

A space efficient streaming algorithm for triangle counting using the birthday paradox

Madhay Jha

(Penn State \rightarrow Sandia National Labs)

and

Joint work with **C. Seshadhri** (Sandia National Labs) Ali Pinar (Sandia National Labs)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000."

Real-world graphs: An Example

Graph [SNAP]	# nodes (n)	# edges (m)	# triangles (T)
Ca-HepPh	12K	118K	3.35M

- 1. Graphs are everywhere.
- 2. Real-world graphs are huge. (Lots of vertices and edges.)
- 3. Real-world graphs have lots of triangles.

Graph [SNAP]	# nodes (n)	# edges (m)	# triangles (T)
web-BerkStan	0.6M	6M	64M
orkut	3M	22M	627M
Са-НерРН	12K	118K	3.35M
cit-Patents	3M	16M	7M

Photo Credit: a) facebook.com

b) http://academic.research.microsoft.com

- A wedge is a length 2 path. Namely, a "potential" triangle.
- Transitivity = τ = 3 #Triangles/ #Wedges = fraction of closed wedges

- A wedge is a length 2 path. Namely, a "potential" triangle.
- Transitivity = τ = 3 #Triangles/ #Wedges = fraction of closed wedges

- A wedge is a length 2 path. Namely, a "potential" triangle.
- Transitivity = τ = 3 #Triangles/ #Wedges = fraction of closed wedges

- A wedge is a length 2 path. Namely, a "potential" triangle.
- Transitivity = τ = 3 #Triangles/ #Wedges = fraction of closed wedges

Graph [SNAP]	# nodes (n)	# edges (m)	# triangles (T)	Transitivity
web-BerkStan	0.6M	6M	64M	0.007
orkut	3M	223M	627M	0.041
Са-НерРН	12K	118K	3.35M	0.39
cit-Patents	3M	16M	7M	0.067

- A wedge is a length 2 path. Namely, a "potential" triangle.
- Transitivity = τ = 3 #Triangles/ #Wedges = fraction of closed wedges

[Seshadhri Pinar Kolda 2013] gave algorithm for computing transitivity given accesss to the entire graph. This algorithm is the starting point of of work.

Graph [SNAP]	# nodes (n)	# edges (m)	# triangles (T)	Transitivity
web-BerkStan	0.6M	6M	64M	0.007
orkut	3M	223M	627M	0.041
Ca-HepPH	12K	118K	3.35M	0.39
cit-Patents	3M	16M	7M	0.067

Why Count Triangles in Graphs?

- Useful in Social Science for positing various theses on behavior [Burt 09], [Coleman 88], [Welles, Devender, Contractor 10], [Portes 88]
- Applied to spam detection [Becchetti Boldi Castillo Gionis 08]
- Relevant for finding topics on WWW [Eckmann Moses 02]
- Proposed as a guide for community structure Stated as a core feature for graph models [Vivar Banks 11] Cornerstone for Block Two-level Erdos-Renyi (BTER) [Seshadhri Pinar Kolda 12]
- Good descriptor of the underlying graph [Durak Seshadhri Pinar Kolda 12]
- Rich set of algorithmic results spanning various models (exact/approximate/deterministic/randomized/...) X (streaming, mapreduce, parallel etc.)
- Very well-studied: [Ahn Guha McGregorGraph 2012], [Durak Pinar Kolda Seshadhri 2012], [Pagh Tsourakakis 2012], [Suri Vassilvitskii 2011], [Tsourakakis Kolountzakis Miller 2011], [Chu Cheng 2011], [Yoon Kim 2011][Kolountzakis Miller Peng Tsourakakis 2010], [Avron 2010],[Tsourakakis Drineas Michelakis Koutis Faloutsos 2009], [Tsourakakis Kang Miller Faloutsos 2009], [Latapy 2008], [Becchetti Boldi Castillo Gionis 2008], [Tsourakakis 08], [Buriol Frahling Leonardi Marchetti-Spaccamela Sohler 2006], [Jowhari Ghodsi 2005], [Schank Wagner 2005], [Bar-Yossef Kumar Sivakumar 2002], ...

Graph as stream of edges

• Real-world graphs have a natural time-stamp

В С D

Our Contributions : Theoretical

Theorem:

A single-pass streaming algorithm (for arbitrarily ordered edge stream) which stores only $O(\sqrt{n})$ edges (for most real world graphs), requires nearly constant time update per edge, and estimates # triangles and transitivity.

Analysis based on the classic **Birthday Paradox**.

Our Contributions : Practical

• Accurate triangles estimates in low space

Example: On Orkut graph (200 M edges and 0.627 B triangles), our algorithm stores only 40 K edges (2% of graph) and reports 0.658 B triangles (less than 5% relative error).

Accurate transitivity estimates

Estimating transitivity on a variety of dataset. (Our algorithm stores only 40 K edges in all these runs.)

Data Structures of the Algorithm

Input Parameters: s_e and s_w .

An array to store edges of size s_e

wedge_reservoir[]

isClosed[]

An array to store wedges of size s_w

A Boolean array of size s_w

Let *p* be fraction of 1's in isClosed[]. Output

- 1. Transitivity, est- $\tau_t = 3p$
- 2. Triangles, est- $T_t = \text{est} \cdot \tau_t \times \text{normalizing-factor}$

Updates to edge_reservoir very rare!

$$\sum_{t \le m} 1 - (1 - 1/t)^{s_e} \approx \sum_{t \le m} s_e/t \approx s_e \ln m$$

The Birthday Paradox to Rescue

Idea: Fundamentally, a wedge is a collision of two edges!

Birthday Paradox \Rightarrow s_e edges give rise to $s_e^2 \cdot \Pr[A \text{ single collision}]$

Experimental Results

Our Algorithm vs Buriol et al

Space used in Buriol et al: number of edges sampled

Note: The results for Buriol et al is consistent with the analysis and experiments of their paper.

Accuracy of Transitivity Estimate

Datasets

Accuracy of Triangles Estimate

Datasets

Note: web-BerkStan has very low transitivity 0.007. Therefore, relative error is high.

Convergence of Estimates

Dataset: amazon0505

Future Work

- Can we go below \sqrt{n} space bound?
- Can we prove a lower bound on the space required by a 1-pass streaming algorithm to estimate triangle counts?
- Can we extend this approach to handle edge deletions ?
- Can we compute (and track) degree-wise clustering coefficient?

