initiator
query as the first query that remains after all query removal
steps, and likewise a successor query is any remaining query
that follows the initiator in the session. More precisely, we
use the following steps (in sequence) to filter sessions:

1. Remove frequent queries: Frequent queries – such
as facebook or walmart – that are often interleaved with
more complex tasks can obscure the more complex task
the user is accomplishing. Therefore, we remove the
top 100 queries by frequency as well as frequent mis-
spellings related to these queries.

2. Collapse duplicates: We collapse any duplicate of
a query issued later in the session as representing the
same aspect but record all SAT clicks across the sepa-
rate impressions.

3. Only preserve manually entered queries: To fo-
cus on user-driven exploration and search, we removed
queries that were not manually entered, e.g. those ob-
tained by clicking on a link such as by query suggestion
or searches embedded on a page.

4. Remove sessions with no SAT Document: Since
we would like to eventually measure the quality of re-
rankings for these session queries in a personal and
contextual sense, we would like to ensure that there
is at least one long-dwell click to treat as a relevance
judgment. While this is not required for a session being
an ID session, we simply require it for ease of evalua-
tion. Thus, we removed sessions with no SAT clicks.

5. Ensure topical coherence: As ID sessions have a
common topic, we removed any successor query that
did not share at least one common top ten result with
the initiator query. Note that this need not be the
same result for every aspect. While this restricts the
set of interaction patterns we identify, it enables us to
be more precise, while ensuring semantic relatedness,
and does not rely on the weakness of assuming one
fixed static ontology.
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6. Ensure diversity in aspects: Although we desire
topical coherence across the queries, we do not want to
identify simple reformulations or spelling corrections
as aspects. Thus we restrict the syntactic similarity
with the initiator query to avoid identifying trivial dif-
ference as substantially different aspects. To measure
query similarity robust to spelling variations, we con-
sistently use cosine similarity with character trigrams
in this work. In particular, we remove queries where
the similarity was more than 0.5.

7. Remove long queries: We observed a small frac-
tion of sessions matching the above filters appear to
consist of copy/paste homework questions on a com-
mon topic. While potentially interesting, we focus in
this paper on completely user-generated aspects and
introduce a constraint on query length, removing queries
of length at least 50 characters.

8. Threshold the number of distinct aspects: Fi-
nally, to focus on diversity and complexity among the
aspects, we threshold on the number of distinct suc-
cessor queries. We identify a query as distinct when
its maximum pairwise (trigram character cosine) sim-
ilarity with any preceding query in the session is less
than 0.6. Any session with less than three distinct as-
pects (including the initiator) are labeled as regular
and those with three or more aspects are labeled as
intrinsically diverse.

Putting everything together, we ran this algorithm on a
sample of user sessions from the logs of a commercial search
engine from the period April 1–May 31, 2012. We used log
entries generated in the English-speaking United States lo-
cale to reduce variability caused by geographical or linguistic
variation in search behavior. Starting with 51.2M sessions
comprising 134M queries, applying all but the SAT-click fil-
ter, with the Number of Distinct Aspects threshold at two,
led to more than 497K ID sessions with 7.0M queries. These
ID tasks accounted for 1.0% of all search sessions in our sam-
ple, and 3.5% of sessions having 3 queries or more (14.4M
sessions)1. Further applying the SAT-click filter reduced the
number to 390K. Finally, focusing on the more complex ses-
sions by setting the Number of Distinct Aspects filter to
three, reduced this to 146K sessions.

Given that ID sessions require multiple queries, we hy-
pothesize that ID sessions account for a disproportionately
larger fraction of time spent searching by all users. To test
this, we estimated the time a user spent in a session by the
elapsed time from the first query to the last action (i.e.,
query or click). Sessions with a single query and no clicks
were assigned a constant duration of 5 seconds. Here, the
time in session includes the whole session once an ID task
was identified in that session. Our hypothesis was confirmed:
while ID sessions with at least 2 distinct aspects represented
1.0% of all sessions, they accounted for 4.3% of total time
spent searching, showing the significant role ID sessions play
in overall search activity.

To assess the accuracy of our automatic labeling process,
we sampled 150 sessions (75 each from the auto-labeled regu-
lar and intrinsic sets) of length at least 2 queries. We ignored
single query sessions since those are dominated by regular

1Because we do not focus on more complex ID information
seeking, such as tasks that span multiple sessions, the true
percentage associated with ID tasks is likely to be larger.

intents and there may be a bias in labeling. Two assessors
were given instructions similar to the description in the first
paragraph of Section 3, examples of ID sessions such as those
in Table 1, and all of the queries in the session and asked to
label each session as regular or ID. The assessors had a 79%
agreement with an inter-rater κ agreement of 0.5875. Using
each assessor as a gold-standard and taking the average, on
sessions of length two or greater our extraction method has
a precision of 73.9% and an accuracy of 73.7% (overall accu-
racy is higher because of single query sessions always being
regular). Thus, with both good agreement and a moderate
to strong accuracy and precision, the method provides a suit-
able source of noisy supervised labels. With enough data,
we can hope to overcome the noise in the labels (as long as
it is unbiased) with an appropriate learning algorithm [3].

4. PREDICTING INTRINSICALLY DIVERSE
TASK INITIATION

Given that we may want to alter retrieval depending on
whether the user is seeking intrinsic diversity or not, we ask
the question whether we can identify the initiator queries
for intrinsically diverse tasks and treat this as a classifica-
tion problem. In particular, while in Sec. 3 we used the
behavioral signals of interaction between the initiator and
successor queries of a session to automatically label queries
with a (weak) supervised label, here we ask if we can predict
what the label would be in the absence of those interaction
signals – a necessary ability if we are to detect the user’s
need for intrinsic diversity in an operational setting. Ulti-
mately our goal is to enable a search engine to customize the
search results for intrinsic diversity only when appropriate,
while providing at least the same level of relevance on tasks
predicted to be regular. Recognizing that in most operative
settings, it is likely important to invoke a specialized method
of retrieval only when confident, we present a precision-recall
tradeoff but focus on the high precision portion of the curve.

4.1 Experimental Setting
Data: We used a sample of initiator queries from the in-

trinsically diverse sessions described in Sec. 3.1 as our pos-
itive examples, and the first queries (after removing com-
mon queries as in Step 1 of Sec. 3.1) from regular sessions
were used as negative examples. Note that since the la-
bel of a query, e.g. [foo], comes from the session context,
it is possible that [foo] occurs in both positive and nega-
tive contexts. In order to only train to predict queries that
were clearly either ID or regular, we dropped such conflicting
queries from the dataset; this only occurred 1 out of every
5K ID sessions. Also to weigh each task equally instead of
by frequency, we sample by type: i.e., we treat multiple
occurrences of a query in the positive (resp. negative) set
as a single occurrence. Finally, we downsample to obtain
a 1:1 ratio from the positive and negative sets to create a
balanced set. Unless otherwise mentioned, the dataset was
sampled to contain 61K queries and split into an 80/5/15
proportion (50000 training, 3000 validation, 8000 test) with
no class bias.

Classification: We used SVMs[18] with linear kernels,
unless mentioned otherwise. We varied the regularization
parameter (C) over the values: {10−4, 2·10−4, 5·10−4, 10−3,
. . . , 500, 103}. Model selection was done using the validation
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Feature Set Examples Cardinality Coverage Normalized? Log?
Text Unigram Counts 44140 100% No No

Stats
# Words, # Characters, # Impressions, Click
Count, Click Entropy 10 81% Yes Yes

POS Part-of-Speech Tag Counts 37 100% No No

ODP Five Most Probable ODP Class Scores from Top
Two Levels

219 25% Yes Yes

QLOG
Average Similarity with co-session queries, Av-
erage session length, Distribution of occurrences
within session (start/middle/end)

55 44% Yes No

Table 2: Features used for identification of initiator queries

set by selecting the model with the best precision using the
default margin score threshold (i.e., 0).

Features: The features are broadly grouped into 5 classes
as shown in Table 2. Apart from the text and POS tag fea-
tures, all other features were normalized to zero mean, unit
variance. Features with values spanning multiple orders of
magnitude, such as the number of impressions, were first
scaled down via the log function. Due to the large scale of
our data, coverage of some features is limited. In particu-
lar, query classification was done similar to [4] by selecting
the top 9.4M queries by frequency from a year’s query logs
previously in time and then using a click-based weighting
on the content-classified documents receiving clicks2. Like-
wise Stats and QLOG features are built from four months’
worth of query logs and have limited coverage as a result.
The query logs chosen to build these features were from pre-
vious to April 2012 to ensure a fair experimental setting with
no overlap with the data collection period of the intrinsically
diverse or regular sessions. We found the coverage of these
features to be roughly the same for both the positive and
negative classes.

We also note that the cardinality of some feature sets will
depend on the training set (e.g.,vocabulary size of Text grows
with more training data); the values listed in Table 2 are
for the default training set of 50,000 queries. Most of our
experiments will use all of the 5 feature sets; the effect of
using only a subset of the feature sets is explored in Sec. 4.3.

4.2 Can we predict ID task initiation?
To begin with, we would like to know the precision-recall

tradeoff that we can achieve on this problem. Figure 1 shows
the precision-recall curve for a linear SVM trained on 50K
examples with all the features. The result is a curve with
clear regions of high precision, indicating that the SVM is
able to identify initiator queries in these regions quite ac-
curately. Furthermore, performance is better than random
(precision of 50% since classes are balanced) along the entire
recall spectrum.

As Table 3 shows, we are able to achieve relatively high
precision values at low recall values. For example, we can
identify 20% of ID tasks with 80% precision.

4.3 Which features were most important?
We next investigate the effect of using different subsets

of the features on performance. The results are shown in
Figure 2 and Table 4. First, we note that Stats, QLOG
and ODP feature sets help identify only a small fraction of
the initiator queries but do so with high precision. On the

2For greater coverage this could be extended to a rank-
weighted back-off as described in that paper.

Recall @ Precision Precision @ Recall
5.9 90 84.9 10
9.8 85 79.3 20
18.3 80 75 30
30.3 75 72.8 40
49.0 70 69.4 50
61.4 65 65.4 60
78.8 60 62.4 70

Table 3: Recall at different precision levels and vice-
versa for predicting ID task initiation.
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Figure 1: P-R curve for predicting ID task initiation.

other hand, the Text and POS feature sets, which have high
coverage, provide some meaningful signal for all the queries,
but cannot lead to high precision classification. We also find
that a combination of features, such as the Text and Stats
features, can help obtain higher precision as well as higher
recall than either alone. In fact, such combinations perform
almost as well as using all features, which is the best out of
all feature combinations.
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Figure 2: Change in classification performance of
initiator queries as feature sets are varied.

4.4 Linguistic features of initiator queries
To further understand ID initiator queries, we identified

the part-of-speech and text features most strongly associ-
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Feature Set Rec@80%Prec Prec@40%Rec
T 0.1 62.6
S 9.2 63.7
P 0.0 52.8
O 5.6 51.6
Q 9.4 54.1
TS 13.6 69.7

TSPO 12.2 67.0
TSPOQ 18.3 72.8

Table 4: Effect of feature set on precision & recall.
T=Text, S=Stats, P=POS, O=ODP, Q=QLOG

ated with them, by computing each feature’s log-odds ratio
(LOR)3 compared to regular queries. Looking at the top-
ranked features by LOR, we found that initiator queries are
more likely to use question words (LOR=0.41); focus on
proper nouns (0.40) such as places and people; use more
‘filler’ words (particles) found in natural language (0.27);
and when they use general nouns, these tend to be plu-
ral (0.13) instead of singular (−0.052). Predominant text
features indicated the importance of list-like nouns such as
forms, facts, types, ideas (LOR=1.59, 1.45, 1.25, 0.92); verbs
that are commonly used in questions such as did (1.34); and
words indicating a broad need such as information and man-
ual (1.64, 1.18). Strong negative features tend to encode ex-
ceptions – such as the most negative word lyrics (−2.25)
used to find words to specific songs.

5. RE-RANKING FOR INTRINSIC
DIVERSITY

While the previous section discusses the identification of
queries that lead to ID tasks, in this section we discuss
changes that can be made to the search results page to
support queries for ID tasks. Specifically, we propose a re-
ranking scheme that looks to satisfy not only the information
need of the issued query, but also the future queries that the
user is likely to issue later in the session on other aspects of
the task. To the best of our knowledge, we are the first to
address the problem of jointly satisfying the current query as
well as future queries (unlike anticipatory search [25] which
focuses solely on the latter).

We will use an interactive ranking-based paradigm here,
using an approach related to the two-level rankings proposed
in [32]. Given an issued query representing the start of an
ID task, we consider rankings where each result can be at-
tributed to some aspect of that task. We represent each
aspect of the ID task by a related query of the issued query.
One way this could be surfaced on a results page for a user
is by placing the related query for an aspect adjacent to its
corresponding search result. In such a setting, clicking on
the related query could lead to results for that query being
presented, thus enabling the user to explore documents for
that aspect. This brings us to the question of how we find
such a ranking.

5.1 Ranking via Submodular Optimization
We first describe precisely what we consider as an inter-

active ranking. In response to an initial query q, an inter-
active ranking y = (yD,yQ) comprises two parts: a ranking

3The LOR can be thought of as an approximation to the
weight in a single-variable logistic regression.

of documents yD = d1, d2, . . ., which we refer to as the pri-
mary ranking; and a corresponding list of related queries
yQ = q1, q2, . . ., which represent the aspects associated with
the documents of the primary ranking. The ith query in
the list, qi, represents the aspect associated with di. Struc-
turally this can also be thought of as a ranked list of (doc-
ument, related query) pairs (di, qi).

Given this structure, let us consider four conditions that
comprise a good interactive ranking:

1. Since the documents in the primary ranking were dis-
played in response to the issued query q, they should
be relevant to q.

2. As document di is associated with the aspect repre-
sented by the related query qi, document di should be
relevant to query qi.

3. Aspects should be relevant to the ID task being initi-
ated by the query q.

4. At the same time, the aspects should not be repetitive
i.e., there should be diversity in the aspects covered.

We now design a ranking objective function that satisfies
these four conditions to jointly optimize the selection of doc-
uments and queries (yD,yQ). Suppose we have an existing

interactive ranking y(k−1) that has k−1 (document, related
query) pairs, and our goal is to construct a new ranking

y(k) by adding an optimal (document, related query) pair to

y(k−1) – an operation we denote by y(k) = y(k−1)⊕ (dk, qk).
Condition 1 above can be met by selecting dk such that

R(dk|q) is large, where R(d|q) denotes the probability of rel-
evance of document d given query q. Condition 2 can be met
by selecting dk such that its relevance to the related query
qk, R(dk|qk), is large. Conditions 3 and 4 imply a standard
diversification tradeoff, but here we have that the aspects
qk should be related to the initial query q and diverse. If
we use a similarity function between queries to estimate the
relevance between queries, Condition 3 implies that the sim-
ilarity function Sim(q, qk) between qk and q should be large.
Condition 4 requires that the diversity should be maximized
between qk and all previous queries Q = q1, . . . , qk−1. Both
Condition 3 and 4 can be jointly obtained by optimizing an
MMR-like diversity function [6], Div(qk,Q), as described
below. Intuitively, we would also like the change in the ob-
jective function on adding document-query pair (dk, qk) to
the ranking y to be no smaller than what we would gain if
adding the pair to a larger ranking y ⊕ y′: that is, the ob-
jective function should be monotone and submodular. Sub-
modular objectives are desirable because they have the prop-
erty that they can be optimized using a simple and efficient
greedy algorithm which iteratively computes the next best
(d, q) pair to add to the ranking. Using the greedy algo-
rithm ensures that the computed solution is at least (1− 1

e
)

times as good as the optimal.
We now consider the following objective satisfying the

above conditions4:

argmax(d1,q1)···(dn,qn)

n∑
i=1

γi ·R(di|q) ·R(di|qi) · eβDiv(qi,Q)

where Q is shorthand for the set of queries Q = {q1, . . . , qn},

4We omit the straightforward submodularity proof for space
reasons.
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and Div(·) is an MMR-like diversity function defined as

Div(qi,Q) = λ · Sim(qi, Snip(q)) (1)

− (1− λ) max
j<i

Sim(Snip(qi), Snip(qj)).

Here, λ ∈ [0, 1] and β > 0 are parameters, where λ controls
the tradeoff between related query aspect relevance and di-
versity while β controls the rate at which returns diminish
from additional coverage. Finally, γi refers to the discount
factor for position i: we use the common 1

log2(i+1)
DCG dis-

counting.
This objective can be interpreted as maximizing an ex-

pected utility (the exponential term) of covering related and
diverse aspects where the expectation is over the maximum
joint relevance of a document to both the initial query and
the related query aspect. Furthermore, the joint probability
is assumed to be conditionally independent to factor into
the two relevance terms.

In this study, we define Sim(x, y) as the cosine similarity
between word-TF representations of x and y, and Snip(qj)
is the bag-of-words representation of caption text from the
top-10 search results for qj using relevance score R(d|qj)
alone. The MMR-like term appears within the exponent to
ensure the objective is monotone.

Note that while the final objective optimizes for an inter-
active ranking, the primary ranking itself aims to present re-
sults from other aspects. We optimize this using the greedy
algorithm presented in Algorithm 1, which we refer to as
the DynRR method. In Alg. 1, the function RelQ(q) de-
notes a function that returns related queries for query q, and
Top(yD) returns the top element in the ranking yD.

Algorithm 1 Greedy-DynRR(β, λ, P (·|·), q)
1: (yD,yQ)← φ
2: for all q′ ∈ RelQ(q) do
3: Next(q′)← Document Ranking by R(·|q) ·R(·|q′).
4: for i = 1→ n do
5: bestU ← −∞
6: for all q′ ∈ RelQ(q)/ yQ do
7: d′ ← Top(Next(q′)/ yD)

8: v ← R(d′|q) ·R(d′|q′) · eβ·Div(q
′,yQ)

9: if v > bestU then
10: bestU ← v
11: bestQ← q′

12: bestD ← d′

13: (yD,yQ)← (yD,yQ)⊕ (bestD, bestQ)

14: return y

5.2 Evaluation Measures
As the problem of presenting results for both the cur-

rent as well as future queries is a new one, we first discuss
the evaluation methodology used. In particular, we use two
kinds of evaluation metrics:

Primary ranking metrics: To compare against stan-
dard non-interactive methods of ranking, we simply evalu-
ate the quality of the primary ranking, i.e., completely ig-
nore the related query suggestions attributed to documents.
Since our goal is whole-session relevance, documents are con-
sidered relevant if and only if they are relevant to any query
in the session. Given this notion of relevance, we compute
the Precision, MAP, DCG and NDCG values.

Dataset # Train # Test
MINED 8888 2219
MIXED 4120 1027

Table 5: Datasets used in re-ranking experiments

Interactive ranking metrics: To evaluate the offline
effectiveness and accuracy of the predicted future aspects
(queries) and results (documents), we need to assume some
model of human interaction. Consider the following search
user model:

1. Users begin at the top of the ranking.
2. They click/expand the related query attributed to a

document if and only if the document is relevant or
the query is relevant. (We say a query is relevant if
the top k results of the query contain a (new) relevant
document.)

3. On expanding the related query, the user views the top
k results for that related query, before returning to the
original document ranking and continuing.

4. Users ignore previously seen documents, and click on
all new relevant documents.

Under this user model, we can easily trace the ranking of
documents that the user navigates and thus evaluate Preci-
sion@10 and DCG@10 for this ranking. We refer to these
metrics as PrecUk and DCGUk, and compare them with
the primary Prec@10 and DCG@10 metrics.

We do not claim that this user model accurately captures
all online users, nor that it is sophisticated. This is simply a
well-motivated model for analyzing a rational user’s actions,
assuming the user is relatively accurate at predicting the
relevance of an aspect based on either the top document or
its related query. This in turn is intended to inform us about
trends and relative differences we may see in online studies.

5.3 Experimental Setup
DATA: To evaluate the efficacy of the method, we used

the data obtained from mining the search logs, as described
in Section 3. We used two main datasets shown in Table
5. To analyze impact when most of the sessions are ID
and more complex, the MINED dataset is obtained directly
from the filtering algorithm by setting the threshold on the
Number of Distinct Aspects to be 5. To determine the re-
ranking impact when sessions may be a mixture of both ID
and regular sessions, the MIXED dataset was obtained by
predicting when a session was ID using the classifier from
Sec. 4 over a mixture of the MINED dataset sessions and a
random sample of regular sessions of the same size. More
specifically, the combined sessions were split in a 45-10-45
split of training-validation and test sets. The trained clas-
sifier was used to classify the test set sessions as being ID
or not, based on the initiator query. The sessions predicted
as ID formed the MIXED dataset (prediction accuracy of
68.8% over the combined sessions); for those not predicted
to be ID, we assume the standard ranking algorithm would
be applied and thus relevance would be the same on those.
The MIXED dataset is a reflection of an operational setting,
where the query issued is used to predict if the resulting ses-
sion will be an ID session or not, and the ones predicted to
be ID are selected for re-ranking.

Obtaining Probability of Relevance: For our algo-
rithm, we required the computation of the conditional rele-
vance of a document given a query i.e., R(d|q). Thus, to en-
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Query Length
Website Log(PageRank)

Baseline Ranker
Reciprocal Rank

(if in top 10)

URL

Length
# of Query Terms Covered
Fraction of Query Covered

TF Cosine sim
LM Score(KLD)

Jaccard
Boolean AND Match
Boolean OR Match

Anchor (Weighted) Same as URL

Anchor (Unweighted)
TF-Cosine Sim

KLD Score

Table 6: The 21 features used to train R(d|q).

able easier reproducibility by others, we learned a model us-
ing Boosted Regression Trees, on a dataset labeled with
the relevance-values for query-document pairs with 20,000
queries using graded relevance judgments (∼60 documents
per query). The features used are given in Table 6. Features
were all normalized to 0 mean, unit variance. To obtain the
final model, we optimized for NDCG@5.

Baselines: As baselines we used the following methods:

• RelDQ: Ranking obtained by sorting as per R(d|q).
• Baseline: A state-of-the-art commercial search en-

gine ranker (also used to compute the rank feature
mentioned earlier).

We also computed performance of other baselines, such as
MMR and relevance-based methods such as BM-25 (using
the weighted anchor text), but found them to perform far
worse than RelDQ and Baseline and hence do not present
the results for such other baselines.

Related Queries: To study the effect of the related
queries, we used four different sources:

• API: We used the publicly available API of a commer-
cial search engine (which returns 6-10 related queries)
• Click-Graph: Using co-click data, we obtained a set

of 10− 20 related queries.
• Co-Session Graph: Using data of queries co-occurring

in the same session, we obtained 10−20 related queries.
• Oracle: As an approximate upper bound, we used the

actual queries issued by the user during the session.

To ensure fairness, the graphs were constructed using data
prior to April 2012. For most experiments, we only use
the first 3 sources or only the second and third (which we
distinguish by the suffix C+S).

Settings: The parameters for DynRR were set by op-
timizing for DCGU3 on the training data5. All numbers
reported here are for the test sets. We considered all SAT-
clicked results in the session as relevant documents; since
we compare relative to the baseline search engine, the as-
sumption is that placing the SAT-clicked documents higher
is better, rather than being an indication of absolute per-
formance. Unless otherwise mentioned, the candidate docu-
ment set for re-ranking comprises the union of the top 100
results (from the Baseline method) of the initiator query,
and the top 10 results from each related query.

5We varied the λ parameter from 0 to 1 in increments of
0.1, while the β parameter was varied across the values
{0.1, 0.3, 1, 3, 10}.

PREC Mined Mixed DCG Mined Mixed

PrecU1 1.093 1.103 DCGU1 1.075 1.074
PrecU2 1.247 1.223 DCGU2 1.188 1.153
PrecU3 1.347 1.295 DCGU3 1.242 1.190
PrecU5 1.401 1.345 DCGU5 1.254 1.204

Table 8: Interactive Performance of DynRR for dif-
ferent user models (as ratios compared to the Base-
line Prec@10 and DCG@10)

Set Comp. % Gains % Losses
Metric 0.2 0.5 1.0 0.2 0.5 1.0

Mined
DCGU3 34.4 13.0 1.6 9.9 2.7 0.1
DCG@10 19.6 5.2 0.3 12.7 3.8 0.3

Mixed
DCGU3 29.1 12.0 1.6 10.8 3.7 0.2
DCG@10 17.7 6.0 0.8 12.9 4.0 0.2

Table 9: % of sessions for which the metric perfor-
mance of DynRR differs from the Baseline DCG@10
by more than a certain threshold.

5.4 Results
Primary Evaluation: We first study the re-ranking with-

out any interactivity i.e., using the primary ranking metrics
to evaluate the quality of the top-level ranking. As seen in
the results of Table 7, the re-ranking leads to improvements
across the different metrics for both datasets. Thus, even
without interactivity, the method is able to outperform the
baselines in predicting future results of interest to the user,
while also providing results for the current query. In particu-
lar, we found the DynRR method works best using the C+S
related queries (which we return to later) with 9-11% gains
over the baselines at position 10 across the various metrics
with 3-5% relative gains. We also find that the method im-
proves on the MIXED dataset supporting the question of
whether the method can be robustly used in practical sce-
narios. Thus we improve an important segment of tasks
while maintaining high levels of performance elsewhere; fur-
ther improvements to the initiator classification model will
improve the robustness further.

Interactive Evaluation: Next we evaluate the perfor-
mance of the method while incorporating the interactivity.
As seen in Table 8, the added interactivity leads to large
increases in both the precision and DCG of the user paths
navigated, across the different user models and datasets. In
fact, we find 30-40% improvements in precision and 20-25%
improvements in DCG, indicating that we are able to do a
far better job in predicting future relevant results, and po-
tentially, queries. These results also show that the method
improvements are relatively robust to the user model.

Robustness: A key concern when comparing a new method
against a baseline, is the robustness of the method. In par-
ticular, we are interested in the number of queries that are
either improved or hurt, when switching from the Baseline
method to the proposed re-ranking method. This is par-
ticularly crucial for the MIXED dataset, as we would want
that the performance on non-ID sessions not be severely af-
fected. Table 9 displays the % of examples for which the
method either gains or loses above a certain threshold, com-
pared to the Baseline method. We see that the number of
gains far exceeds the number of losses, especially while com-
paring the interactive metric. We should also note that for
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Set Method
Prec MAP DCG NDCG

@1 @3 @10 @1 @3 @10 @1 @3 @10 @1 @3 @10

Mined
RelDQ 1.00 0.94 0.97 1.00 0.97 0.98 1.00 0.97 0.99 1.00 0.97 0.99
DynRR 1.06 1.03 1.02 1.06 1.05 1.04 1.06 1.04 1.04 1.06 1.05 1.05

DynRR C+S 1.10 1.09 1.09 1.10 1.10 1.10 1.10 1.10 1.11 1.09 1.10 1.11

Mixed
RelDQ 1.00 0.94 0.99 1.00 0.98 0.98 1.00 0.96 0.98 1.00 0.97 0.98
DynRR 1.03 1.02 1.04 1.03 1.04 1.03 1.03 1.03 1.03 1.03 1.03 1.05

Table 7: Primary Performance of different methods(as a ratio compared to the Baseline)

RelQ Prec DCG PrecU3 DCGU3 SDCG
A 0.905 0.880 1.082 0.997 1.174
C 1.015 1.014 1.333 1.214 1.488
S 1.051 1.074 1.248 1.198 1.384
O 1.476 1.397 2.211 1.827 2.500
AS 0.961 0.961 1.271 1.157 1.452
AC 0.986 1.013 1.244 1.176 1.408
CS 1.089 1.106 1.413 1.306 1.593

ASC 1.019 1.039 1.347 1.242 1.529
ASCO 1.179 1.144 1.580 1.386 1.802

Table 10: Performance change on varying the re-
lated queries. All measures are @10 and reported as
a ratio to the baseline values.

Task Fleiss Kappa % All agree % 2 agree
IsTopicID? .423 85.5 100

AreQueriesID? .452 67.1 100
BestInitiatorQ .694 55.3 98.7

Table 11: Annotator agreement on TREC data.

both datasets and both metrics, the DynRR method is sta-
tistically significantly better than the Baseline method, as
measured by a binomial test at the 99.99% significance level.

Effect of related query set: Next we study the impact
of the related queries on the method performance, using the
MINED dataset. To do so, we considered different combi-
nations of the four related query sources: API(A), Click-
Graph(C), Co-Session(S) and Oracle(O). Table 10 shows
the results. As we clearly see, the related query source can
make a significant impact on both the primary ranking per-
formance and the interactive performance. One thing which
stands out is the extremely strong performance using the Or-
acle related queries, which suggest that any improvements
we can make in the quality of the suggested related queries
is likely to result in even better overall performance. On the
other hand, we see that using the API related queries almost
always hurts performance. In fact, simply using only the re-
lated queries from the click-graph and the co-session data
leads to much better performance than that compared to
using the API queries as well. Further analysis reveals that
this is due to two reasons: (a) In many cases, the queries re-
turned by the API are spelling corrections or reformulations,
with no difference in aspect; (b) most importantly though,
there is little to no diversity in the queries obtained from
the API compared to those from the other sources.

5.5 TREC Session Data
We also ran experiments using the publicly available TREC

2011 Session data (which was constructed with ID topics in
mind) using only publicly reproducible components. To do
so, three assessors labeled the different sessions as poten-

Initiator Method Pr@1 Pr@3 DCG@1 DCG@3
Title Baseline 0.58 0.60 0.84 2.13
Title DynRR 0.71† 0.60 1.39† 2.41
First Baseline 0.53 0.47 0.94 1.94
First DynRR 0.5 0.48 0.92 1.97
Label Baseline 0.55 0.51 0.87 1.95
Label DynRR 0.61 0.5 1.13 2.09

Table 12: Absolute performance on TREC Session
data. † indicates significance at p = 0.05 by a paired
one-tailed t-test.

tially being intrinsically diverse or not, based: a) only on
the queries issued; and b) on the narration and title of the
session as well. We also asked them to label their opinion on
the query best suited to be the initiator query, among the
queries issued. Annotators were provided the definition of
ID sessions as described at the start of Section 3. We found
good agreement among the different annotators for all the
different labeling tasks, as seen from Table 11. In fact, in 63
of the 76 total sessions all three annotators agreed the ses-
sions were ID based on the narration, title, and queries. We
used a 50-50 training-test split on all sets, with the training
data used for selecting the parameters of the ranking meth-
ods. To obtain the conditional relevance R(d|q), we trained
a regularized linear regression model with features based on
the scores of two standard ranking algorithms: BM25 and
TFIDF. As labeled data we used the TREC Web data from
2010 and 2011, by converting the graded relevance scores for
relevant and above from the {1, 2, 3} scale to { 1

3
, 1, 1}. We

used related queries from the Van Dang-Croft [10] method
(Q) on the ClueWeb ’09 anchor text, where the starting seed
for the random walk would use the most similar anchor text
to the query by TFIDF-weighted cosine if an exact match
was not available. Our candidate document pool was set
similar to the previous experiments. To evaluate, we again
use the same metrics as before except using the TREC asses-
sor relevance labels instead of clicks. We considered three
different candidates for the initiator query: (a) Topic; (b)
First query in the session; and (c) Labeled initiator query.
As a baseline, we considered the method that ranked as per
R(d|q). For the DynRR method, we used the titles of the
top 10 results of a query (as per the baseline), as the snippet
of the query, since snippets were not made available. The
results for the primary metric comparison are shown in Ta-
ble 12. As we see from the table, the method improves in
precision and DCG in most cases, with particularly large im-
provements when the title of the topic is used as the initiator
query. This matches feedback the assessors gave us that the
titles looked much more like the general queries issued by
web users; in contrast, the TREC sessions would often start
with a specific query before moving to a more general query.
It could be that supplying the user with a well-formulated
topic description before starting the search task influences
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the user to search for a particular aspect, rather than issue a
more general query as they might when no topic description
is explicitly formulated.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we studied intrinsically diverse tasks that

typically require multiple user searches on different aspects
of the same information need. As this is just the first step
into this problem, this also opens many interesting future di-
rections – such as iterative ways to combine the mining and
query identification process or extending these techniques
to other related problems like exploratory search. In this
work, we motivated the problem using real-world data and
presented an algorithm to mine data from search logs us-
ing behavioral interaction signals within a session. We then
looked at the problem of identifying the queries that start
these sessions, and treated it as a classification problem,
along with an analysis of these queries. Finally, we pre-
sented an approach to alter the rankings presented to the
user, so as to also provide them information on aspects of
the task for which the user will search in the future. We
validated our approach empirically using search log data, as
well as TREC data, demonstrating significant improvement
over competitive baselines in both cases.
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