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ABSTRACT
People’s interests are dynamically evolving, often affected by ex-
ternal factors such as trends promoted by the media or adopted by
their friends. In this work, we model interest evolution through dy-
namic interest cascades: we consider a scenario where a user’s in-
terests may be affected by (a) the interests of other users in her
social circle, as well as (b) suggestions she receives from a recom-
mender system. In the latter case, we model user reactions through
either attraction or aversion towards past suggestions. We study this
interest evolution process, and the utility accrued by recommenda-
tions, as a function of the system’s recommendation strategy. We
show that, in steady state, the optimal strategy can be computed as
the solution of a semi-definite program (SDP). Using datasets of
user ratings, we provide evidence for the existence of aversion and
attraction in real-life data, and show that our optimal strategy can
lead to significantly improved recommendations over systems that
ignore aversion and attraction.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining
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1. INTRODUCTION
Users’ content consumption patterns evolve over time. For ex-

ample, a user may be attracted towards content that is popular,
content recommended to her by a service, or content being en-
joyed by her friends. Alternatively, users may get tired of certain
types of content, e.g., romantic comedy movies, and desire to con-
sume something different and new. A key challenge for recom-
mender systems is accurately modeling such user preferences as
they evolve over time. Although traditional matrix factorization ap-
proaches can be extended to incorporate temporal dynamics of user
behavior [19,20], such extensions do not identify or explicitly ana-
lyze the factors that influence the drift in interests.
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A “classic” factor influencing user interests is attraction: users
may be attracted to content they are exposed to repeatedly and
often (such as, e.g., a song played often on the radio). This phe-
nomenon, known in psychology as the “mere-exposure effect” [33],
is natural and intuitive, and is the main premise behind advertis-
ing [10, 15]. Nonetheless, repetition and/or overexposure can also
have the opposite effect, leading to aversion: recent research argues
that users often desire serendipitous, novel, previously unseen con-
tent [1, 3, 23, 27]. This notion is also quite natural and intuitive, but
is usually not taken into account by recommender systems, yielding
over-specialized, predictable recommendations [3, 23].

A third factor affecting a user’s interests is social influence:
users may feel attracted to content consumed and liked by their
friends. Trend adoption through “word-of-mouth” or “viral” mar-
keting is also a well documented phenomenon [7, 9], and has been
extensively studied since the seminal paper by Kempe et al. [17].
Nonetheless, to the best of our knowledge, the effect of social in-
fluence on interests, and its implications for recommender systems,
has received attention only recently [16, 27].

Incorporating these influence factors in a recommender system
raises several challenges. To begin with, under attraction and aver-
sion, a recommender can no longer be treated as a passive entity:
recommendations it makes may alter user interests, pushing them
either towards or away from certain topics. Hence, traditional meth-
ods that merely profile a user and then cater to this specific profile
may fall short of keeping up with these dynamics. Second, social
influence implies that recommendation decisions to different users
cannot be made in isolation anymore: as recommendations alter a
user’s interests through attraction and aversion, social influence can
spread these changes, resulting in an interest cascade. Therefore,
optimal recommendation decisions across users need to be com-
puted globally, taking into account the joint effect they have over
the user’s social network.

In this work, we make the following contributions:
• We formulate a global recommendation problem in the pre-

tense of attraction, aversion, and social influence. In particu-
lar, we propose a mathematical model that incorporates these
phenomena, and study the steady state behavior of user inter-
ests as a function of the recommender’s strategy in selecting
which items to show to users. Under this model, we seek the
optimal recommendation strategy, i.e., one that maximizes the
users’ social welfare in steady state (Section 3).
• We show that, for a large recommender item catalog, obtain-

ing the optimal recommendation strategy amounts to solv-
ing a quadratically-constrained quadratic optimization prob-
lem (QCQP). Though this problem may not be convex, we
present a semi-definite program (SDP) relaxation that can be
solved in polynomial time. In many cases, this solution is also
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Figure 1: Illustration of aversion and attraction in MovieLens, and
gains from accounting for them in optimization.

guaranteed to be an optimal solution; when the solution is not
optimal, we show how a solution with a provable approxima-
tion guarantee can be constructed through randomization. We
discuss how to determine whether the solution is optimal, and
identify special cases for which an optimal solution is always
reached, and randomization is unnecessary (Section 4).
• We provide evidence for the existence of attraction and aver-

sion in three real-life rating datasets. We do so by developing
and applying a method for learning the weight (i.e., impor-
tance) of these factors from rating data (Section 5). Applied
to three real life datasets, our method indicates that between
14.0% to 19.6% of users show strong aversive or attractive
behavior (Section 6).
• We conduct extensive experiments on real world datasets, and

show that our recommendation algorithm is 17.5% to 125%
better than a baseline algorithm in terms of social welfare
achieved (Section 6).

Our analysis indicates that (a) the above phenomena are present
in real-life datasets and (b) accounting for them can lead to sig-
nificant gains in the improvement of recommendations. Figure 1
provides a quick illustration of these two facts (see Section 6 for
a detailed account on the derivation these two figures). Figure 1(a)
presents the distribution of a score measuring aversion and attrac-
tion among different users in MovieLens (with−1 indicating users
with the strongest aversive behavior, and +1 indicating users with
the strongest attractive behavior). About 7.0% of users are strongly
aversive (score ≤ −0.5) while 9.0% are strongly attractive (score
≥ 0.5). Accounting for such users can lead to a significant im-
pact on recommendations: as shown in Figure 1(b), the user social
welfare more than doubles when incorporating this knowledge in
recommendation decisions. Though there are clearly many factors
of user behavior that are not accounted for in our analysis, we be-
lieve that these two facts, along with the SDP relaxation yielding
optimal recommendations, indicate that investigating and accom-
modating for such phenomena is both important and tractable.

2. RELATED WORK
There has been a significant interest in modeling the temporal

dynamics of user interests for various settings close to ours [19,
26, 27,30]. Early work on matrix factorization (MF) by Koren [19]
incorporates time-variant user profiles, an approach that we also
adopt. We depart from this line of work by modeling, and also in-
cluding in the MF process (see Section 5), factors that impact these
drifts, including attraction, aversion, and social influence.

Several studies have highlighted the need for serendipity and di-
versity in the context of recommender systems, both of which relate
to the notion of aversion we describe here. The need for serendip-
ity was first identified by McNee et al. [23]. To address this, Yu et

al. [32] and Abbassi et al. [1] propose algorithms for recommend-
ing items that maximize a score that combines both relevance to
a user as well as diversity. Ge et al. [12] focus on evaluating the
lack of serendipity and diversity, and how it hurts the quality of
recommendations. We depart from these works by modeling how
recommendations themselves may instigate aversion or attraction
among users, through a dynamic evolution of user interests.

Our approach to aversion is closer to Das Sarma et al. [27], who
consider users that iteratively consume items in one out of several
categories. They incorporate “boredom” and social influence in a
manner similar to us: inherent item values decrease as a function
of a weighted frequency of past consumption, and a user’s util-
ity is averaged among her friend’s utilities. The authors provide
bounds of the steady state performance of different consumption
strategies under such dynamics. We depart by modelling user inter-
ests as multi-dimensional vectors, and using a factor-based model
for user utilities, whose dynamics and steady state behavior cannot
be captured by the (one-dimensional) model in [27].

The literature on social influence is vast, motivated by the vi-
ral marketing applications introduced by Domingos and Richard-
son [9] and further studied by Kempe et al. [17]. Our influence
model is closer to gossiping [28], in that the interest/state of each
user results from averaging the interests of her neighbors. Though
we depart from classic gossiping protocols in that we incorporate
additional dynamics (through attraction and aversion), similar tech-
niques as in [28] could potentially be used to study our system in
scenarios where interest evolution is asynchronous across users. In
the context of matrix factorization, Jamali et al. [16] propose in-
corporating the distance of a user’s profile to the average profile
of users in their social circle as a regularization factor in MF. This
is consistent with the social influence behavior we outline in Sec-
tion 3.3. We depart from this work by modeling dynamic profiles,
and studying the additional effect of recommendations on user pro-
files through attraction and aversion.

Semi-definite programming (SDP) relaxation for quadratically-
constrained quadratic programs (QCQP) lies at the core of our al-
gorithmic contribution. Building on the seminal work by Goemans
and Williamson [13], several papers have demonstrated classes of
QCQPs for which an SDP relaxation gives a constant approxima-
tion guarantee [24, 25, 31]. Moreover, exact solutions of rank 1
are known to be attainable for several classes of QCQP, including
when the problem has one [6] or two quadratic constraints [5]. Of
special interest is the case where the quadratic objective involves
non-negative off-diagonal elements, and constraints involve only
quadratic terms of one variable [34], as the attraction-dominant
case of our problem falls into this class (see Section 4.3). We re-
fer the interested reader to [29] for SDP in general, and to [22, 25]
for applications to quadratic programming.

3. PROBLEM FORMULATION
In what follows, we present our mathematical model of users

interacting with a recommender system. We use bold script (e.g.,
x,y,u,v) to denote vectors, and capital script (e.g., A,B,H) to
denote matrices. For either matrices or vectors, we use≥ to indicate
element-wise inequalities. For symmetric matrices, we use � to
indicate dominance in the positive semidefinite sense; in particular,
A � 0 implies that A is positive semidefinite. For square matrices
A, we denote by tr(A), diag(A), rank(A) the trace, diagonal and
rank ofA, respectively. Finally, given an n×mmatrixA, we denote
by col : Rn×m → Rnm the column-major order representation of
A: i.e., col(A) maps the elements of A to a vector, by stacking the
m columns of A on top of each other.



3.1 Overview
Our model assumes that user interests are dynamic: they are af-

fected both by recommendations users receive, as well as by how
other users’ interests evolve. In particular, our model of user behav-
ior takes into account the following factors:

1. Inherent interests. Our model accounts for an inherent pre-
disposition users may have, e.g., towards particular topics or
genres. This is static and does not change through time.

2. Attraction. As per the mere-exposure effect, users may ex-
hibit attractive behavior: if a type of content is shown very
often by the recommendation service, this might reinforce
the desire of a user to consume it.

3. Aversion. Users may also exhibit aversive behavior: a user
can grow tired of a topic that she sees very often, and may
want to see something new or rare.

4. Social influence. A user’s behavior can be affected by what
people in her social circle (e.g., her friends or family) are
interested in.

Under the joint effect of the factors above, suggestions made
by the recommender instigate an interest cascade over the users.
Suggestions alter user interests through attraction or aversion; in
turn, these changes affect neighboring users as well, on account
of their social behavior. These effects propagate dynamically over
the users’ social network. Next, we formally describe how each of
these factors is incorporated in our model.

3.2 Recommender System and User Utilities
We consider n users receiving recommendations from an entity

we call the recommender. We denote by [n] ≡ {1, 2, . . . , n} the
set of all users. At each time step t ∈ N, the recommender suggests
an item to each user in [n], selected from a catalog C of available
items. The user accrues a utility from the item recommended. As
discussed below, the recommender’s goal is to suggest items that
maximize the aggregate user utility, i.e., the social welfare.

Following the standard convention in recommender systems, we
assume factor-based user utilities. At each t ∈ N, each user i ∈
[n] has an interest profile represented by a d-dimensional vector
ui(t) ∈ Rd. Moreover, the item recommended to user i at time t is
represented by a d-dimensional feature profile vi(t) ∈ Rd. Then,
the expected rating1 a user i would give to the item suggested to
her at time t is given by F (ui(t),vi(t)), where

F (u,v) = 〈u,v〉 =
∑d
k=1 ukvk, (1)

i.e., the inner product between the interest and feature profiles
[18,20]. Intuitively, each coordinate of a feature profile can be per-
ceived as an item-specific feature such as, e.g., a movie’s genre or
an article’s topic. The corresponding coordinate in an interest pro-
file captures the propensity of the user to react positively or nega-
tively to this feature.

We call F (ui(t),vi(t)) the utility of user i from the suggested
item at time t. Without loss of generality2, we assume that the item
profiles vi ∈ Rd are normalized, i.e.: ‖vi(t)‖2 = 1 for all i ∈ [n],
t ∈ N. Under this assumption, given that a user’s profile is u, the

1In practice, (1) best approximates centered ratings, i.e., ratings
offset by a global average across users.
2Note that F (u,v) = F (su, 1

s
v), for any scalar s ∈ R, so we can

assume that either user or feature profiles have a bounded norm.

best item to recommend to user i is the one that yields the highest
expected rating; indeed, this is

arg max
v∈Rd:‖v‖2=1

F (u,v) = u/‖u‖2,

i.e., the item that maximizes the utility of a user i. Note that iden-
tifying items that maximize the aggregate utility across users (i.e.,
the sum of expected ratings to suggested items), is a natural goal
for the recommender.

3.3 Interest Evolution
The evolution of user interests captures the four factors outlined

in Section 3.1. At each time step t ∈ N, the interest profile of a
user i ∈ [n] is chosen alternately between either a personalized or
a social behavior. If personalized, the behavior of a user is again
selected among three possible outcomes, each corresponding to in-
herent interests, attraction, and aversion, respectively.

The selection of which of these four behaviors takes place at a
given time step is random, and occurs independently of selections
at other users as well as selections at previous time slots. We denote
with β ∈ [0, 1] the probability that the user selects a social behavior
at time slot t. The probability of selecting a personalized behavior
is thus 1−β. Interests at these two distinct events are as follows:

Personalized Behavior. If a user’s interest is selected through a
personalized behavior, the user selects her profile through one of
the three personalized factors outlined in Section 3.1. In particular,
for every i ∈ [n], there exist probabilities αi, γi, δi ∈ [0, 1] such
that αi + γi + δi = 1, and:

• Inherent interests. With probability αi, user i follows her
inherent interests. That is, ui(t) is sampled from a probabil-
ity distribution µ0

i over Rd. This distribution does not vary
with t and captures the user’s inherent predisposition.

• Attraction. With probability γi, user i selects a profile that is
attracted to the items suggested to her in the past. To capture
this notion denote by Vi(t) = {vi(τ)}τ≤t the history of
(profiles of) items suggested to a user i. Then, the interest of
a user under attraction is given by g(Vi(t − 1)), a weighted
average of the items suggested to it in the past. That is:

ui(t) = g(Vi(t− 1)) =

∑t−1
τ=0 wt−τv(τ)∑t−1
τ=0 wt−τ

. (2)

• Aversion. With probability δi, user i selects a profile that is
repulsed by the items suggested to her in the past; that is, her
interest profile is given by

ui(t) = −g(Vi(t− 1)) = −
∑t−1
τ=0 wt−τv(τ)∑t−1
τ=0 wt−τ

. (3)

To gain some intuition on (2) and (3), recall that a user’s utility at
time t is given by (1). Therefore, a profile generated under (2) im-
plies that the suggestion that maximizes her utility at time t would
be one that aligns perfectly (i.e., points in the same direction as) the
weighted average g up to time t− 1. In contrast, under the aversive
behavior (3), the same suggestion minimizes the user’s utility.

Note that the weighted average g is fully determined by the se-
quence weights {wτ}τ∈N. By selecting decaying weights, a higher
importance can be placed on more recent suggestions.

Social Behavior. User i’s profile is selected through social behavior
with probability β. Conditioned on this event:



• Social Influence. A user aligns her interests with a user j
selected from her social circle with probability Pij . That is:

ui(t) = uj(t− 1), with probability Pij , (4)

where
∑
j Pij = 1.

The probability Pij ∈ [0, 1] captures the influence that user j has
on user i. Note that users j for whichPij = 0 (i.e., outside i’s social
circle) have no influence on i. Moreover, the set of pairs (i, j) s.t.
Pij 6= 0, defines the social network among users. We denote by
P ∈ [0, 1]n×n the stochastic matrix with elements Pij , i, j ∈ [n];
we assume that P is ergodic (i.e., irreducible and aperiodic) [11].

Under these dynamics, interests evolve in the form of a dynamic
cascade: suggestions made by the recommender act as a forcing
function, altering interests either through attraction or aversion.
Such changes propagate across users through the social network.

3.4 Recommended Item Distribution
In practice, the recommender has access to a finite “catalog”

of items. Recalling that feature profiles have norm 1, the rec-
ommender’s catalog can be represented as a set C ⊆ B, where
B = {v ∈ Rd : ‖v‖2 = 1} is the set of items of norm 1 (i.e., the
d-dimensional unit ball).

We assume that the recommender selects the items vj(t) ∈ B
suggested to user i ∈ [n] by sampling them from a discrete distri-
bution νi over B, whose support isC. Note that the expected feature
profile of a suggested item is a weighted average among the vectors
in C. As such, it belongs to the convex hull of catalog C; formally:

v̄i =

∫
v∈B

vdνi ∈ conv(C), (5)

Note that conv(C) is a convex polytope included in B.
As we will see later in our analysis (c.f. Theorem 1), the

steady state user utilities depend only on the expectations v̄i,
i ∈ [n], rather than the entire distributions νi. We will thus refer
to {v̄i}i∈[n] as the recommender strategy; it is worth keeping in
mind that, given a v̄i ∈ conv(C), finding a νi such that (5) holds
can be computed in polynomial time in |C| (see also Section 4.4).

We further assume that the catalog C is large; in particular, for
large catalog size |C|, we have:

conv(C) ' B. (6)

This would be true if, for example, each item in the catalog are gen-
erated in an i.i.d. fashion from a distribution that covers the entire
ball B; this distribution need not be uniform3. We revisit the issue
of how to pick a distribution νi given v̄i, as well as how to interpret
our results in the case of a finite catalog, in Section 4.4.

3.5 Recommendation Objective
Observe that, under the above dynamics, the evolution of the sys-

tem is a Markov chain, whose state comprises the interest and fea-
ture profiles. We define the objective of the recommender as maxi-
mizing the social welfare, i.e., the sum of expected user utilities, in
steady state. Formally, we wish to determine a strategy {v̄i}i∈[n]

(and, hence, distributions νi) that maximizes:

lim
T→∞

1

T

T∑
t=0

∑
i∈[n]

〈ui(t),vi(t)〉 = lim
t→∞

∑
i∈[n]

E[〈ui(t),vi(t)〉],

3Formally, lim|C|→∞ conv(C) = B w.p. 1 if, e.g., items in cat-
alog C are sampled independently from a probability distribution
absolutely continuous to the uniform distribution on B.

where the equality above holds w.p. 1 by the renewal theorem [11].
It is important to note that, under the interest dynamics described
in 3.3, optimal recommendations to a user i cannot be obtained
independently of recommendations to other users: user i’s profile
depends on recommendations made not only directly to this user,
but also to any user reachable through i’s social network.

4. OPTIMAL RECOMMENDATIONS
In this section, we discuss how the recommender selects which

items to present to users to maximize the system’s social welfare.
We begin by obtaining a closed-form formula for the social welfare
in steady state, and then discuss algorithms for its optimization.

4.1 Steady State Social Welfare
Recall that µ0

i is the inherent profile distribution of user i ∈ [n],
and let µi be the steady state distribution of the profile of user i. We
denote by ūi =

∫
u∈Rd udµi and ū0

i =
∫
u∈Rd udµ

0
i the expected

profile of i ∈ [n] under the steady state and inherent profile distri-
butions, respectively. Moreover, denote by Ū , Ū0, V̄ ∈ Rn×d the
matrices of dimensions n × d whose rows comprise the expected
profiles ūi, ū0

i , v̄i, i ∈ [n], respectively. Let also A, Γ, ∆ ∈ Rn×n
be the n × n diagonal matrices whose diagonal elements are the
coefficients (1− β)αi, (1− β)γi, and (1− β)δi, respectively.

Then, the steady state social welfare can be expressed in closed
form according to the following theorem.

THEOREM 1. The expected social welfare in steady state is:

G(V̄ ) ≡ tr
[
(I − βP )−1

(
AŪ0V̄ T + (Γ−∆)V̄ V̄ T

)]
, (7)

where tr(·) denotes the matrix trace.

PROOF. Observe that at any time step t ∈ [n] the profiles ui(t)
and vi(t) are independent random variables. Hence,

lim
t→∞

∑
i∈[n]

E[〈ui(t),vi(t)〉] = lim
t→∞

∑
i∈[n]

〈E[ui(t)],E[vi(t)]〉

=
∑
i∈[n]

〈ūi, v̄i〉 = tr(Ū V̄ T). (8)

Observe that by the linearity of expectation E[g(Vi(t))] = v̄i for
all t ∈ N and i ∈ [n]. Thus, for U(t) = [ui(t)]i∈[n] ∈ Rn×d the
matrix of user profiles at time t, we get that

E[U(t)] = AŪ0 + βPE[U(t− 1)] + ΓV̄ −∆V̄ .

As βP is sub-stochastic and ergodic, the Perron-Frobenius theo-
rem [11] implies that Ū = limt→∞ E[U(t)] exists and

Ū = AŪ0 + βPŪ + (Γ−∆)V̄ .

Solving this linear system, and substituting the solution for Ū in
(8), yields the theorem.

An important consequence of Theorem 1 is that the steady state
social welfare depends only on the expected profiles V̄ , rather
than the entire distributions νi, i ∈ [n]. Hence, determining the
optimal recommender strategy amounts to solving the following
quadratically-constrained quadratic optimization problem (QCQP):

GLOBAL RECOMMENDATION

Max.: tr
[
(I − βP )−1

(
AŪ0V̄ T + (Γ−∆)V̄ V̄ T

)]
subj. to: ‖v̄i‖22 ≤ 1, for all i ∈ [n].

(9)

where the norm constraint comes from (6). Note that this is indeed a
global optimization: to solve it, recommendations across different



users need to be taken into account jointly. This manifests in (9)
through the quadratic term in the social welfare objective.

4.2 SDP Relaxation
The QCQP (9) is not necessarily convex. It is thus not a priori

clear whether it can be solved in polynomial time. However, there is
a way to reduce to a semi-definite program (SDP) relaxation, which
can be solved in polynomial time. Interestingly, in many cases, the
solution obtained for the SDP relaxation turns out to be an optimal
solution to our original problem (9), and there is a simple and effi-
cient test that can verify whether the obtained solution is optimal.
Finally, when the solution is not optimal, it can be transformed to
yield a constant-factor approximation. We are thus able to obtain a
strong and elegant theoretical result for solving the GLOBALREC-
OMMENDATION problem.

It is important to note that the large-catalog assumption (6) is
crucial to tractability: replacing the quadratic constraints with the
linear constraints (5) does not lead to a problem that is amenable to
an SDP relaxation. In fact, generic quadratic problems with linear
constraints are known to be inapproximable, unless P = NP [25].

Deriving an SDP Relaxation. We begin by describing first how to
express (9) as “almost” an SDP, except for a rank constraint:

THEOREM 2. There exists a symmetric matrix H ∈
R(nd+1)×(nd+1) and a convex polyhedral set D ∈ Rnd+1

such that GLOBAL RECOMMENDATION (9) is equivalent to:

Max.: tr(HY )

subj. to: Y � 0, diag(Y ) ∈ D, rank(Y ) = 1,
(10)

where Y ∈ R(nd+1)×(nd+1).

PROOF. Let x = col(V̄ ) ∈ Rnd be the column-major or-
der vector representation of the recommender’s strategy, and b =
col((I−βP )−1AŪ0) ∈ Rnd the vector representation of the linear
term in (7). Moreover, forQ = (I−βP )−1(Γ−∆) ∈ Rn×n, con-
sider the following block-diagonal symmetric matrix, where Q+QT

2
is repeated d times:

H0 =


Q+QT

2
0 . . . 0

0 Q+QT

2
. . . 0

. . . . . . . . . . . . . . . . . . . .

0 0 . . . Q+QT

2

 ∈ Rnd×nd.

Under this notation, (9) can be written as

Max. bTx + xTH0x

subj. to x2 ∈ D0,
(11)

where x2 = [x2
k]k∈[nd] ∈ Rnd+ results from squaring the elements

of x, and D0 the set implied by the norm constraints:

D0 = {x′ ∈ Rnd | ∀i ∈ [n],
∑nd
j=1 1j mod n=i mod n x

′
j ≤ 1}.

Note that D0 is a convex polyhedral set defined by linear equality
constraints. Moreover, (11) can be homogenized to a quadratic pro-
gram without linear terms using the following standard trick (see
also [22, 25, 29]). Introducing an auxiliary variable t, the objective
can be replaced by tbTx+xTH0x, where t satisfies the constraint
t2 ≤ 1. Setting y = (x, t) ∈ Rnd+1, this yields:

Max.: yTHy

subj. to: y2 ∈ D,
(12)

Algorithm 1: GLOBAL RECOMMENDATION ALGORITHM

Solve SDP RELAXATION (13); let Y be its solution;
if rank(Y ) = 1 then

Let λ > 0 be the unique positive eigenvalue of Y , and e the
corresponding eigenvector;
(x, t)←

√
λ · e ;

else
Construct a factorization Y = ZTZ, Z ∈ R(nd+1)×(nd+1) ;
Sample a random u ∈ Rnd+1 fromN (0, Ind+1) ;
σ ← sgn(ZTu) ;
D ← a diagonal matrix containing

√
diag Y ;

(x, t)← Dσ ;
end if
Let V̄ ∈ Rn×d be such that col(V̄ ) = t · x ;
return V̄ ;

where H is the following symmetric matrix:

H =

[
H0 b/2
bT/2 0

]
∈ R(nd+1)×(nd+1),

and

D = {y′ = (x′, t′) ∈ Rnd+1 | x′ ∈ D0, t
′ ≤ 1}.

To see that (12) and (11) are equivalent, observe that an optimal
solution (x, t) to (12) must be such that t = −1 or t = +1. If
t = +1, then x is an optimal solution to (11); if t = −1, then −x
is an optimal solution to (11). Finally, (12) is equivalent to (10), by
setting Y = yyT and using the fact that yTHy = tr(HyyT).

In particular, given an optimal solution Y to (10), an optimal
solution to GLOBALRECOMMENDATION can be constructed as fol-
lows. Since Y � 0 and rank(Y ) = 1, there exists y ∈ Rnd+1 such
that Y = yyT. More specifically, Y has a unique positive eigen-
value λ. If e is the corresponding eigenvector, y = (x, t) =

√
λ·e.

An optimal solution to (9) is thus the matrix V̄ ∈ Rn×d with
column-major order representation col(V̄ ) = t · x.

Problem (10) is still not convex, on account of the rank constraint
on Y . However, in light of Theorem 2, a natural relaxation for
GLOBAL RECOMMENDATION is the following semi-definite pro-
gram, resulting from dropping this rank constraint:

SDP RELAXATION

Max.: tr(HY )

subj. to: Y � 0, diag(Y ) ∈ D.
(13)

This is a relaxation, in the sense that it increases the feasible
set: any solution to (10) will also be a solution to (13). Crucially,
(13) is a convex SDP problem, and can be solved in polynomial
time. Moreover, if it happens that the optimal solution Y of (13)
has rank 1, this solution is also guaranteed to be an optimal solu-
tion to (10), and can thus be used to construct an optimal solution
to GLOBAL RECOMMENDATION, by Theorem 2. If, on the other
hand, rank(Y ) > 1, we are not guaranteed to retrieve an opti-
mal solution to (10). However, a solution with a provable approxi-
mation guarantee can still be constructed through a randomization
technique, originally proposed by Goemans and Williamson [13].

Approximation Algorithm. Algorithm 1 summarizes the steps in
the approach outlined above to solving GLOBAL RECOMMENDA-
TION. First, the algorithm obtains an optimal solution Y to the SDP
(13). It then tests if rank(Y ) = 1, i.e., if this solution happens to
have rank 1. If it does, then it is also a solution to (10), and an op-
timal solution to (9) can be constructed as outlined in the proof of
Theorem 2. In particular, Y can be written as Y = yyT, where



y = (x, t) ∈ Rnd+1 can be computed from the unique positive
eigenvalue of Y and its corresponding eigenvector. The optimal so-
lution to (9) can subsequently be obtained as the matrix V̄ ∈ Rn×d
that has a column-major order representation col(V ) = t · x.

If, on the other hand, rank(Y ) > 1, the algorithm returns a vec-
tor (x, t) constructed in a randomized fashion. In particular, the
algorithm returns the vector

√
diag(Y ), namely the square root of

Y ’s diagonal elements, with each coordinate multiplied by a ran-
dom sign (+1 or−1). The random sign vector σ ∈ {−1,+1}nd+1

used in this multiplication is constructed as follows. Given that
Y � 0, there exists a matrix Z ∈ Rn×n that factorizes Y , i.e.,
Y = ZTZ. Such a matrix can be obtained in polynomial time from
the eigendecomposition of Y . HavingZ, the algorithm proceeds by
sampling a random vector u ∈ Rnd+1 from a standard Gaussian
distribution. Then, σ is the binary vector computed by applying the
sign operator on the coordinates of vector ZTu.

The resulting random y = (x, t) ∈ Rnd+1 is guaranteed to be
a feasible solution to (10). Most importantly, the following approx-
imation guarantee for the quality of the corresponding solution to
GLOBAL RECOMMENDATION can be provided:

THEOREM 3 (YE [25]). Let G∗, G∗ be the maximal and
minimal values of the social welfareG given by (7), evaluated over
the feasible domain of (9). Let also V̄ be the solution generated by
Algorithm 1 when rank(Y ) > 1. Then

G∗ − Eu[V̄ ]

G∗ −G∗
≤ π

2
− 1 <

4

7
,

where the expectation Eu[·] is over the Gaussian vector u.

The existence of a simple test (namely, rank(Y ) = 1) verifying
that the solution produced by Algorithm (1) is optimal is important.
In fact, in Section 6, we study an extensive set of instances, involv-
ing several social network topologies and combinations of aversive
and attractive behavior. In each and every instance studied, Algo-
rithm 1 yielded an optimal solution. Hence, although the quadratic
program (9) is not known to be within the class of problems that
can be solved exactly through an SDP relaxation, the experiments
in Section 6 suggest that a stronger guarantee than the one provided
by Theorem 3 is attained in practice.

4.3 Special Cases
Though for generic instances of (9) we cannot obtain a better

theoretical guarantee than Theorem 3, there are specific instances
of (9) for which optimality is always attained, and the approxima-
tion through randomization is not necessary. As these cases are also
of practical interest, we briefly review them below.
Attraction Dominance. Consider a scenario where (a) γi > δi
for all i ∈ [n] and (b) Ū0 ≥ 0 . Intuitively, (a) implies that attrac-
tion to proposed content is more dominant than aversion to content,
while (b) implies that user profile features take only positive values.
Hence, the matrix H in Theorem 2 has nonnegative off-diagonal
elements. Although the QCQP (9) in this case is not convex, it is
known that in this specific case Algorithm 1 provides an optimal,
rank-1 solution [34].
Uniform Aversion Dominance. Consider a scenario where (a) all
parameters are uniform across users, i.e.,γi = γ and δi = δ, for all
i ∈ [n], and (b) γ < δ, i.e., aversion dominates user behavior. In
this case, the QCQP (9) is convex and can thus be solved optimally
by standard interior point methods in polynomial time [6].
No Personalization. Consider the scenario where the same item is
recommended to all users, i.e., vi(t) = v(t), ∀i ∈ [n]. In this
case, GLOBAL RECOMMENDATION reduces to a quadratic objec-
tive with a single quadratic constraint, in which case even though

the problem may not be convex, Algorithm 1 is guaranteed to find
a rank-1, optimal solution [6].

No Social Network. In the case where β = 0, and there is no
social component to the optimization, the social welfare (7) be-
comes separable in v̄i, i.e., G(V̄ ) =

∑
i∈[n] Gi(v̄i), where Gi

is a quadratic function. Then, the optimization is separable, and a
solution to (9) can be obtained by solving maxv̄i∈Rd:‖v‖≤1 G(v̄i)
for each i ∈ [n]; these are again quadratic problems with a single
quadratic constraint, and can be solved exactly by Algorithm 1 [6].

4.4 Finite Catalog
Recall that our analysis assumes (6), which becomes applicable

for a large catalog C covering the unit ball B. We describe below
how a computed profile v̄i, i ∈ [n] can be used to construct a
distribution νi over catalog C.

If v̄i ∈ conv(C), the recommender can select probabilities
νi(v), for v ∈ C, that satisfy (5); this equality, along with the
positivity constraints, and the constraint

∑
v∈C νi(v) = 1 (as νi is

a distribution), are linear, and define a feasible set. Thus, finding a
probability distribution satisfying (5) (i.e., that lies in the feasible
set) is a linear program, which can be solved in polynomial time.

If, on the other hand, v̄i /∈ conv(C), the same procedure can be
applied to the projection of v̄i to conv(C). Given that conv(C) is
a convex polytope, this can again be computed in polynomial time.
Moreover, under (6), if the catalog C is large this projection will be
close to the optimal value v̄i.

5. PARAMETER LEARNING FROM DATA
In this section, we provide an algorithm for validating the ex-

istence of attraction and aversion phenomena in real datasets. In
short, our approach involves incorporating aversion and attraction
parameters into Matrix Factorization (MF) [18, 20]; we treat pa-
rameters αi, γi and δi as regularization terms, which are learned
through cross validation.

Extending MF. We focus on datasets that comprise ratings gen-
erated by users, at known times (such as the datasets used in
Section 6). More specifically, we assume access to a dataset rep-
resented by tuples of the form (i, j, rij , t) where i ∈ [n] ≡
{1, . . . , n} is the id of a user, j ∈ [m] ≡ {1, . . . ,m} the id of
an item, r ∈ R the feedback (rating) provided by user i to item
j and t ∈ [T ] the time at which the rating took place. Denoting
by E ⊂ [n] × [m] the pairs appearing in tuples in this dataset, re-
call that matrix factorization (MF) amounts to constructing profiles
ui ∈ Rd, vj ∈ Rd that are solutions to:

min
ui,vj ,

i∈[n],j∈[m]

∑
(i,j)∈E

(rij−〈ui,vj〉)2+λ
∑
i∈[n]

‖ui‖22+µ
∑
j∈[m]

‖vj‖22 (14)

where λ, µ > 0 are regularization parameters to be learned through
cross validation. Though this is not a convex problem, it is typically
solved either through gradient descent or alternating least squares
techniques, both of which perform well in practice [18, 20].

We incorporate attraction and aversion in this formulation as fol-
lows. First, at any time step t ∈ [T ], the profile of a user i is given
by ui(t) ∈ Rd. Let Ei(t) ⊆ [m] be the set of items rated by user i
at time t and

Vi(t) = {vj : j ∈ Ei(τ), 1 ≤ τ ≤ t}

be the set of items the user has interacted with up to time t (inclu-
sive). As in Section 3, we denote by g(Vi(t)) the weighted average



Algorithm 2: Attraction-Aversion Learning Algorithm
Obtain u0

i , ∀i ∈ [n], and vj , ∀j ∈ [m] through standard MF (14);
Compute g(Vi(t)), ∀i ∈ [n],∀t ∈ [T ];
Split the dataset into k folds;
Initialize values in α, γ, δ uniformly at random from [0, 1] and project
(αi, γi, δi) to the set {(x, y, z) ≥ 0 : x+ y + z = 1}, ∀i ∈ [n];
repeat

(α, γ, δ, κ)← (α, γ, δ, κ)− ρ∇S̄Etest(α, γ, δ, κ);
Project (αi, γi, δi) to {(x, y, z) ≥ 0 : x+ y + z = 1}, ∀i ∈ [n];

until Change of S̄Etest in two consecutive iterations is small enough

Case Flixster FilmTipSet MovieLens
# users 4.6K 443 8.9K
# items 25K 4.3K 3.8K

# ratings 1.8M 118K 1.3M
# SN edges 44K N/A N/A

Table 1: Datasets statistics

of items in Vi(t). Then, we propose obtaining ui(t) as solutions to:

min
ui(t),i∈[n],

t∈[T ]

∑
t∈[T ],i∈[n],
(i,j)∈Ei(t)

(rij − 〈ui(t),vj〉)2 +

∑
i∈[n],t∈[T ]

(
‖ui(t)−αiu0

i−(γi−δi)g(Vi(t))‖22+κ‖ui(t)‖22
)
,

(15)

where u0
i , vj are computed through standard MF (14), and αi,

γi, δi, i ∈ [n] and κ are also treated as regularization parameters, to
be learned through cross validation. Note that, in contrast to (14),
(15) is a simple linear regression problem, and the profiles ui(t),
where i ∈ [n], t ∈ [T ], can be computed in closed form.

Learning Procedure. Based on this approach, our algorithm for
learning the vectors α, γ, and δ is outlined in Algorithm 2. First,
we learn the inherent profiles u0

i and the item feature profiles vj
by solving (14), through stochastic gradient descent. Then, we use
these profiles to learn αi, γi, δi through cross validation. In partic-
ular, we split the ratings dataset in k folds, and use k − 1 folds as
a training set, and one fold as a test set. In our evaluation, we set
k = 5. We learn ui(t) by solving (15) on this restricted dataset.
Using these, we compute the square error on the test set as:

SEtest =
∑

(i,j,t)∈test

(rij − 〈ui(t),vj〉)2.

We repeat this process across k folds and obtain an average S̄Etest.
We compute vectors α, γ, δ that minimize the average S̄Etest.

Note that this is a function of the regularization parameters of (15),
i.e., S̄Etest = S̄Etest(α, γ, δ, κ). As (15) admits a closed form
solution, so does S̄Etest(α, γ, δ, κ). Using this, we find α, γ, δ
through projected gradient descent, requiring that they sum to 1.

6. EXPERIMENTS
We perform experiments to evaluate our parameter learning and

social welfare-maximizing algorithms on three real-world rating
datasets: Flixster, FilmTipSet, and MovieLens, as well as several
synthetically generated traces. The implementations are in Matlab
and we use the CVX library [14] to solve the SDP in Algorithm 1.
All experiments were run on a server with AMD Opteron 6272
CPUs (eight cores at 2.1GHz) and 128GB memory.

Dataset Preparations. We first describe the three real-world rating
datasets. Their statistics are summarized in Table 1.

Flixster is a social movie rating site4. The original dataset, col-
lected by Jamali et al. [16], comprises 1M users, 14M undirected
friendship edges, and 8.2M timestamped ratings (ranging from 0.5
to 5 stars). We use Graclus5 to extract a dense subgraph of the social
network. Further, we filter out users and movies with less than 100
ratings so that there is enough data to learn temporal profile vectors.
This gives a core of 4.6K users, 44K edges, and 25K movies.

FilmTipSet6 is Swedish movie fans community. The data was
originally published for a research competition in the CAMRa
workshop7. It has 16K users, 67K movies, 2.8M timestamped rat-
ings (on the scale of 1 to 5). We select users rating no less than 100
movies in both 2004 and 2005. This gives a core of 443 users, 4.3K
movies, and 118K ratings.

The third dataset is MovieLens8 (the 10M-user version). We fo-
cus on users that have rated at least 20 movies in the year of 2000.
Note that there is no social network in MovieLens. FilmTipSet con-
tains some social networking information, which we were unable
to use in our analysis due to its extreme sparsity (85 edges for the
443 core users).

6.1 Evaluation of Parameter Learning
Learning on Synthetic Data. We first run Algorithm 2 on a syn-
thetically generated dataset to examine its accuracy. We set n =
100, T = 100, and d = 5. Each user i ∈ [n] consumes one ran-
dom item at every time step t ∈ [T ]. For all users i, we generate
“ground-truth” αi, γi, and δi uniformly at random from [0, 1] and
normalize them so that αi + γi + δi = 1. The expected inherent
interest profiles and item profiles are generated uniformly at ran-
dom from [0, 1]d. Interest profiles evolve according to the dynam-
ics in Section 3.3, with β = 0, and weighted average g with equal
weights. At each step, users generate ratings computed by taking
the inner product of appropriate profile vectors.

The learning rate ρ and regularization parameter κ in Algo-
rithm 2 are both set to be 0.001 (determined by cross validation).
The convergence condition of Algorithm 2 is set to be the change
in S̄Etest being smaller than 10−6. We repeat the process ten times
with different random starting points and report the results obtained
in the repetition that gives the smallest S̄Etest.

Let α`i , γ
`
i , and δ`i be the learned evolution probabilities. We use

RMSE to define the learning error w.r.t. αi’s:

RMSEα =

√∑n
i=1 |αi − α`i |2

n
.

RMSEγ and RMSEδ can thus be defined in the same way. Fig-
ure 2a shows the decrease of these RMSEs as the number of iter-
ations goes up. At convergence, they are 0.08, 0.58 and 0.56 re-
spectively. In addition, Figure 2a also shows that the test RMSE
(computed as

√
S̄Etest/|test|) drops steadily as the learning pro-

ceeds, which finally converges to 0.02 in a total of 5300 iterations.
In Figure 2b, we show a scatter plot of the ground-truth prob-

abilities and the learned probabilities (at convergence). Each data
point has one ground-truth probability value in x-coordinate and
the corresponding learned value in y-coordinate. The y = x line in-
dicates points for which the learned and ground truth probabilities
are equal. As can be seen, the algorithm recovers αi’s almost per-
fectly, while the results for γi’s and δi’s are also reasonably good.

4http://www.flixster.com/
5http://www.cs.utexas.edu/users/dml/
Software/graclus.html
6http://www.filmtipset.se/
7http://www.dai-labor.de/camra2010/
8http://grouplens.org/datasets/movielens/
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Figure 3: Learned values of αi on three real-world datasets
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Figure 4: Values of γi − δi on three real-world datasets

This gives us confidence in deploying the algorithm on real-world
rating data, in which ground-truth parameters are not known.

Learning on Real Data. For each dataset, we sort the ratings in
chronological order and split them into T = 10 time steps. A single
time step corresponds to 3, 1.2, and 2.5 calendar months in Flixster,
MovieLens, and FilmTipSet, respectively. We then run Algorithm 2
with learning rate ρ = 0.001, regularization parameter κ = 0.001,
and number of latent features d = 10. Figure 3 shows the dis-
tributions of values learned for αi’s. Furthermore, to compare the
number of attraction-dominant users and the number of aversion
dominant users, in Figure 4 we display the distribution of γi − δi,
along with a Gaussian distribution fitted by data within the interval
[µ − 1.8σ, µ + 1.8σ] (capturing 90% of a Gaussian distribution),
where µ and σ2 is the mean and variance of all γi − δi’s. As can
be seen, the empirical distribution has tails that are heavier than

the Gaussian (at about −0.5 and 0.5), indicating the existence of
strongly aversive and strongly attracted users.

For reference, we also compare the average test RMSE on five-
fold cross-validation achieved by our model and by standard MF.
For standard MF, we implement the stochastic gradient descent
method as in [20] with d = 10, learning rate 0.002, and regulariza-
tion parameters determined by cross validation. As shown in Fig-
ure 2c, profiles learned by Algorithm 2 outperform standard MF in
rating prediction, lowering the test RMSE by 11.8%, 11.9%, 6.18%
on Flixster, FilmTipSet, and MovieLens respectively.

6.2 Social Welfare Performance
Next, we evaluate Algorithm 1, hereafter referred to as GRA ,

and compare the social welfare it yields with a baseline that ig-
nores interest evolution. This baseline recommends to each user
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Figure 5: Relative increase in social welfare by GRA over MF-Local on synthetic datasets.

the item profile maximizing the user’s utility under the inherent
profile computed by standard MF. For each user i ∈ [n], this
is vi = u0

i /||u0
i ||2, for all i ∈ [n]. It is thus easy to see that

||vi||2 = 1 and it is in fact co-linear w.r.t. u0
i . We hereafter re-

fer to this baseline as MF-Local . In all experiments, following the
literature of social influence propagation and maximization [8,17],
we set the influence probability of user j on user i to be 1/degin(i),
where degin(i) is the in-degree of node i in the network graph.

6.2.1 Experiments on Synthetic Networks
We start by evaluating the social welfare achieved by GRA and

MF-Local on three different of random networks that mimic the
structure of a social network: Forest-Fire [4], Kronecker [21], and
Power-Law [2]. For each type, we consider the following settings:
Forest-Fire with forward and backward burning probability being
0.38 and 0.32 respectively, Kronecker with initiator matrix being
[0.9, 0.5; 0.5, 0.3], and Power-Law with exponent 2.1.

We vary the size of network graphs (i.e., number of users, n), the
value of β (i.e, users’ tendency of getting influenced by friends),
and the difference between γi and δi, to evaluate their effects on the
performance of our GRA algorithm in comparison to MF-Local .
Unless otherwise noted, αi’s, γi’s, δi’s, and inherent user profiles
are sampled randomly and the process is repeated ten times, of
which we take the average social welfare. Also, d is fixed to be
10. In all cases, we plot the relative gap in social welfare, i.e.,

(Social WelfareGRA−Social WelfareMF-Local)/|Social WelfareMF-Local|.

Effect of Network Size. We test five different values for n:
10, 50, 100, 150, and 200 for Forest-Fire and Power-Law, and
16, 32, 64, 128, and 256 for Kronecker (by definition a random
Kronecker graph has 2w nodes where w ∈ N+ is the number of it-
erations of Kronecker product taken in the generation process [21]).
As can be seen from Figure 5a, the gap between GRA and MF-
Local is close to 10% for small graphs, but increases on all three
networks for larger values of n: GRA achieves twice as much so-
cial welfare as MF-Local , for n = 200.

Effect of β. In this test, we vary the value of β from 0 up to 0.5.
Network size is fixed at 100 for Forest-Fire and Power-Law, and
128 for Kronecker. Figure 5b shows that GRA significantly outper-
forms MF-Local , and more interestingly, the relative gap increases
as β increases. This intuitively suggests that when the influence
among users is higher, ignoring the joint effect of recommenda-
tions becomes more detrimental to maximizing the social welfare.

Effects of γi − δi. Next, we test different values of γi − δi, repre-
senting cases from extreme aversion dominance to attraction dom-
inance. Network size is n = 100 and β = 0.25, while αi = α,
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Figure 6: Social welfare achieved on: FX(0.1) and FX(0.5) –
Flixster with β = 0.1 and 0.5; FT – FilmTipSet; ML – MovieLens.

γi = γ and δi = δ for all i ∈ [n]. We set α s.t. α(1 − β) = 0.25,
and vary γ − δ, where α+ γ + δ = 1. Relative gaps are shown in
Figure 5c. All in all, we see that gaps are far more pronounces in
the strongly aversive regime, as targeting to the existing profiles of
users leads to suboptimal recommendations. For values less than -
0.3, the social welfare under MF-Local is actually negative; it goes
up as γ−δ increases, i.e., users tend towards attractive behavior. In
contrast, the social welfare of GRA is always positive, and always
greater than the one under MF-Local . As a result, there is a large
gap for values at less than −0.3; the relative gap becomes small
(but still positive) near −0.1, and then steadily increases.

It is important to note that in all evaluations of GRA over syn-
thetic datasets, as well as the ones listed below on real datasets,
GRA returned an optimal solution. That is, for all inputs tested, the
matrix Y computed had rank 1. Hence, although the QCQP prob-
lem (9) is not known to be solvable in polynomial time, in practice,
GRA outperforms the guarantee of Theorem 3.

6.2.2 Experiments on Real Data
We next compare the social welfare attained on Flixster,

FilmTipSet, and MovieLens by GRA and MF-Local . For
FilmTipSet and MovieLens where there is no social network con-
sidered, GLOBAL RECOMMENDATION is separable and can thus
be parallelized (see Section 4.3): we can divide users into arbitrary
subsets, run GRA on each of them, and then combine the total so-
cial welfare over all subsets as the final solution without any loss.

To improve the scalability of GPA over Flixster, and parallelize
its execution, we adopt the following heuristic. First, we split the



social graph into 50 subgraphs using Graclus. Then, we solve SDP
on each subgraph separately. Note that, in effect, this optimization
ignores the edges between subgraphs, and thus only yields an ap-
proximation to the social welfare.

Figure 6 illustrates the performance of GRA and MF-Local on
those datasets, where the values of αi, γi, and δi are all from the
learning results in Section 6.1 and dimensionality d is set to 10.
We can see that GRA is significantly superior to MF-Local : on
FilmTipSet (1461 vs. 757) and MovieLens (11092 vs. 4926), it
achieves approximately twice the social welfare. On Flixster, we
test two cases for β: 0.1 and 0.5, representing weak and strong so-
cial behavior respectively. For GRA , we adopt the aforementioned
clustering-based heuristic to compute v̄i’s, and evaluate the wel-
fare achieved by GRA in two ways: (i) simply calculating the wel-
fare on the subgraph and taking the sum over all subgraphs (termed
GRA -heuristic); (ii) taking the v̄i’s to calculate the social welfare
on the entire graph (termed GRA ). The values computed by method
(ii) are only slightly different from (i), indicating that our cluster-
ing heuristic closely follows the true social welfare, while enabling
parallelization. The relative gain of GRA -heuristic over MF-Local
is 39.0% when β = 0.1 and 13.4% when β = 0.5. The running
time of GRA is reasonably good, e.g., on a subgraph of Flixster
with 94 nodes and 276 edges, GRA finishes in 90 seconds.

In summary, through extensive empirical evaluation on both
real and synthetic data, we have demonstrated that first, the phe-
nomenon of interest evolution, especially attraction and aversion,
can indeed by observed from real-world rating data, and second,
both of our learning algorithm and global recommendation algo-
rithm are highly effective in their respective tasks.

7. CONCLUSIONS
Our study of attraction, aversion, and social influence suggests

that such phenomena can be incorporated in recommendation de-
cisions, and that the SDP relaxation approach brings relevant op-
timizations within the realm of tractability. The heuristic we ex-
ploited in Section 6, namely, parallelizing execution over weakly
connected partitions of the social graph, highlights an approach for
scalable, parallelizable solutions to the SDP relaxation. Neverthe-
less, further opportunities for improving efficiency exist: the sparse,
block structure of the matrices in our SDP was not exploited by the
generic solvers we employed. Investigating solutions that exploit
this structure for higher efficiency is an interesting future direction.
Moreover, although the QCQP that expresses our problem is not
known to be exactly solvable through an SDP relaxation, all solu-
tions we obtained through our experiments were actually optimal.
Understanding if optimality holds for a wider class than the ones
presented in Section 4.3 is also an important open problem. Finally,
there are many phenomena beyond attraction, aversion and social
influence that may affect a user’s interests. The quadratic nature of
our problem arises from the standard factor-based model for util-
ities: understanding if other phenomena inducing drift on profiles
can also be cast in this framework is also an open question.
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