Optimization Technique in Training Deep Models

Chapter 8
Outline

• Problem definition

• First order and second order methods

• SGD and momentum techniques in deep models

• Function properties in optimization

• Discussions
Background

• Machine learning problems

\[J(\theta) = \mathbb{E}_{(x, y) \sim \hat{p}_{\text{data}}} L(f(x; \theta), y), \]

• Empirical risk minimization with independence

\[\min \mathbb{E}_{x, y \sim \hat{p}_{\text{data}}}(x, y) [L(f(x; \theta), y)] = \frac{1}{m} \sum_{i=1}^{m} L(f(x^{(i)}; \theta), y^{(i)}), \]

What if the data are not independent?
Risk Minimization

- True risk in machine learning

\[
\min \mathbb{E}_{x,y \sim \hat{p}_{\text{data}}(x,y)}[L(f(x; \theta), y)]
\]

(1)

- Empirical risk minimization

\[
\min \frac{1}{m} \sum_{i=1}^{m} L(f(x^{(i)}; \theta), y^{(i)})
\]

(2)

- Generalization error

\[
P[(1) - (2) \geq t] \leq \exp(-t), \forall t \geq 0
\]

Risk Minimization

- True risk in machine learning

\[
\min \mathbb{E}_{x,y \sim \hat{p}_{\text{data}}(x,y)}[L(f(x; \theta), y)]
\]
(1)

- Empirical risk minimization

\[
\min \frac{1}{m} \sum_{i=1}^{m} L(f(x^{(i)}; \theta), y^{(i)})
\]
(2)

- Generalization error

\[
P[(1) - (2) \geq t] \leq \exp(-t), \forall t \geq 0
\]

What is the effect of \(m \)?

Problem Definition

• Empirical risk minimization (ERM)

\[
\min \frac{1}{m} \sum_{i=1}^{m} L(f(x^{(i)}; \theta), y^{(i)})
\]

• Solution

\[
\theta_{ML} = \arg \max_{\theta} \sum_{i=1}^{m} \log p_{\text{model}}(x^{(i)}, y^{(i)}; \theta)
\]

• Square loss
 – Gaussian distribution in model errors

• Tools
 – SVM
 – Neural networks
From ERM to Deep Learning

- Model of feedforward neural network

\[
Y(\theta, X) = \theta_h \times \theta_{h-1} \times \theta_1 \times X
\]

- Batch learning

\[
\min_{\theta} \frac{1}{m} \sum_{i=1}^{m} L(f(x^{(i)}; \theta), y^{(i)})
\]

- First order and second order in optimization
First Order Method

• Gradient (a vector)

\[g = \nabla_{\theta} J^*(\theta) = \sum_{x} \sum_{y} P_{\text{data}}(x, y) \nabla_{\theta} L(f(x; \theta), y). \]

• Cons
 – Time consuming for each iteration
 – Not linear convergence rate
 • Convex case: \(O \left(\frac{1}{T} \right) \) with \(T \) being the total iteration
 • Acceleration case: \(O \left(\frac{1}{T^2} \right) \)
 – How to set the learning rate

• Pros
 – Exact gradient information

Second Order Method

• Hessian matrix (a square matrix)

\[H_{i,j} = \frac{\partial g_i}{\partial \theta_j} \]

• Cons
 – Ill-conditioning of matrix (zero eigenvalue)
 – Time consuming in each iteration, or even failure, in calculating the inverse of Hessian matrix

• Pros
 – linear convergence rate
 • Strongly convex case: \(O(\rho^T) \) with \(0 < \rho < 1 \)
 \[T = O(\ln(\frac{1}{\epsilon})) \] with \(\epsilon \) being the accuracy
Update Rules

• First order method

\[\theta_{t+1} = \theta_t - \eta g_t \]

• Second order method

\[\theta_{t+1} = \theta_t - H_t^{-1} g_t \]

1. Optimal learning rate
2. The inverse is not easily to solve
3. Estimation error of Hessian leads to large deviation in training of deep models
Taylor Series Approximation

• Function approximation

\[f(x) = f(x_0) + (x-x_0)f'(x) + \frac{1}{2}(x-x_0)^2f''(x) + \ldots \]

• ERM problem

\[J(\theta) = J(\theta_0) + (\theta-\theta_0)^\top g + \frac{1}{2}(\theta-\theta_0)^\top H(\theta-\theta_0) + \ldots \]
SGD in Deep Learning

• Stochastic gradient descent (SGD)

\[\theta_{t+1} = \theta_t - \eta \hat{g}_t \]

\(\hat{g}_t \) is calculated based on: 1) one sample (online learning); 2) a small subset of samples (mini batch)

• Pros
 – Improve the efficiency in each iteration

• Cons
 – Noise in the estimation of gradient

How to deal with this issue?
An Ideal Assumption

- Gradient in (conditional) expectation

\[g_t = \mathbb{E}[\hat{g}_t] \quad \Rightarrow \quad g_t = \mathbb{E}[\hat{g}_t | F_{t-1}] \]

Why this assumption works?
An Ideal Assumption

- Gradient in (conditional) expectation

\[g_t = \mathbb{E}[\hat{g}_t] \quad \Rightarrow \quad g_t = \mathbb{E}[\hat{g}_t | F_{t-1}] \]

- Stochastic (convex) optimization

\[
\min F(\theta) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{E} [f_t(\theta)]
\]

 - Convex convergence rate: \(O\left(\frac{1}{\sqrt{T}}\right) \)

 - Acceleration rate: \(O\left(\frac{1}{T}\right) \) for strongly convex and smooth function

A Realistic Assumption

- Gradient in (conditional) expectation
 \[g_t = \mathbb{E}[\hat{g}_t] \rightarrow g_t = \mathbb{E}[\hat{g}_t|F_{t-1}] \]

- Stochastic (convex) optimization
 \[
 \min F(\theta) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{E} [f_t(\theta)]
 \]
 - Convex convergence rate: \(O\left(\frac{1}{\sqrt{T}}\right) \)
 - Acceleration rate: \(O\left(\frac{1}{T}\right) \) for strongly convex and smooth function

An Illustration

• A Comparison of GD and SGD

https://am207.github.io/2017/wiki/gradientdescent.html
An Illustration

- A Comparison of GD and SGD

https://am207.github.io/2017/wiki/gradientdescent.html
Ill-Conditioning of Objectives

• Ill-conditioning is general in deep models
 – Metric: condition number
 \[r = \frac{\lambda_{\text{max}}(H)}{\lambda_{\text{min}}(H)} \]
 – Large \(r \) means ill-condition

https://distill.pub/2017/momentum/
Momentum

- Classical method

\[v_{t+1} = \mu v_t - \eta g_t(\theta_t), \mu \in [0,1] \]
\[\theta_{t+1} = \theta_t + v_{t+1} \]

https://distill.pub/2017/momentum/

Momentum

• Classical method

\[v_{t+1} = \mu v_t - \eta g_t(\theta_t), \mu \in [0,1] \]
\[\theta_{t+1} = \theta_t + v_{t+1} \]

https://distill.pub/2017/momentum/

Momentum Intuition

- Classical method

\[\nu_{t+1} = \mu \nu_t - \eta g_t(\theta_t), \mu \in [0,1]\]
\[\theta_{t+1} = \theta_t + \nu_{t+1}\]

Momentum Intuition

• Classical method

\[v_{t+1} = \mu v_t - \eta g_t(\theta_t), \mu \in [0,1] \]

\[\theta_{t+1} = \theta_t + v_{t+1} \]

• Pros
 – Partially solve ill-conditioning
 – Help to adjust the learning rate
 – Faster convergence, and less oscillation
 – Set \(\mu = 0 \), we have GD/SGD

• Cons
 – A new parameter
Nesterov Accelerated Gradient

• Update rules

\[\nu_{t+1} = \mu \nu_t - \eta g_t(\theta_t + \mu \nu_t), \mu \in [0,1] \]

\[\theta_{t+1} = \theta_t + \nu_{t+1} \]

• Convergence rate in convex case

\[-O\left(1/T^2\right) \]

Momentum in Deep Learning

• Some deep models
 – SGD cannot obtain good performance
 – Try momentum technique

• Random initialization
 – Good performance in FNN and RNN
 – Constant initialization leads to failure of training

Function Properties in Optimization

• Revisit SGD

\[\theta_{t+1} = \theta_t - \eta \hat{g}_t \]
Function Properties in Optimization

- Revisit SGD
 \[\theta_{t+1} = \theta_t - \eta \hat{g}_t \]

- Bernstein condition
 \[\mathbb{E} \left[L(x^i, y^i, \theta_t)^2 \right] \leq B \left(\mathbb{E} L(x^i, y^i, \theta_t) - L(x^i, y^i, \theta^*) \right)^\gamma \]

- Convergence rate
 \[- O \left(T^{2-\gamma} \right) \text{ with } \gamma \in [0,1] \]

Holderian Error Bound

- Local Holderian error bound

\[\| \theta_t - \theta^* \| \leq C (\mathbb{E}[L(x^i, y^i, \theta_t)] - \mathbb{E}[L(x^i, y^i, \theta^*)])^{\gamma} \]

- Convergence rate

\[- O(T^{\frac{1-\gamma}{2-\gamma}}) \text{ with } \gamma \in [0,1] \]

Can one design deep models to have this property?

Discussions

• ERM problem in deep models
• Optimization to solve ERM problem
• SGD and momentum
• Function properties help to solve optimization