Deep Feedforward
Networks

Han Shao, Hou Pong Chan, and Hongyi Zhang

Deep Feedforward
Networks

 Goal: approximate some function f
e e.g., aclassifier, Y = f ' (X) maps input x to a class ¥

e Defines amapping Y = f (X;!) and learns the value 0
that results in the best approximation

Neuron

weights sum activation function

 Jakes Il inputs and produce a single output

activation function

output = A1
w1
X2 Wo
| »
W
xn

n
output = Z T;W;
i=1

Neuron

weights

sum activation function

mn
output = Z x;w; + b
i=1

Neuron

weights

sum activation function

Neuron

activation function
l weights sum activation function

output = g(z xr;w; + b) X1
i=1

Neuron

activation function

weights sum activation function

output = g(w' x + b) X1

X =[Xq, ..., Xn]"

w=[wq,....,W,]'

1

1+ 2

Common Activation

Sigmoid

1

Functions

Hyperbolic

g(z) = tanh(z)

<

Rectibed-Linear (RelLu)

g(z) = max{0, z

0
Figure from Deep Learning Book

Two-layer Neural Networks

* Two-layer neural networks model linear classifiers

* e.g., logistic regression

However, many real-world

-li |
problems are non-linear! output layer

T y = o(w' z + b)

Example: Learning the XOR

e XOR function:
e QOperation on two binary values, X1 and X2
e |f exactly one of them is 1, returns 1
e Else, returns 0

e (Goal: Learn a function that correctly performs on
X = {[0,0]",[0,1]",[1,0]",[1,1]"}

Example: Learning the XOR

Original x space
| |

1 1 0 - L
. 0.8

OF O 1 - i! 0%0
| | 02'6.
. %
. _ 02 T
.0

0 1 _ Lo
X1 X1 ‘

Figure from Deep Learning Book

e Cannot use a linear model to fit the data

e Need a three-layer neural network

Example: Learning the XOR

e Define a three-layer neural network (one hidden layer)

A1
A2
hidden layer output layer
X h:g(UTx+c)y:WTh+l:
Use Relu

g(z) = max{0, z}

Perform linear regression on the learned space

Example: Learning the XOR

Learned h space

| [I L 1.0
1k 0 — T 0.8
T 0.6 X
® “
T 0.4
SN
c T 0.2
0.0
1.0
0.8
0} 0 1 — o 0.6
D SR ‘4\
| | | M _/ 0%4
0.00(.25
0 1 2 0.500.751.001 35 0.0
hz 1. 2],)01 752 00
hi

Figure from Deep Learning Book

e Can use a linear model to fit the data in the learned space

Deep Feedforward Network

e Add more hidden layers to build a deep architecture
e The word “deep” means many layers

e Why going “deep”?

</

X1

A2

hidden layers output layer

Shallow Architecture

o A feedforward network with can
approximate any function

 But the number of hidden units required can be very large

e O(N) parameters are needed to represent N regions

* e.g., represent the foIIowmg k NN classmer

LA e
Flgure from kevmzakka github.io

Deep Architecture

Greater expressive power

e A feedforward network with piece-wise linear activation

functions (e.g., RelLu) can represent functions with a
number of regions that is

[Montufar et al. 2014]

Better generalization

e Empirically results show that greater depth results Iin
better generalization for a wide variety of tasks

Better Generalization with
Greater Depth

e Transcribe multi-digit numbers from photographs of
addresses [Goodfellow et al. 2014d]

Test accuracy (percent)

96.5
96.0
95.5
95.0
94.5
94.0
93.5
93.0
92.5
92.0

4 5! 6 7 8

Figure from Deep Learning Book

9

10 11
Layers

Large Shadow models over
fit more

e Transcribe multi-digit numbers from photographs of
addresses [Goodfellow et al. 2014d]

97

| | | |
—e 3 convolutional

+—+ 3, fully connected

96 |-

Test accuracy (percent)

|
99 I- V—V 11, convolutional [
94 |- -
L
03 |- ' | y -
02 |- _
91 | | | | |
0.0 0.2 0.4 0.6 0.8 1.0
Number of parameters | 10°

Figure from Deep Learning Book

Training

e Commonly used loss functions:

1
* Squared loss: |[(!) = éEx,y! 5, [! f(XJ!)HZ

Empirical distribution

e Cross-entropy loss: I(!) =" Eyyi . logf (x;!)
!

Use it when the output is a probability distribution

* Use gradient-based optimization algorithms to learn the
parameters

Output Units

e Suppose the network provides us hidden features h

e [inear Units:
e y=w h+L
e No activation function

e Usually used to produce the mean of a conditional
Gaussian

Do not saturated, good for gradient based algorithm

Output Units

e Sigmoid Units

«y=1!(w'h+ b

e Usually used to predict a Bernoulli distribution
* e.g., binary classification, output P (class = 1|x)
e Saturated when Y is close to 1 or 0 because it is exponentiated

e Should use cross-entropy loss as training loss

(1) =1 E,,, s, logf(x;!)
) . ata T

Undergoes the exp in the sigmoid

Output Units

o Softmax Units

. y=softmax(W'h+ b),y! R, W ! RY K

* Qutput a probability distribution over a discrete variable with K
possible values

. softmax(z); = ! ?Xep;;i()zi)

e Softmax is a generalisation of sigmoid

e Squashes the values of a K-dimensional vector

e Suffers from saturation, should use cross-entropy loss

Hidden Units

Rectified-Linear Units

max{0,z}

e h=g(U'x+ ¢

9(z)

e g(z) = max{0,z} :

|
0

Figure from Deepz) Learning Book

o EXxcellent default choices
e The derivative remains 1 whenever the unit Is active
e Easy to optimise by gradient-based algorithms

e Drawback: cannot take gradient when activation is O

Hidden Units

e Generalization of ReL,U o
e g(!,z) =max(0,z)+ ! min(z,0)
e | eaky RelLu [Maas et al. 2013]
e Fixes! =0.01, g(z) =max(0,z)+0.01min(z,0)
e Parametric RelLu [He et al. 2015]

e Jreat o as a learnable parameter

e (QOccasionally performs better than RelLu

Hidden Units

Sigmoid Units

e y=!1(U"x+ ¢

Hyperbolic Tangent Units

. y=tanh(U'x + ¢)

Both of them have widespread saturation

Use them as hidden units in feedforward
network are discouraged

Demo

Task - digit recognition (a classification task)
Dataset - notMNIST

Setup

e Training set - 200000 pics

e \alidation set - 10000 pics

e Jest set - 18724 pics

Measurement - accuracy

