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i Motivation

s Classification with irrelevant data or
noise;

s Unbalanced situation
s Personalized recommendation



i Semi-supervised Learning

= Labeled data set: L =(x,y,),....... (X, ;)
= Unlabeled data set: U =X_,....X,n=1+u
= Binary label: y,_ €{0,1}



i Semi-supervised Learning

= Graph G=(V,E)
s V: ninstances;

= E: two Instances are connected if they are
similar with each other;

= Weight: represent the similarity between
two Instances.



i Semi-supervised Learning

= Radial Basis Function (RBF)

1 -
W :exp(__Z(Xid _de)2)1x cR

O d=1



i Semi-supervised Learning

= Harmonic function
= W: weighted matrix
» D: D=3 " w,
« Laplacian matrix of a Graph:

L=D-W
L= _LII I—Iu_
_Lul I—uu_




i Semi-supervised Learning

-
f —| ' | isthe label of all the instances,
- fU _
the solution would be:
fl =Y.

f = Lﬂi I—ul yL

u



Minimize the Weighted

i Entropy

= Our goal:
= Query less irrelevant instances
= Unbalance situation
= Be more helpful for SSL




Minimize the Weighted

i Entropy

= Entropy
re) =Y Y penrt) =,
p~(yilL)
sgn(fi)

H(p) = —plog(p)



Minimize the Weighted

‘L Entropy

(f)o+ (fi)1+(fi)e=1,i=1,...,n




Minimize the Weighted

‘L Entropy
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Minimize the Weighted




Minimize the Weighted




Minimize the Weighted

i Entropy

Denote (fq,)jH:j{k} as ]H[T‘:{jk}

H‘+{k}(f) as Hk(f)

HE(f) = (1= N5 + =) + i)

1=1



Minimize the Weighted

‘L Entropy

= argnilfm H* (f)




i Application

= Personalized new recommendation
= Initialize as user’s preference
= Query relevant news
= More precise classification




i Example

Sports News International News




Experiment Result

300 irrelevant instances, -all accuracy, lambda=0.01, RBF = 0.05

— WWeighted Entropy
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Randam Cluery

0.9

0.7

06

0.5

dCcuracy

0.4

0.3

0.2

0.1

0 2 4 B a8 10 12 14 16 18 20
query



Experiment Result

dCcuracy
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Experiment Result

after 20 queries, -all accuracy, lambda=0.01, RBF = 0.05

— WWeighted Entropy
— Minimum Risk
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Experiment Result

after 20 gueries, -relevant accuracy, lambda=0.01, REF = 0.05
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i Experiment Result

average query irrelevant rate, lambda=0.01, RBF =0.05
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i Experiment Result

= [0 be continue...

= adding a threshold to filter all irrelevant
data

= more data set



!'_ Thanks
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