
A Cost-Effective Recommender System for Taxi Drivers

Meng Qu
Rutgers Business School

daisymengqu@hotmail.com

Hengshu Zhu
University of Science and

Technology of China
zhuhengshu@gmail.com

Junming Liu
Rutgers, the State University

of New Jersey
jl1433@scarletmail.rutgers.edu

Guannan Liu
Tsinghua University

guannliu@gmail.com

Hui Xiong
∗

Rutgers Business School
Rutgers University

hxiong@rutgers.edu

ABSTRACT
The GPS technology and new forms of urban geography
have changed the paradigm for mobile services. As such, the
abundant availability of GPS traces has enabled new ways of
doing taxi business. Indeed, recent efforts have been made
on developing mobile recommender systems for taxi drivers
using Taxi GPS traces. These systems can recommend a se-
quence of pick-up points for the purpose of maximizing the
probability of identifying a customer with the shortest driv-
ing distance. However, in the real world, the income of taxi
drivers is strongly correlated with the effective driving hours.
In other words, it is more critical for taxi drivers to know
the actual driving routes to minimize the driving time before
finding a customer. To this end, in this paper, we propose to
develop a cost-effective recommender system for taxi drivers.
The design goal is to maximize their profits when following
the recommended routes for finding passengers. Specifically,
we first design a net profit objective function for evaluating
the potential profits of the driving routes. Then, we de-
velop a graph representation of road networks by mining the
historical taxi GPS traces and provide a Brute-Force strat-
egy to generate optimal driving route for recommendation.
However, a critical challenge along this line is the high com-
putational cost of the graph based approach. Therefore, we
develop a novel recursion strategy based on the special form
of the net profit function for searching optimal candidate
routes efficiently. Particularly, instead of recommending a
sequence of pick-up points and letting the driver decide how
to get to those points, our recommender system is capable
of providing an entire driving route, and the drivers are able
to find a customer for the largest potential profit by fol-
lowing the recommendations. This makes our recommender
system more practical and profitable than other existing rec-
ommender systems. Finally, we carry out extensive experi-
ments on a real-world data set collected from the San Fran-

∗Contact author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright 2014 ACM 978-1-4503-2956-9/14/08.̇.$15.00.
http://dx.doi.org/10.1145/2623330.2623668.

cisco Bay area and the experimental results clearly validate
the effectiveness of the proposed recommender system.

Categories and Subject Descriptors
H.2.8.d [Information Technology and Systems]: Database
Applications - Data Mining

General Terms
Algorithms, Experimentation

Keywords
Cost-Effective, Mobile Recommender Systems, Taxi Drivers

1. INTRODUCTION
Recent years have witnessed the rapid development of

wireless sensor technologies in mobile environments, such
as GPS, Wi-Fi and RFID. The advances of such technolo-
gies indicate the possibility to change radically the existing
methods of doing taxi business. Indeed, recent efforts have
been made on providing personalized mobile services to taxi
drivers through the analysis of Taxi GPS traces. In general,
there are three existing ways to provide such services. The
first way is to focus on the development of the fastest driv-
ing route [25, 26, 28, 27, 14], which shows the fastest driving
route from the current location to the destination. The sec-
ond way is to provide a sequence of pick-up points for taxi
drivers. The goal is to allow the taxi driver to find a cus-
tomer within the shortest driving distance [8]. Finally, an
alternative service is to strike a balance between the needs
of taxi drivers and passengers [24].

Indeed, most of the existing mobile recommender systems
for taxi business are focused on extracting energy-efficient
transportation patterns from historical location traces and
recommending a sequence of potential pick-up points for taxi
drivers [25, 26, 8]. However, in the real world, the income of
taxi drivers is strongly correlated with the effective driving
hours which may not necessarily lead to energy-efficiency.
In other words, it is more critical for taxi drivers to know
the actual driving routes to minimize the driving time before
finding a customer. Taxi drivers usually rent their cabs from
taxi companies for a fixed time period. There is a fixed per-
hour cost associated with gas usage and the rental fee. The
profit of a taxi driver really depends on how much money
the driver can make per hour; that is, how effectively the
drivers can make use of their driving time.

45

To that end, in this paper, we propose to develop a cost-
effective recommender system for taxi drivers. The design
goal is to maximize their profits when following the recom-
mended routes for finding passages. In particular, the pro-
posed system can provide an entire driving route rather than
just recommending a sequence of discrete pick-up points and
letting the driver decide how to get to those points, and the
drivers are able to find a customer with the largest poten-
tial profit by following the recommended route. This makes
our recommender system more practical and profitable than
other existing mobile recommender systems [8].

To achieve the design goal and recommend an entire driv-
ing route which allows the taxi drivers to maximize their
profits by following the recommended route, there are sev-
eral factors to be considered. First, it is necessary to know
the pick-up probabilities along the route. Second, it should
be able to compute the profit that drivers can make after
picking up a customer somewhere on the route. Third, the
potential driving time on the route should be estimated. In-
deed, all these issues can be solved by mining the historical
Taxi GPS traces. However, a key challenge is how to com-
bine the impact of all these factors. Indeed, in this paper, we
develop a net profit objective function to collectively inte-
grate the impact of the above factors. The net profit objec-
tive function can be used for evaluating the potential profit
of the driving routes. Then, we develop a graph represen-
tation of road networks and provide a Brute-Force strategy
to generate optimal driving route for finding passengers. In
addition, the search for candidate driving routes is essential
a combinatorial search problem. The computational cost is
prohibited. Therefore, we further develop a pruning strategy
to reduce the search space and improve the computational
performances. In particular, we first change the graph rep-
resentation of road networks to a new structure, namely a
recursion tree, based on the special form of the net profit
function. Then, we design a novel recursion strategy based
on the recursion tree for searching optimal candidate routes
in an efficient way.

When recommending the driving routes to the taxi drivers,
we also provide a strategy for making a better load balance
for the recommendations happening at the same location.
Specifically, we exploit a minimum redundant strategy. For
each target location, we transform each candidate route in
the recommended list associated with this location into a
direction vector. Then, we are able to calculate the correla-
tions among this candidate route in terms of their directions.
If there are several requests happening at the same location
within a short time period, this minimum redundant strat-
egy can provide recommendations in a load balanced way.

Finally, we carry out extensive experiments on a real-
world data set collected from the San Francisco Bay area
and the experimental results clearly validate both the effec-
tiveness and efficiency of the proposed recommender system.

Overview. The remainder of this paper is organized as
follows. Section 2 shows the related works of this paper. In
Section 3, we formulate the problem of cost-effective recom-
mendations for taxi drivers and introduce some preliminar-
ies. Section 4 provides a detailed description of our recom-
mender system. In Section 5, we report the experimental
results. Finally, Section 6 concludes this work.

2. RELATED WORK
In the literature, many efforts have been devoted to build-

ing personalized recommender systems, such as content-based
recommendation [13], collaborative filtering based recom-
mendation [17] as well as the hybrid recommendation [15].
Furthermore, some recommender systems [2] also aim to ad-
dress the information overloaded problem by identifying user
interests and providing personalized suggestions. However,
those traditional recommender systems [4, 7, 11] are more
focused on recommendation of online information, such as
online movie, article, book or webpage. In most of the cases,
the research data are based on user ratings, which are very
different from the data collected in mobile environment.

The development of personalized recommender systems in
mobile and pervasive environments is much more challeng-
ing than developing recommender systems from traditional
domains due to the complexity of spatial data and intrinsic
spatio-temporal relationships, the unclear roles of context-
aware information [30], and the increasing availability of en-
vironment sensing capabilities. Those unique challenges are
actually inherit in the mobile data we have. Indeed, recom-
mender systems in the mobile environments have been stud-
ied before [1, 3, 5, 6, 12, 19, 20]. For instance, the works
in [1, 5] target at the development of mobile tourist guides.
Zhu et al. proposed a uniform framework of personalized
context-aware recommendation for mobile users. The frame-
work can discover users’ personal context-aware preferences
by mining the context logs of many mobile users. Heijden
et al. [30] have discussed some technological opportunities
associated with mobile recommendation systems [20]. Aver-
janova et al. have developed a map-based mobile recom-
mender system that can provide users with some personal-
ized recommendations [3]. However, the above prior works
are mostly based on user ratings or interactions, and cor-
responding recommender systems are developed for smart
mobile devices, such as mobile phones. Indeed, the problem
of building mobile recommender systems for taxi business
remains pretty much open.

Recently, the abundant availability of Taxi GPS traces
has enabled new ways of doing taxi business. Plenty ef-
forts have been made on developing mobile recommender
systems for taxi drivers by using Taxi GPS traces. These
systems can extract energy-efficient transportation patterns
from historical location traces and recommending potential
pick-up points for taxi drivers. For example, Ge et al. [8] de-
fined a novel problem of mobile sequential recommendation
by leveraging the historical GPS data from taxi drivers. By
solving this problem, a novel energy-efficient mobile recom-
mender system has been developed. This system can pro-
vide a optimal sequence of pick-up points for taxi drivers.
Also, Powell et al. [16] proposed a grid-based method to
suggest the profit locations for taxi drivers by constructing
a spatio-temporal profitability map. In addition, Yuan et
al. [24, 25, 26] have carried out a series of studies on mobile
intelligence by leveraging taxi trajectories, such as pick-up
points detection based on probabilistic models, and location
recommendation for both the taxi drivers and customers.
Different from the above studies, in this paper, we propose
to develop a novel recommender system that is capable of
providing an entire driving route instead of discrete pick-up
points, and the drivers are able to find a customer for the
largest potential profit by following the recommendations.

3. PROBLEM FORMULATION
In this section, we first introduce some preliminaries, and

46

Figure 1: An example of a route segment network.

then formally define the problem of Maximum Net Profit
(MNP) recommendation for taxi drivers.

3.1 Preliminaries
Here, we first introduce some basic concepts used through-

out this paper.

3.1.1 Road Network Formulation

Definition 1 (Road Segment). A long street can be
separated into several road segments r by its crossroads. Specif-
ically, each segment r is associated with a start point r.s
and an end point r.e. Moreover, each segment r also has
several adjacent segments forming a set r.next[], which sat-
isfies ∀ri ∈ r.next[] iff. r.e = ri.s.

Definition 2 (Route). A route R is a sequence of con-
nected road segments, i.e., R = (r1 → r2 → · · · → rM),
where rk+1.s = rk.e (1 ≤ k < M). The start point and the
end point of a route R can be represented as R.s = r1.s and
R.e = rn.e.

Definition 3 (Road Segment Network). The road
segment network G can be represented by a graph G =<
V,E >, where V = {ri} is the node set that consists of all
road segments and E is the edge set, which satisfies ∃eij ∈ E
iff. rj ∈ ri.next[].

Figure 1 demonstrates an example of the road segment
network. In this graph, each node represents for a road seg-
ment. Note that, each edge only has one direction. This is
because we do not allow taxi drivers to drive back and forth
in the same single road segment, which is not recommended
in real life and has a high potential to result in traffic jam
and accidents. However, taxi drivers can take a loop through
three road segments, such as nodes r1, r3 and r7, which can
form a loop for drivers.

3.1.2 Calculation of Net Profit
For each segment r, the net profit g(r) consists of two

components, namely potential earning and potential cost.
Specifically, we define the potential earnings of segment r
as e(r), which can be computed by

e(r) =

∑Nr
i=1 Fee(i; r)

Nr
P (r), (1)

where Nr is the number of picking-up passengers in segment
r during a given time period, Fee(i; r) is the earning from

the i-th pick-up passenger and P (r) is the pick-up possi-
bility in segment r, which will be introduced in Section 4.
Meanwhile, the potential cost of segment r, i.e., c(r), can be
computed by

c(r) = (1− P (r))(L(r) ·Gas+ T (r) · CompanyFee), (2)

where L(r) is the length of segment r, Gas is the price of Gas
per unite distance (e.g., per mile), T (r) is the traveling time
through segment r and CompanyFee is the opportunity cost
per unit time (e.g., per minute). Indeed, T (r) is sensitive
to the real-time traffic conditions. For example, a traffic
jam will result in a high T (r), and thus bring a high cost
of T (r) · CompanyFee. In this case, the segment will not
recommended by our model. Therefore, the net profit of
segment r, i.e., g(r), can be computed by

g(r) = e(r)− c(r). (3)

Based on the above, we can further define the net profit
for each route R. Specifically, given a route R = (r1 →
r2 → · · · → rM) starting from r1, its total net profit can be
computed by

G(R, r1,M) = g(r1) +

M∑
i=2

g(ri)

i−1∏
j=1

(
1− P (rj)

)
. (4)

Intuitively, the net profit of route R is the sum of the net
profit of road segments {ri} contained inR, which is weighted
by the possibility of not picking up any passenger in previous
segments (i.e., r1 to ri−1).

Indeed, with the possibility weights in net profit, the taxi
driver will not consider the segments which are far away from
her current location because the expected profit there is very
low. To be more specific, we can define the average increas-

ing rate of net profit as τ = <G(R,ri,M+1)>−<G(R,ri,M)>
<G(R,ri,M+1)>

to

indicate the profit increase when increasing one more road
segment in the route. Figure 2 shows the trend of the in-
creasing rate with respect to different numbers of increased
road segments and different pick-up possibilities. We can
observe that the increasing rate is less than 10% after in-
creasing more than 5 road segments. Indeed, the average
pick-up probability of each road segment in our experiments
is always less than 0.1, therefore it is possible for us to set
an upper bound Λ for route length M in Equation 4. Based
on the above definitions, we can formally define the MNP
recommendation problem as follows.

Definition 4 (Problem Statement). Given the cur-
rent location LCab ∈ r of a taxi driver, a fixed cruising
length M , and a set of route candidates R, where ∀R ∈ R
satisfies R starts from r. The MNP recommendation prob-
lem is to recommend a route R∗ ∈ R, which has the maxi-
mum net profit, i.e.,

R∗ = arg max
R∈R

{
G(R, r,M)

}
. (5)

Different from other existing recommender systems for
taxi drivers, which mainly focus on extracting energy-efficient
transportation patterns based on traveling time/length and
recommending a sequence of potential pick-up points for taxi
drivers [25, 26, 8], the MNP recommendation problem fo-
cuses on providing an entire driving route with maximum net
profits for a taxi driver. Along this line, there are two ma-
jor challenges for solving the MNP recommendation prob-
lem. First, how to calculate the parameters g(r), P (r) of

47

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of segment

n
e
t
p
ro

fi
t
in

c
re

a
s
e
 r

a
te

P=0.3

P=0.2

P=0.1

Figure 2: The average increase rate of net profit
with respect to different number of increased road
segment and the different fixed pick up possibility
(i.e., P (r) = 0.1, P (r) = 0.2, P (r) = 0.3).

each segment r from the historical pick-up data. Second,
how to efficiently search an optimal route from the complex
directed-cyclic route segmentation network. In the follow-
ing section, we will introduce our solutions for the above two
challenges, respectively.

4. MAXIMUM NET PROFIT (MNP) REC-
OMMENDATION

In this section, we introduce the technical details of our
solutions for the MNP recommendation problem.

4.1 Parameter Estimation with Road Buffer
To accurately obtain the taxi driver’s current location and

the parameters for estimating net profit, i.e., P (r) and g(r),
we exploit the road buffer estimation for each road segment.
Specifically, in geographic information systems, a buffer is
a zone of specified distance around the spatial object. The
boundary of the buffer is the solid line of equal distance to
the edge of the object. Figure 3(a) is an illustration of differ-
ent buffer operations, such as buffers on a point, three line
segments and a polygon [21]. Intuitively, people would like
to wait for taxis at road side instead of in the middle of road,
and the pick-up points of taxis are always around the road
side. Therefore, when calculating for the number of histor-
ical pick-up events, we need to build a buffer around each
road segment for obtaining the new boundaries of the road.
This road buffer usually looks like a rectangle surrounding
the road, which is similar with the buffer operation of three
line segments. Particularly, the size of the buffer depends
on the demands of different real-world problems.

To build the road buffer, we need to define the vertical
road and the horizontal road first. To be specific, by using
the longitude and the latitude of the starting and the ending
points of each road segment, we can calculate the tangent
value of this road segment. If the absolute value of the
tangent is greater than 1, then we regard the corresponding
road as vertical road, otherwise it is a horizontal road. For
each vertical road, we keep the longitudes of its starting and
ending points and extend the corresponding latitudes to west
and east. For each horizontal road, we keep the latitudes of

(a) (b)

Figure 3: (a) Different buffer operations; (b) Buffer
operations on vertical and horizontal roads.

its starting and ending points and extend the corresponding
longitudes to north and south. The above buffer operation
results in new boundaries formed by four vertex coordinates.
For example, Figure 3(b) shows the buffer operations on
vertical road and horizontal road.

Given the historical pick-up data and the road buffers,
we are able to calculate the total number of pick-up events
in each road segment r, which indicates how frequently a
pick-up event can happen when cabs travel across each road
segment. Let N0

r denote the number of times that taxis are
vacant in the buffer of road segment r, and N∗r denote the
number of times that taxis had pick-up events in the buffer
of segment r. Thus, the probability of pick-up event for each
road segment r, i.e., P (r), can be estimated as

P (r) =
N∗r

N0
r +N∗r

. (6)

From the i-th historical pick-up event in segment r, we
can also obtain the earnings Fee(i; r) in Equation 1. Fur-
thermore, the road length L(r) and real-time traveling time
T (r) can be estimated from the historical data or some ex-
ternal resources, such as Google Map. Therefore, the net
profit of g(r) can be calculated by Equation 3. Particularly,
the value T (r), g(r) and P (r) of each road segment r can
be pre-stored in corresponding node of the road segment
network (e.g., Figure 1).

4.2 MNP Route Recommendation
In this subsection, we introduce how to solve the problem

of NMP recommendation by different strategies.

4.2.1 Brute-Force Recommendation Strategy
After obtaining the road segment network, we can lever-

age it for generating route candidates can MNP recommen-
dation. To this end, we first propose a Brute-Force strategy
for this task based on the Breadth-First search. Specifically,
the recommendation algorithm is shown in Algorithm 1. In
this algorithm, we keep a route queue Q for generating a
set of route candidates C, and the function MNP (C) in
Step 5 is used for finding the optimal route with maximum
net profit in candidate set C. However, such Brute-Force
method for searching the MNP route is not efficient, since
it has to check all possible routes with length M in G.

Lemma 1. Given a fixed cruising length M and the road
segment network G = {V,E}, where |V | = N , the compu-

48

Algorithm 1 Brute-Force based MNP Recommendation

Input 1: road segment network G = {V,E};
Input 2: the cruising length M ;
Input 3: taxi driver’s current segment r1;
Output: the MNP route R∗;
Initialization: A route queue Q = {R0}, where R0 = {r1};
1: C = ∅;
2: //get route from queue Q;
3: R = Q.del();
4: if (R = ∅) do
5: return R∗ = MNP (C);
6: else if (|R| == M) do
7: C = C ∪R;
8: else if (|R| < M) do
9: //rk is the last road segment in R;

10: for each (ri ∈ V , ∃eki ∈ E) do
11: //add route from queue Q;
12: Q.add(R ∪ {ri});
13: go to Step 3;

tational complexity of searching an optimal MNP route by
Brute-Force algorithm is O(MNM−1)

Proof. Obviously, the total number of route candidates
in road segment network G is ≤ NM−1, and computing the
net profit for each route needs M operations. Thus, the com-
plexity of searching optimal MNP route is O(MNM−1)

Intuitively, the computational complexity of the Brute-
Force algorithm is too high to satisfy the needs of real-world
applications. There are some algorithm can save the reach-
ing time of freeway travel in real world. To this end, we
further propose another recommendation strategy based on
the recursive characteristic of the net profit function.

4.2.2 Recursive Recommendation Strategy
By observing the form of the net profit of routes, we can

re-write the Equation 4 as follows.

G(R, r1,M) = g(r1) +
(
1− P (r1)

)
G(R− r1, r2,M − 1), (7)

where R = (r1 → r2 → · · · → rM). Indeed, the special form
of total net profit can be realized by a recursion algorithm.
To this end, for each road segment r1, we can denote all
the route candidates starting from r1 as a recursion tree
structure. Specifically, the recursion tree of a road segment
can be defined as follows.

Definition 5 (Recursion Tree). The recursion tree
Υr1 of a road segment r1 is a tree, where each node repre-
sents a road segment and the root node is r1. Moreover, for
each node ri in the recursion tree, it has a children node set
that equals to ri.next[].

For example, Figure 4 shows an example of the recursion
tree of road segment A. In this paper, we propose a method
RTree(r,M) for building a M -depth recursion tree Υr for
r, which is shown in Algorithm 2. Particularly, the tree Υr

obtained by our algorithm will hold M node sets Υr.level[i]
(1 ≤ i ≤ M), which represents the nodes in the i-th level
of the tree. With this structure, the MNP recommenda-
tion from segment r1 can be separated into several simpler
MNP recommendation tasks recursively. Take Figure 4 as
an example, we can develop a bottom-up method to com-
pute the MNP route with length 3, of which the net profit
is denoted as G(A, 3). Specifically, according to the def-
inition of net profit, we can obtain G(A, 3) = g(A) + (1 −

Algorithm 2 RTree(r,M)

Input 1: road segment r1 as root node;
Input 2: the depth M of recursion tree;
Output: a M -depth recursion tree Υr;
Initialization: Depth = 1; Υr.level[i] = ∅ (1 ≤ i ≤M);

1: Υr.root = r; Υr.level[1] = {r};
2: if (Depth ≥M) do
3: return Υr;
4: else
5: for each (rcur ∈ Υ.r.level[Depth]) do
6: Υr.level[Depth + 1]∪ = rcur.next[];
7: Depth+ = 1;
8: go to Step 2;

Figure 4: The recursion tree representation of route
network. We can calculate the MNP G(R,A, 3) from
the leaf nodes of the tree.

P (A))×max{G(B; 2), G(C; 2), G(F ; 2);G(E; 2)}, where the
net profit of each MNP route with length 2 can also be com-
puted by the profit of their sub-routes. For example, we
have G(B; 2) = g(B) + (1−P (B))×max{G(D; 1), G(I; 1)},
and the profit of each individual segment (i.e., leaf nodes
of the tree) can be directly computed by its profit, e.g.,
g(D). Therefore, given a recursion tree of r, we can obtain
the MNP route with length M by recursing M − 1 times.
Specifically, in this paper we develop a recursion algorithm
rNMP (r,K) for MNP recommendation, which is shown in
Algorithm 3. By implementing our algorithm with parame-
ters r = r1 and K = M , the MNP route starting from road
segment r1 with length M and corresponding MNP value
will be obtained.

Algorithm 3 rMNP(r,K)

Input 1: recursion tree of Υr;
Input 2: the depth M of recursion tree;
Output: the MNP value and route stating from r;

1: Depth = M −K + 1;
2: if (Depth == M) do
3: Profit = ∅;
4: Route = ∅;
5: for each (ri ∈ Υr.level[Depth]) do
6: Profit[i] = g(r);
7: Route[i] = ri;
8: return (Max(Profit),Max(Route));
9: else

10: Profit = ∅;
11: Route = ∅;
12: for each (ri ∈ Υr.level[Depth]) do
13: (Profit∗, Route∗) = rMNP (ri,K − 1);
14: Newroute[i] = ri ∪Route∗

15: Profit[i] = g(ri) + (1− p(ri)) · Profit∗;
16: return (Max(Profit),Max(Route));

49

(a) (b)

Figure 5: (a) Direction-based clustering; (b) Top-K
route Recommendation.

Lemma 2. Given a M-depth recursion tree Υ, where ∀r ∈
Υ, |r.next[]| ≤ N , the complexity of searching an optimal
MNP route by the recursion method is O(NM−1)

Proof. Assume that the computational cost of finding
G(R, r1,M) is T (M), obviously we have T (M) ≤ NT (M −
1) + 1. Moreover ∀r satisfies |r.next[]| = N , the com-
putation can be separated into N sub-problems. Particu-
larly, for route with only one segment, we have T (1) = 1.
Meanwhile, after recursing M − 1 times, we have T (M) ≤
NM−1T (1) + NM−1

N−1
. Therefore, the computational com-

plexity of searching optimal MNP route by recursing tree is
O(NM−1)

Although the recursion tree can achieve more efficient rec-
ommendation than the Brute-Force method, the computa-
tional cost increases significantly as M becomes larger. Ac-
cording to the discussion in Section 3, we can set an upper
bond Λ for M , since the average increasing rate of the net
profit is very low after M > 5. Therefore, we set Λ = 5 in
our experiments.

4.3 Top-K Route Recommendation
Based on the above algorithms, our recommender system

can recommend an optimal MNP route for a single taxi
driver. However, in real life, an ideal recommender system
must be capable of recommending multiple taxi drivers in
the same area simultaneously. In this section, we address
this problem and introduce a minimum redundant strategy
for the recommendation process in the real world.

Intuitively, a straightforward recommendation strategy is
to recommend the optimal driving route to all available
drivers. However, if we recommend the same route to too
many drivers at the same time, it will cause an overloaded
problem and degrade the performance of the recommender
system. The overloaded problem is a classic problem which
has been widely studied. For example, the load balancing
mechanism distributes requests among web servers in order
to minimize the execution time [22, 10]. In our problem, we
can treat multiple empty cabs as jobs and multiple optimal
drive routes as computers. Instead of solving this overloaded
problem by exploiting existing load balancing algorithm, we
want to focus on the direction characteristics in the mobile
recommender system and exploit a direction-based cluster-
ing (DEN) method [29] to distribute the empty cabs by fol-
lowing the top-K optimal drive routes [9, 23].

Before recommending driving routes to taxi drivers, we
first rank all the route candidates according to their net

profits and obtain the top-K driving routes. After recom-
mending the top ranked route to the first taxi driver, we
need to calculate the correlation between this route and all
other K−1 candidate routes, and then recommend the route
with the lowest correlationship [18] to the second driver.

In order to calculate the correlation between those candi-
date routes, we first partition the space into grids and turn
the movement statistics in each grid into a vector which
represents the probabilities of moving directions within the
grid. Then, we transform the direction information of the
taxis’ movement into the same data format, and further par-
tition each small grid into 8 direction bins. For example,
in Figure 5(a) the angle of each bin has a range of π/4.
Next, we transform each grid into a direction vector g =
(p1, p2, p3, ..., p8), where each pi is the probability of moving
towards direction i within this grid and pi = fi/

∑8
k=1fk ,

where fi is the frequency of moving objects that have passed
this grid and has the direction along the direction i.

For instance, as shown in Figure 5(b), we first recommend
route A to the first taxi driver, route B,C and D are other
candidate routes at the same time and same location. Then
we divide the space into small grids and get the direction
vectors for each grid. A driving route candidate which has
lowest correlation with the previous recommending route is
usually the one with a different driving direction in the be-
ginning. Therefore, we only need to analyze the first n grids
to decide the driving directions. We combine the direction
vectors in n grids together and get a vector with 8n ele-
ments for each candidate route. For example, the vector for
route A is g(A) = (p11, p12,pn7, pn8). Then, we calculate
the correlation of those vectors for each pair of candidate
routes. Thus, the correlation between route A and B can
be computed by ρ(A,B) = Cov(g(A), g(B))/σg(A)σ(g(B).
If route B has the lowest correlation with route A, we will
recommend route B for next coming empty cab.

5. EXPERIMENTAL RESULTS
To validate the efficiency and effectiveness of the proposed

recommender system, extensive experiments are performed
on real world data sets collected in the San Francisco Bay
Area in 30 days.

5.1 Experimental Data
Taxi GPS Traces. In the experiments, we use the real-

world taxi GPS traces collected by the Exploratorium-the
museum of science, art and human perception through the
cabspotting project. The mobility traces are the records of
the cabs’ driving states in consecutive time, with each be
represented as a tuple, (latitude, longitude, fare identifier,
time stamp). By cleaning the dataset, we obtained 89,897
pick-up and drop-off activities in total. Generally, we as-
sume that most drivers would follow the suggested driving
route provided by the Google Map, thus we can get the fare
related to the specific trip and the fare information can also
be used to calculate the profits concerning the trip. The fol-
lowing Figure 6 is an example of one hundred taxi drivers’
pick-up points in 30 days in the San Francisco Bay Area,
with each red point representing one pick-up activity. Fig-
ure 7 is an heat map illustration of pick-up probabilities.
Here, different color and area of circles represent different
pick-up probabilities. This map shows there are lots of pick-
up activities around the Market Street of San Francisco,
which is a very busy street with lots of shopping places and

50

Figure 6: A Demonstration of pick-up points in the
dataset.

Figure 7: The heat map of pick-up probabilities in
the San Francisco bay area.

museums. Other pick-up hot spots including Fisherman’s
Wharf, Divisadero St, Cathedral Hill and Western Addition.

Road Network Data. Because the quality of existing road
networks in San Francisco is not sufficient. We build the
road network dataset of San Francisco by using google API.
First, we searched for all the street names in San Francisco.
Second, we run the google API to find out if there is an
intersection between two streets. We keep a record of each
intersection point. Figure 8(a) is an illustration of our in-
tersection points. Then, we use each intersection point to
search the nearest points in four different directions and con-
nect those 5 points together. Therefore, we can obtain four
different connected road segments with starting points and
ending points. However, as the yellow line in Figure 8(b), we
may accidentally connect two intersections with no road be-
tween them. To solve this problem, we calculate the distance
of those two intersections by using coordinates and compare
it with the driving distance measured by the Google map. If
there is a road between those two points, those two distances
should be very close to each other. If the distances are not
close to each other, it means there is no road between those
two intersections and we delete this road segment from the
road network dataset.

(a)

(b)
Figure 8: (a) Intersections; (b) Connected Road
Segments.

The road network dataset contains 5391 roads in the San
Francisco Bay Area, with each consisting of the ID, start-
ing points, ending points and we also calculate the historical
pick-up probability and net profit associate with each road
segment. For each road, several coordinates of the inter-
mediate points may be recorded and there are also some
noise points. After removing the noise points, we selected
2,149 roads with high pick-up probability for our experi-
ment. Then, we can build road buffer with the starting
points and the ending points in those road segments.

By matching the pick-up coordinates of the Road Network
Dataset with the Taxi Dataset, we are able to get 87,688
valid pick-up activities which can be located in the road
segments, therefore the two data sets are combined together
with each pick-up point mapped to the constructed road
buffer. To implement the proposed algorithm, we also need
to calculate the pick-up probability and the net profit for
each road segment in those road segments. This has already
been presented in Section 4.

Finally, we get the coordinates of the starting and the
ending points for each road segment, along with the pick-up
probability, the net profit and the average driving time in
this road segment. Note that the average driving time is
estimated as the distance of each road segment divided by
the average driving speed in the San Francisco Bay Area.

5.2 Empirical Studies on Recommendations
Here, we provide two case studies. One case study is on

cost effective route recommendations. Another case study
is on top-k recommendations.

5.2.1 A Case Study on Cost-Effective Route Recom-
mendations

Here, we show two examples of MNP route recommended
by our approach and compare it with the suggested route
by the Google map. Specifically, in Figure 9 and Figure
10, we plot the optimal driving route suggested by our rec-

51

Figure 9: Case Study (a)

Figure 10: Case Study (b)

ommender system at a randomly selected initial location of
the target cab. We also assumed that the driver’s expected
cruising length is 5, and after every 5 road segments, the sys-
tem will use the current location as the new starting point
for search and restart the recommendation process. In or-
der to do the comparison, we calculate the real driving time
of each trip of taxi drivers and restart our recommendation
system until the total driving time in those MNP routes is
equal to the real driving time of each trip. Then, we con-
nect those MNP routes together and this is the entire driving
route that should be recommended to the drivers. In those
Figures, the left figures are the driving route recommended
by the MNP recommender system and the right figures are
the route suggested by the Google Map based on the short-
est driving distance. However, this driving route suggested
by the Google map cannot maximize taxi drivers’ net profit.

Recently, most recommender system can only suggest a
sequence of hot spots to taxi drivers. There is no such recom-
mendation system that can suggest an entire driving route.
If taxi drivers do not know how to drive to the nearest hot
spot, he or she has to follow the driving route provided by
the Google map. However, both the pick-up probability and
the potential net profit may be very low along those routes.
The drivers have a high probability of losing money until
they reach the next hot spot. Our recommender system can
improve potential net profits for taxi drivers compared to
the routes suggested by the Google map.

5.2.2 A Case Study on Top-K Recommendations
In Section 4, we introduced a minimum redundant strat-

egy to recommend the Top-K driving routes and solved the
overloaded problem. In figure 11, we demonstrate the Top
K driving routes starting from the same location, where K
equals to 4 in this case. The figure shows that each route
has different driving directions and the correlations between
those driving distances are very small. Therefore, the min-
imum redundant strategy can improve the performance of
our recommender system.

5.3 Route Recommendation for Inexperienced
Taxi Drivers

Given one specific location, our proposed algorithm can
recommend several routes with high expected utility for drivers.
The algorithm is especially applicable for inexperienced drivers,

since they lack of knowledge about the roadmap and the lo-
cal driving routes that can make profits. To validate the
effectiveness of the proposed algorithm, we firstly divide all
the drivers into two categories based on their average net
profits. The top 10% drivers in the dataset are treated as
‘experienced’ drivers, while the others are ‘inexperienced’.
Therefore, the driving routes of the experienced drivers are
used as training set and we recommend driving routes for
the inexperienced drivers.

We define driver’s event e as a consecutive sequence of
‘roam → pick up → drop off’, by extracting the pick-up
and drop-off activities of each user, we can reconstruct each
event. For each driver, we define the location where the
driver starts to search for potential pick-ups as l0, and after
roaming in ∆t time, the driver picks up passengers at loca-
tion l1 and drive for ∆t′ and drop off at l2. Let ri,j denotes
the road segment between location li and lj , then event e can
be represented with (r0,1,∆t, r1,2,∆t

′), and the unit time
profit of the event can be calculated as pe = pr12

∆t+∆t′ . Thus,

the proposed algorithm starts with the location l′ which is
neareset to l0, and return a sequence of recommended po-
tential pick-up points and road segments.

The performance of the recommended driving route is
measured by the average net profit per unit time pr, and
it is compared with the average unit net profit of the inex-

perienced drivers, i.e., pd =
∑

pe
|e| .

The statistical experiment results for recommended driv-
ing routes for inexperienced drivers are shown in Table 1,
the average net profits per unit time outperforms the real
profit of the inexperienced drivers.

Table 1: Net Profits per Unit Time

Recommender System Inexperienced Drivers
Mean 0.038148 0.024162
SD 0.017815 0.018455

We first plot the distribution for the net profit per unit
time, i.e., the number of events for specific profit values, as
shown in Figure 12. The net profit per unit time of our rec-
ommended route is compared with the inexperienced taxi
drivers’ performance based on statistical histogram. The
blue bar of the histogram shows the net profits from our
recommendation results and the red bar shows the profits
from the inexperienced taxi drivers. As we can see from
the figure, the recommendation events mostly positioned on
bigger values. This indicates that our recommender systems
provide higher profit routes than the real routes by inexpe-
rienced drivers.

To further investigate the performance of the recommender
system, we also study the difference of net profit per unit
time between the recommended routes and the drivers’ real
routes for each event, i.e. pr − pe. As shown in Figure 13,
the X axis is the difference between the profits of the rec-
ommended results and the inexperienced taxi drivers’ prof-
its. We can see that most of dot points are positioned to
the right of X = 0, meaning that the profits of our recom-
mended routes outperform the profits of the routes by the
inexperienced drivers.

Then, we evaluated the performance of the Brute-Force
recommendation strategy and the performance of the recur-
sive recommendation strategy. This experiment was con-
ducted across 1000 randomly picked starting points. We

52

(a) (b) (c) (d)

Figure 11: The Top 4 driving routes starting from the same location (longitude: 37.77407074 and latitude:-
122.4376221)

Figure 12: Net Profit Statistics. The blue bar rep-
resents the potential profits of our optimized routes
and the orange bar represents the profits of taxi
drivers’ traditional routes ranked below top 10%

only compared the running time for five road segments, be-
cause the increasing rate of pick-up probability in Equation
4 is less than 10% after increasing more than 5 road seg-
ments. As shown in Figure 14, the red line is the running
time for the Brute-Force recommendation strategy and the
black line is the running time of the recursive Strategy. We
can see that the recursive strategy can lead to better ef-
ficiency compared to the Brute-Force strategy. Note that
all the experiments were conducted on a Windows 7 with
Intel(R) Core(TM)i5-3210 CPU and 6.0 GB RAM.

To sum up, the experiments showed that the cost-effective
recommender system could help inexperienced taxi drivers
find better routes so as to maximize their potential profits.
Also, the recursive strategy can help to efficiently identify
the recommended optimal routes.

6. CONCLUDING REMARKS
In this paper, we proposed a cost-effective recommender

system for taxi drivers to maximize their profits by providing
profitable driving routes. To be specific, we first provided a
net profit objective function for evaluating the driving routes
before finding a customer. Then, we proposed a graph based
approach to efficiently generate candidate driving routes for
finding passengers. As a result, we can use the net profit
objective function to rank each candidate route and make
recommendations to taxi drivers in a cost-effective way. An

Figure 13: Profit Difference. X axis is Net Profit
Difference between our optimized routes and taxi
drivers’ traditional routes ranked below top 10%. Y
axis is the number of events

unique perspective of our recommender system is that it
can recommend an entire driving route instead of only rec-
ommending a sequence of discrete pick-up points. Also, the
drivers are able to maximize their profits within the fixed
time period by following the recommended driving routes.
Finally, the extensive experiments on a real-world data set
collected from the San Francisco Bay area clearly validated
the effectiveness of the proposed recommender system.

Acknowledgement
This research was partially supported by National Science
Foundation (NSF) via grant numbers CCF-1018151 and IIS-
1256016. Also, it was supported in part by Natural Science
Foundation of China (71329201)

7. REFERENCES
[1] G. Abowd, C. Atkeson, and et al. Cyber-guide: A

mobile context-aware tour guide. Wireless Networks,
3(5):421–433, 1997.

[2] G. Adomavicius and A. Tuzhilin. Towards the next
generation of recommender systems: A survey of the
state-of-the art and possible extensions. TKDE, 2005.

[3] O. Averjanova, F. Ricci, and Q. N. Nguyen.
Map-based interaction with a conversational mobile

53

Figure 14: A Comparison of the Running Time. The
red line represents the running time of the Brute-
Force strategy and the black line represents the run-
ning time of the Recursive strategy

recommender system. In The 2nd Int’l Conf on Mobile
Ubiquitous Computing, Systems, Services and
Technologies, 2008.

[4] R. M. Bell and Y. Koren. Scalable collaborative
filtering with jointly derived neighborhood
interpolation weights. In Data Mining, 2007. ICDM
2007. Seventh IEEE International Conference on,
pages 43–52. IEEE, 2007.

[5] F. Cena, L. Console, and et al. Integrating
heterogeneous adaptation techniques to build a
flexible and usable mobile tourist guide. AI
Communications, 19(4):369–384, 2006.

[6] K. Cheverst, N. Davies, and et al. Developing a
context-aware electronic tourist guide: some issues
and experiences. In the SIGCHI Conference on Human
Factors in Computing Systems, pages 17–24, 2000.

[7] M. Deshpande and G. Karypis. Item-based top-n
recommendation algorithms. ACM Transactions on
Information Systems (TOIS), 22(1):143–177, 2004.

[8] Y. Ge, H. Xiong, A. Tuzhilin, K. Xiao, M. Gruteser,
and M. Pazzani. An energy-efficient mobile
recommender system. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 899–908. ACM,
2010.

[9] Y. Ge, H. Xiong, Z.-H. Zhou, H. Ozdemir, J. Yu, and
K. Lee. Top-eye: Top-k evolving trajectory outlier
detection. In CIKM’10.

[10] D. Grosu and A. T. Chronopoulos. Algorithmic
mechanism design for load balancing in distributed
systems. IEEE TSMC-B, 34(1):77–84, 2004.

[11] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In
Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 426–434. ACM, 2008.

[12] B. N. Miller, I. Albert, and et al. Movielens
unplugged: Experiences with a recommender system
on four mobile devices. In international conference on
Intelligent user interfaces, 2003.

[13] R. J. Mooney and L. Roy. Content-based book
recommendation using learning for text categorization.
In Workshop Recommender Systems: Algorithms and
Evaluation, 1999.

[14] G. Nagy and S. Salhi. Heuristic algorithms for single
and multiple depot vehicle routing problems with

pickups and deliveries. European Journal of
Operational Research, 162(1):126–141, 2005.

[15] M. Pazzani. A framework for collaborative,
content-based, and demographic filtering. Artificial
Intelligence Review, 1999.

[16] J. W. Powell, Y. Huang, F. Bastani, and M. Ji.
Towards reducing taxicab cruising time using
spatio-temporal profitability maps. In Proceedings of
the 12th International Conference on Advances in
Spatial and Temporal Databases, SSTD’11, pages
242–260, Berlin, Heidelberg, 2011. Springer-Verlag.

[17] X. Su and T. M. Khoshgoftaar. A survey of
collaborative filtering techniques. Adv. in Artif. Intell.,
2009:4:2–4:2, Jan. 2009.

[18] L.-A. Tang, Y. Zheng, X. Xie, J. Yuan, X. Yu, and
J. Han. Retrieving k-nearest neighboring trajectories
by a set of point locations. In Advances in Spatial and
Temporal Databases, pages 223–241. Springer, 2011.

[19] A. Tveit. Peer-to-peer based recommendations for
mobile commerce. In the 1st international workshop
on Mobile commerce, 2001.

[20] H. van der Heijden, G. Kotsis, and R. Kronsteiner.
Mobile recommendation systems for decision making
’on the go’. In ICMB, 2005.

[21] H. Xiong, S. Shekhar, Y. Huang, V. Kumar, X. Ma,
and J. S. Yoo. A framework for discovering co-location
patterns in data sets with extended spatial objects. In
SDM. SIAM, 2004.

[22] Z. Xu and R. Huang. Performance study of load
balancing algorithms in distributed web server
systems. In TR, CS213 Univ. of California,Riverside.

[23] J. Yuan, G.-Z. Sun, Y. Tian, G. Chen, and Z. Liu.
Selective-nra algorithms for top-k queries. In Advances
in Data and Web Management, pages 15–26. Springer,
2009.

[24] J. Yuan, Y. Zheng, X. Xie, and G. Sun. T-drive:
Enhancing driving directions with taxi drivers’
intelligence. Knowledge and Data Engineering, IEEE
Transactions on, 25(1):220–232, 2013.

[25] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun,
and Y. Huang. T-drive: driving directions based on
taxi trajectories. In Proceedings of the 18th
SIGSPATIAL International Conference on Advances
in Geographic Information Systems, pages 99–108.
ACM, 2010.

[26] J. Yuan, Y. Zheng, L. Zhang, X. Xie, and G. Sun.
Where to find my next passenger. In Proceedings of
the 13th international conference on Ubiquitous
computing, pages 109–118. ACM, 2011.

[27] Y. Zheng, Y. Liu, J. Yuan, and X. Xie. Urban
computing with taxicabs. In Proceedings of the 13th
international conference on Ubiquitous computing,
pages 89–98. ACM, 2011.

[28] Y. Zheng, J. Yuan, W. Xie, X. Xie, and G. Sun. Drive
smartly as a taxi driver. In Ubiquitous Intelligence &
Computing and 7th International Conference on
Autonomic & Trusted Computing (UIC/ATC), 2010
7th International Conference on, pages 484–486.
IEEE, 2010.

[29] W. Zhou, H. Xiong, Y. Ge, J. Yu, H. Ozdemir, and
K. C. Lee. Direction clustering for characterizing
movement patterns. In Information Reuse and
Integration (IRI), 2010 IEEE International
Conference on, pages 165–170. IEEE, 2010.

[30] H. Zhu, E. Chen, K. Yu, H. Cao, H. Xiong, and
J. Tian. Mining personal context-aware preferences for
mobile users. In Proceedings of the IEEE 12th
International Conference on Data Mining, ICDM’12,
pages 1212–1217, 2012.

54

