A space efficient streaming algorithm for triangle counting using the birthday paradox

Madhav Jha
(Penn State \rightarrow Sandia National Labs)

Joint work with	C. Seshadhri	
and	Ali Pinar	(Sandia National Labs)
(Sational Labs)		

Real-world graphs: An Example

Graph [SNAP]	\# nodes (\mathbf{n})	\# edges (\mathbf{m})	\# triangles (\mathbf{T})
Ca-HepPh	12 K	118 K	3.35 M

1. Graphs are everywhere.
2. Real-world graphs are huge. (Lots of vertices and edges.)
3. Real-world graphs have lots of triangles.

Graph [SNAP]	\# nodes (n)	\# edges (\mathbf{m})	\# triangles (\mathbf{T})
web-BerkStan	0.6 M	6 M	64 M
orkut	3 M	22 M	627 M
Ca-HepPH	12 K	118 K	3.35 M
cit-Patents	3 M	16 M	7 M

Transitivity: Triangle "density"

- A wedge is a length 2 path. Namely, a "potential" triangle.
- Transitivity = $\tau=3$ \#Triangles/ \#Wedges = fraction of closed wedges

Transitivity: Triangle "density"

- A wedge is a length 2 path. Namely, a "potential" triangle.
- Transitivity = $\tau=3$ \#Triangles/ \#Wedges = fraction of closed wedges

Transitivity: Triangle "density"

- A wedge is a length 2 path. Namely, a "potential" triangle.
- Transitivity = $\tau=3$ \#Triangles/ \#Wedges = fraction of closed wedges

Transitivity: Triangle "density"

- A wedge is a length 2 path. Namely, a "potential" triangle.
- Transitivity = $\tau=3$ \#Triangles/ \#Wedges = fraction of closed wedges

Graph [SNAP]	\# nodes (n)	\# edges (m)	\# triangles (T)	Transitivity
web-BerkStan	0.6 M	6 M	64 M	0.007
orkut	3 M	223 M	627 M	0.041
Ca-HepPH	12 K	118 K	3.35 M	0.39
cit-Patents	3 M	16 M	7 M	0.067

Transitivity: Triangle "density"

- A wedge is a length 2 path. Namely, a "potential" triangle.
- Transitivity = $\tau=3$ \#Triangles/ \#Wedges = fraction of closed wedges
[Seshadhri Pinar Kolda 2013] gave algorithm for computing transitivity given accesss to the entire graph. This algorithm is the starting point of of work.

Graph [SNAP]	\# nodes (n)	\# edges (m)	\# triangles (T)	Transitivity
web-BerkStan	0.6 M	6 M	64 M	0.007
orkut	3 M	223 M	627 M	0.041
Ca-HepPH	12 K	118 K	3.35 M	0.39
cit-Patents	3 M	16 M	7 M	0.067

Why Count Triangles in Graphs?

- Useful in Social Science for positing various theses on behavior [Burt 09], [Coleman 88], [Welles, Devender, Contractor 10], [Portes 88]
- Applied to spam detection [Becchetti Boldi Castillo Gionis 08]
- Relevant for finding topics on WWW [Eckmann Moses 02]
- Proposed as a guide for community structure

Stated as a core feature for graph models [Vivar Banks 11]
Cornerstone for Block Two-level Erdos-Renyi (BTER) [Seshadhri Pinar Kolda 12]

- Good descriptor of the underlying graph [Durak Seshadhri Pinar Kolda 12]
- Rich set of algorithmic results spanning various models (exact/approximate/deterministic/randomized/...) X (streaming, mapreduce, parallel etc.)
- Very well-studied: [Ahn Guha McGregorGraph 2012], [Durak Pinar Kolda Seshadhri 2012], [Pagh Tsourakakis 2012], [Suri Vassilvitskii 2011], [Tsourakakis Kolountzakis Miller 2011], [Chu Cheng 2011], [Yoon Kim 2011][Kolountzakis Miller Peng Tsourakakis 2010], [Avron 2010],[Tsourakakis Drineas Michelakis Koutis Faloutsos 2009], [Tsourakakis Kang Miller Faloutsos 2009], [Latapy 2008], [Becchetti Boldi Castillo Gionis 2008], [Tsourakakis 08], [Buriol Frahling Leonardi Marchetti-Spaccamela Sohler 2006], [Jowhari Ghodsi 2005], [Schank Wagner 2005], [Bar-Yossef Kumar Sivakumar 2002], ...

Graph as stream of edges

- Real-world graphs have a natural time-stamp

Graph as stream of edges

Triangles so far:
Graph seen so far:

Graph as stream of edges

Triangles so far:
Graph seen so far:

Graph as stream of edges

Triangles so far:
Graph seen so far:

Graph as stream of edges

Triangles so far:
Graph seen so far:

Graph as stream of edges

Triangles so far: 1
Graph seen so far:

Graph as stream of edges

Triangles so far: 1 Graph seen so far:

Graph as stream of edges

Triangles so far: 1 Graph seen so far:

Graph as stream of edges

Triangles so far: 2
Graph seen so far:

Graph as stream of edges

Triangles so far: 3 Graph seen so far:

Graph as stream of edges

Triangles so far: 3 Graph seen so far:

Graph as stream of edges

Triangles so far: 4
Graph seen so far:

Our Contributions : Theoretical

Theorem:
A single-pass streaming algorithm (for arbitrarily ordered edge stream) which stores only $\mathrm{O}(\sqrt{n})$ edges (for most real world graphs), requires nearly constant time update per edge, and estimates \# triangles and transitivity.

Analysis based on the classic Birthday Paradox.

Our Contributions : Practical

- Accurate triangles estimates in low space

Example: On Orkut graph (200 M edges and 0.627 B triangles), our algorithm stores only 40 K edges (2% of graph) and reports 0.658 B triangles (less than 5\% relative error).

- Accurate transitivity estimates
- Realtime tracking

Realtime tracking of \# triangles on cit-Patents graph (16M edges), storing only 60K edges from the past.

Data Structures of the Algorithm

 Input Parameters: s_{e} and s_{w}.

An array to store edges of size s_{e}
wedge_reservoir[]
isClosed[]

1	0	1

An array to store wedges of size s_{w}
A Boolean array of size s_{w}

The Algorithm

Let p be fraction of 1's in isClosed[]. Output

1. Transitivity, est- $\tau_{t}=3 p$
2. Triangles,est- $T_{t}=$ est $-\tau_{t} \times$ normalizing-factor

The Algorithm

Updates to edge_reservoir very rare!

$$
\sum_{t \leq m} 1-(1-1 / t)^{s_{e}} \approx \sum_{t \leq m} s_{e} / t \approx s_{e} \ln m
$$

The Algorithm

The Birthday Paradox to Rescue

Idea: Fundamentally, a wedge is a collision of two edges!

Birthday Paradox $\Rightarrow s_{e}$ edges give rise to $s_{e}^{2} \cdot \operatorname{Pr}[\mathrm{~A}$ single collision]

Experimental Results

Our Algorithm vs Buriol et al

Dataset: web-NotreDame

We fix $s_{e}=20 \mathrm{~K}$ and vary s_{w}
Space used in our algorithm: $s_{e}+s_{w}$ Space used in Buriol et al: number of edges sampled

Note: The results for Buriol et al is consistent with the analysis and experiments of their β ßaper.

Accuracy of Transitivity Estimate

Datasets

Accuracy of Triangles Estimate

Datasets
Note: web-BerkStan has very low transitivity 0.007. Therefore, relative error is high.

Convergence of Estimates

Dataset: amazon0505

Future Work

- Can we go below \sqrt{n} space bound?
- Can we prove a lower bound on the space required by a 1 -pass streaming algorithm to estimate triangle counts?
- Can we extend this approach to handle edge deletions?
- Can we compute (and track) degree-wise clustering coefficient?

