Deep Feedforward Networks

Han Shao, Hou Pong Chan, and Hongyi Zhang

Deep Feedforward Networks

- Goal: approximate some function f^*
 - e.g., a classifier, $y=f^{st}(x)$ maps input x to a class y
- Defines a mapping $y=f(x;\theta)$ and learns the value θ that results in the best approximation

activation function inputs weights sum x_1 w_1 x_2 w_2 output $\overline{w_n}$ x_n bias

ullet Takes n inputs and produce a single output

output =

$$output = \sum_{i=1}^{n} x_i w_i$$

$$output = \sum_{i=1}^{n} x_i w_i + b$$

activation function

$$output = g(\sum_{i=1}^{n} x_i w_i + b)$$

activation function

$$output = g(w^T x + b)$$

$$x = [x_1, ..., x_n]^T$$

 $w = [w_1, ..., w_n]^T$

Common Activation Functions

Hyperbolic

Rectified-Linear (ReLu)

Two-layer Neural Networks

- Two-layer neural networks model linear classifiers
- e.g., logistic regression

However, many real-world problems are non-linear!

input layer

output layer

 \mathcal{C}

$$y = \sigma(w^T x + b)$$

- XOR function:
 - Operation on two binary values, x_1 and x_2
 - If exactly one of them is 1, returns 1
 - Else, returns 0
- Goal: Learn a function that correctly performs on

$$X = \{[0,0]^T, [0,1]^T, [1,0]^T, [1,1]^T\}$$

Figure from Deep Learning Book

- Cannot use a linear model to fit the data
- Need a three-layer neural network

Define a three-layer neural network (one hidden layer)

input layer hidden layer output layer

$$x \qquad h = g(U^Tx + c) \ \ y = w^Th + b$$
 Use ReLu
$$g(z) = \max\{0,z\}$$

Perform linear regression on the learned space

Can use a linear model to fit the data in the learned space

Deep Feedforward Network

- Add more hidden layers to build a deep architecture
- The word "deep" means many layers
- Why going "deep"?

Shallow Architecture

- A feedforward network with a single hidden layer can approximate any function
- But the number of hidden units required can be very large
 - O(N) parameters are needed to represent N regions
 - e.g., represent the following k-NN classifier

Figure from kevinzakka.github.io

Deep Architecture

- Greater expressive power
 - A feedforward network with piece-wise linear activation functions (e.g., ReLu) can represent functions with a number of regions that is exponential in the depth of the network [Montufar et al. 2014]
- Better generalization
 - Empirically results show that greater depth results in better generalization for a wide variety of tasks

Better Generalization with Greater Depth

 Transcribe multi-digit numbers from photographs of addresses [Goodfellow et al. 2014d]

Large Shadow models over fit more

 Transcribe multi-digit numbers from photographs of addresses [Goodfellow et al. 2014d]

Training

Commonly used loss functions:

• Squared loss:
$$l(\theta) = \frac{1}{2}\mathbb{E}_{x,y\sim \hat{P}_{data}}||x-f(x;\theta)||^2$$
 Empirical distribution

• Cross-entropy loss:
$$l(\theta) = -\mathbb{E}_{x,y \sim \hat{P}_{data}} \log f(x;\theta)$$

Use it when the output is a probability distribution

Use gradient-based optimization algorithms to learn the parameters

Output Units

- Suppose the network provides us hidden features h
- Linear Units:

•
$$y = w^T h + b$$

- Usually used to produce the mean of a conditional Gaussian
- Do not saturated, good for gradient based algorithm

Output Units

- Sigmoid Units
 - $y = \sigma(w^T h + b)$

- Usually used to predict a Bernoulli distribution
 - e.g., binary classification, output $P({\it class}=1|x)$
- Saturated when \mathcal{Y} is close to 1 or 0 because it is exponentiated
 - Should use cross-entropy loss as training loss

$$l(\theta) = -\mathbb{E}_{x,y \sim \hat{P}_{data}} \log f(x;\theta)$$

Undergoes the exp in the sigmoid

Output Units

- Softmax Units
 - $y = \operatorname{softmax}(W^T h + b), y \in \mathbb{R}^k, W \in \mathbb{R}^{d \times k}$
 - ullet Output a probability distribution over a discrete variable with k possible values

• softmax
$$(z)_i = \frac{\exp(z_i)}{\sum_j \exp(z_i)}$$

- Softmax is a generalisation of sigmoid
 - Squashes the values of a k-dimensional vector
- Suffers from saturation, should use cross-entropy loss

Hidden Units

- Rectified-Linear Units
 - $h = g(U^T x + c)$
 - $g(z) = \max\{0, z\}$

Figure from Deep Learning Book

- Excellent default choices
- The derivative remains 1 whenever the unit is active
- Easy to optimise by gradient-based algorithms
- Drawback: cannot take gradient when activation is 0

Hidden Units

- Generalization of ReLU
 - $g(\alpha, z) = \max(0, z) + \alpha \min(z, 0)$

g(z)

- Leaky ReLu [Maas et al. 2013]
 - Fixes $\alpha = 0.01$, $g(z) = \max(0, z) + 0.01\min(z, 0)$
- Parametric ReLu [He et al. 2015]
 - Treat α as a learnable parameter
- Occasionally performs better than ReLu

Hidden Units

- Sigmoid Units
 - $y = \sigma(U^T x + c)$
- Hyperbolic Tangent Units
 - $y = \tanh(U^T x + c)$
- Both of them have widespread saturation
- Use them as hidden units in feedforward network are discouraged

Demo

- Task digit recognition (a classification task)
- Dataset notMNIST
- Setup
 - Training set 200000 pics
 - Validation set 10000 pics
 - Test set 18724 pics
- Measurement accuracy