

Optimal Recommendations under Attraction, Aversion and Social Influence

Wei Lu (UBC)

Stratis Ioannidis (Technicolor) Smriti Bhagat (Technicolor) Laks V.S. Lakshmanan (UBC)

Users Engaging with Recommender Systems

Attraction

Aversion 🛞

Influence...

Challenges

- Making recommendations & modeling user interest are intertwined
 - Since recommendations play a role in changing user interest
- Recommendations should be made in a global manner
 - Since social influence effect may trigger interest cascade

Main Contributions

- An *interest evolution model* with attraction, aversion, and social influence
- Use *Semi-Definite Programming (SDP)* to provide near-optimal recommendations
 - Outperform matrix factorization recommendations significantly
- Show from real data that attraction and aversion phenomena do exist

Interest Evolution Model

Dynamic system of interest evolution

Recommendation Problem

 $\alpha_i, \beta_i, \gamma_i, \delta_i$

Recommendations to different users can't be made in isolation

What should the recommender's strategy be, taking into account the joint effect of these factors so as to maximize users' utility

Interest Evolution: Steady State

Recommendation Objective

$$\bar{U} = (I - \beta P)^{-1} (A\bar{U}^0 + (\Gamma - \Delta)\bar{V})$$
Multiply with \bar{V}
Max.: trace $[(I - \beta P)^{-1} (A\bar{U}^0\bar{V}^{\mathsf{T}} + (\Gamma - \Delta)\bar{V}\bar{V}^{\mathsf{T}})]$
subj. to: $\|\bar{\mathbf{v}}_i\|_2^2 \leq 1$, for all $i \in [n]$

Social welfare: Expected total utility over all users

Global Recommendation Problem

Global Recommendation

Max.: trace $\left[(I - \beta P)^{-1} \left(A \bar{U}^0 \bar{V}^\mathsf{T} + (\Gamma - \Delta) \bar{V} \bar{V}^\mathsf{T} \right) \right]$ subj. to: $\|\bar{\mathbf{v}}_i\|_2^2 \leq 1$, for all $i \in [n]$

- ullet Variables to solve: V
- Quadratically-Constrained Quadratic Optimization Problem (QCQP)
- Not convex, in general 🛞
- Our solution strategy: Relaxation

SDP Relaxation

- Global Recommendation: Semi-Definite Program (SDP) with a rank-1 constraint
- <u>**Relaxation**</u>: Drop rank-1 constraint \rightarrow SDP only
- Solve the SDP relaxation
 - IF (rank-1): done!
 - ELSE: there exists a randomized algorithm giving a 4/7 approximation
- <u>Observation</u>: In our experiments, all solution matrices are rank-1, hence optimal ⁽³⁾

Experiments

Datasets

	Flixster	FilmTipSet	MovieLens
#users	4.6K	0.4K	8.9K
#items	25K	4.3K	3.8K
#ratings	1.8M	118K	1.3M
#edges	44K	N/A	N/A

Objectives

- Find evidence of attraction and aversion from data
- Evaluate SDP solutions
- Baseline (MF-Local): Recommend based on inherent profiles only

Finding evidence of attraction & aversion

Finding evidence of attraction & aversion

Incorporating evolution probabilities into Matrix Factorization leads to better predictions

Varying Social Effect \$\beta\$ (Synthetic)

• Synthetic SN: Forest-Fire, Kronecker, Power-law

Social Welfare on Real Data

SDP outperforms baseline on three real-world datasets, in terms of Social Welfare

Future Work

- Study the optimality of SDP relaxation in theory
- Improve scalability of SDP-based algorithms by exploiting special structural features
- Study other factors for interest evolution

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA

Thank you!

