
Discovering Community User Latent Behavior:
Comparing ARM and LDA

Wen-Yen Chen∗

University of California
Santa Barbara, CA 93106
wychen@cs.ucsb.edu

Jon-Chyuan Chu∗

MIT
Cambridge, MA 02139
jonchu88@mit.edu

Junyi Luan∗

Peking University
Beijing 100084, China

luanjunyi@gmail.com
Hongjie Bai

Google Research
Beijing 100084, China
hjbai@google.com

Yi Wang
Google Research

Beijing 100084, China
wyi@google.com

Edward Y. Chang
Google Research

Mountain View, CA 94043
edchang@google.com

ABSTRACT
Users of social networking services can connect with each
other by forming communities for online interaction. Yet as
the number of communities hosted by such websites grows
over time, users have even greater need for effective commu-
nity recommendations in order to meet more users. In this
paper, we investigate two algorithms from very different do-
mains and evaluate their effectiveness for personalized com-
munity recommendation. First is association rule mining
(ARM), which discovers associations between sets of com-
munities that are shared across many users. Second is latent
Dirichlet allocation (LDA), which models user-community
co-occurrences using latent aspects. In comparing LDA with
ARM, we are interested in discovering whether modeling
low-rank latent structure is more effective for recommenda-
tions than directly mining rules from the observed data. We
experiment on an Orkut data set consisting of 492, 104 users
and 118, 002 communities. We show that LDA consistently
performs better than ARM using the top-k recommenda-
tions ranking metric, and we analyze examples of the latent
information learned by LDA to explain this finding. To ef-
ficiently handle the large-scale data set, we parallelize LDA
on distributed computers [1] and demonstrate our parallel
implementation’s scalability with varying numbers of ma-
chines.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval—Information Filtering ;
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Distributed Systems

General Terms
Algorithms, Experimentation

∗Work done while the first three authors were interns at
Google Research, Beijing.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2009, April 20–24, 2009, Madrid, Spain.
ACM 978-1-60558-487-4/09/04.

Keywords
Recommender systems, collaborative filtering, association
rule mining, latent topic models, data mining

1. INTRODUCTION
Much information is readily accessible online, yet we as

humans have no means of processing all of it. To help users
overcome the information overload problem and sift through
huge amounts of information efficiently, recommender sys-
tems have been developed to generate suggestions based on
user preferences. In general, recommender systems can be
classified into two categories: content-based filtering and col-
laborative filtering. Content-based filtering analyzes the as-
sociation between user profiles and the descriptions of items.
To recommend new items to a user, the content-based filter-
ing approach matches the new items’ descriptions to those
items known to be of interest to the user. On the other
hand, the collaborative filtering (CF) approach does not
need content information to make recommendations. The
operative assumption underlying CF is that users who had
similar preferences in the past are likely to have similar pref-
erences in the future. As such, CF uses information about
similar users’ behaviors to make recommendations. Besides
avoiding the need for collecting extensive information about
items and users, CF requires no domain knowledge and can
be easily adopted across different recommender systems.

In this paper, we focus on applying CF to community rec-
ommendation. To investigate which notions of similarity are
most useful for this task, we examine two approaches from
different fields. First, association rule mining (ARM) [2] is a
data mining algorithm that finds association rules based on
frequently co-occurring sets of communities and then makes
recommendations based on the rules. For example, if users
in the community “New York Yankees” usually join the com-
munity “MLB” (for Major League Baseball), then ARM will
discover a rule connecting communities “New York Yankees”
and “MLB.” If you join “New York Yankees,” you can be rec-
ommended “MLB.” Generally speaking, ARM can discover
explicit relations between communities based on their co-
occurrences across multiple users.

Second, latent Dirichlet allocation (LDA) [5] is a machine-
learning algorithm that models user-community co-occurrences
using latent aspects and makes recommendations based on
the learned model parameters. Unlike ARM, LDA models

the implicit relations between communities through the set
of latent aspects. Following the previous example, suppose
we have another community called “New York Mets” that
shares many users in common with “MLB” but not with
“New York Yankees.” If you are a user joining “New York
Mets,” you would not receive recommendations from ARM
for “New York Yankees,” because there are not enough “New
York Mets”-“New York Yankees” co-occurrences to support
such a rule. This is the problem of sparseness in explicit
co-occurrence. On the other hand, LDA can possibly rec-
ommend “New York Yankees” because of there may exist an
implicit relation (semantically, “baseball”) among the three
communities. However, implicit co-occurrence is not always
inferred correctly. Suppose the community “Boston Red
Sox” occurs frequently with “MLB” but not “New York Yan-
kees.” With LDA, if you were to join “Boston Red Sox,” you
might receive a recommendation for “New York Yankees,”
which is a bad recommendation as the two teams have a
longstanding rivalry. This is the problem of noise in inferred
implicit co-occurrence.

Explicit relations suffer from the problem of sparseness,
but are usually quite accurate. Modeling implicit relations
can overcome the sparseness problem; however, doing so may
introduce noise. In what scenarios does each type of relation
manifest its strengths and weaknesses? In particular, how
do membership size (the number of communities joined by
a given user) and community size (the number of users in
a given community) affect sparseness of explicit relations
mined using ARM?

• Membership size: Would explicit relations be more
effective at recommendations for active users, ones who
have joined many communities?

• Community size: Would implicit relations be more
effective at recommending new or niche communities
with few members?

Similarly, how do membership spread (the diversity among
the communities that a user joins) and community spread
(the diversity among the users of a particular community)
affect noise in the implicit relations inferred by a latent topic
model such as LDA?

• Membership spread: Would explicit relations be
more effective at recommendations for a diverse user,
one who is involved in a miscellaneous set of commu-
nities?

• Community spread: Would implicit relations be
more effective at recommending umbrella communi-
ties, those composed of many smaller, tighter sub-
communities or many non-interacting members?

It remains unclear how sparseness and noise come into play
in collaborative filtering. Both explicit and implicit relations
are arguably important for community recommendations to
overcome the problems of sparseness and noise, but how can
they be maximally leveraged for recommendations? Up until
now, little has been done in the way of performance compar-
isons. This paper makes the following three contributions:

• We apply both algorithms to an Orkut data set con-
sisting of 492, 104 users and 118, 002 communities. Our
empirical comparisons using the top-k recommenda-
tions metric show a surprisingly intuitive finding: that

LDA performs consistently better than ARM for the
community recommendation task when recommending
a list of 4 or more communities. However, for rec-
ommending up to 3 communities, ARM is still a bit
better.

• We further analyze the latent information learned by
LDA to help explain this finding.

• We parallelize LDA to take advantage of the distributed
computing infrastructure of modern data centers. Our
scalability study on the same Orkut data set shows
that our parallelization can reduce the training time
from 8 hours to less than 46 minutes using up to 32 ma-
chines (We have made parallel LDA open-source [1]).

The remainder of this paper is organized as follows: In
Section 2, we briefly introduce ARM and LDA and works
related to them. In Section 3, we show how ARM and LDA
can be adapted for the community recommendation task.
We present our parallelization framework of LDA in Sec-
tion 4 and an empirical study on our Orkut data set in Sec-
tion 5. Finally, we offer our concluding remarks in Section 6.

2. RELATED WORK
Association rule mining (ARM) is a well researched algo-

rithm for discovering of correlations between sets of items.
It was originally motivated by analysis of supermarket trans-
action data to discover which itemsets are often purchased
together. For example, the rule X ⇒ Y means customers
who purchased X would likely also purchase Y . To select in-
teresting rules from the set of all possible rules, support and
confidence are used as constraints. The support of an item-
set X, supp(X), is defined as the number of transactions in
the data set that contain the itemset. A frequent itemset is
one whose support value exceeds a predefined threshold. An
association rule is of the form X ⇒ Y , where X and Y are
itemsets. The support of a rule is defined as supp(X ⇒ Y)
= supp(X ∪ Y), and the confidence of a rule is defined as
conf(X ⇒ Y) = supp(X ∪ Y)/supp(X). Association rule
mining is the process of finding all rules whose support and
confidence exceed specified thresholds.

Since ARM was first introduced in [2], various algorithms
have been designed to mine frequent itemsets efficiently.
In [3] and [18], a fast algorithm called Apriori was proposed
to exploit the monotonicity property of the support of item-
sets and the confidence of association rules. Subsequently,
FP-growth [9] employed depth-first search for mining fre-
quent itemsets and has been shown to outperform Apriori
in most cases. ARM has been applied to several CF tasks.
The work of [15] proposed to use ARM for mining user ac-
cess patterns and predicted Web pages requests. In [14],
authors examined the robustness of a recommendation algo-
rithm based on ARM.

Latent Dirichlet allocation (LDA) [5], as used in docu-
ment modeling, assumes a generative probabilistic model in
which documents are represented as random mixtures over
latent topics, where each topic is characterized by a probabil-
ity distribution over words. In LDA, the generative process
consists of three steps. First, for each document, a multi-
nomial distribution over topics is sampled from a Dirichlet
prior. Second, each word in the document is assigned a sin-
gle topic according to this distribution. Third, each word

Table 1: Notations. The following notations are
used in the paper.

N number of users
M number of communities
K number of topics
P number of machines
u1, . . . , uN ∈ U a set of users
c1, . . . , cM ∈ C a set of communities
z1, . . . , zK ∈ Z a set of topics

Table 2: Each user is a transaction and his joined
communities are items.

User Communities
u1 {c1, c3, c7}
u2 {c3, c7, c8, c9}
u3 {c2, c3, c8}
u4 {c1, c8, c9}

is generated from a multinomial distribution specific to the
topic.

In [5], the parameters of LDA are estimated using an
approximation technique called variational EM, since stan-
dard estimation methods are intractable. The work of [7]
shows how Gibbs sampling, a simple and widely applica-
ble Markov Chain Monte Carlo technique, could be applied
to estimate parameters of LDA. By extending LDA, several
other algorithms have been proposed to model publication
(the Author-Topic model) [19] and email data (the Author-
Recipient-Topic model) [13]. Not limited to text analysis,
LDA has also been used to annotate images, where image
segmentations (blobs) can be considered as words in an im-
age document [4].

3. RECOMMENDATION ALGORITHMS
To assist readers, Table 1 defines terms and notations used

throughout this paper.

3.1 Association Rule Mining and Prediction
In ARM, we view each user as a transaction and his joined

communities as items, as shown in Table 2. We employ the
FP-growth algorithm [9] for mining frequent itemsets and
use the discovered frequent itemsets to generate association
rules. We generate first-order association rules for recom-
mendations. That is, each item is iterated one by one as the
precondition of the rule. For example, assuming the support
threshold is 2, we can mine the frequent itemsets and their
corresponding association rules as shown in Table 3. With
the rules at hand, we can recommend communities to a user
based on his joined communities. Specifically, we match
each joined community with the precondition of the rules
to recommend communities. We weight the recommended
communities by summing up each corresponding rule’s con-
fidence. For example, suppose a user joins communities {c7,
c8}. According to the association rules in Table 3 (b), three
rules will be taken into consideration: {c7 ⇒ c3}, {c8 ⇒ c3}
and {c8 ⇒ c9}. In the end, the user will be recommended
community c3 with score 1.667 (1+0.667) and community
c9 with score 0.667.

(a) Frequent itemsets and their
support. The minimum support
threshold is 2.

Frequent Itemsets Support
{c1} 2
{c3} 3
{c7} 2
{c8} 3
{c9} 2
{c3, c7} 2
{c3, c8} 2
{c8, c9} 2

(b) Association rules with their support and
confidence values.

Association Rules Support Confidence
c3 ⇒ c7 2 66.7%
c3 ⇒ c8 2 66.7%
c7 ⇒ c3 2 100%
c8 ⇒ c3 2 66.7%
c8 ⇒ c9 2 66.7%
c9 ⇒ c8 2 100%

Table 3: Frequent itemsets and association rules.

Figure 1: LDA model for user-community data.

3.2 LDA Training and Inference
In LDA, user-community data is entered as a membership

count where the value is 1 (join) or 0 (not join). To train
LDA, we then view the values as co-occurrence counts. Be-
low we show how to estimate parameters using Gibbs sam-
pling, then infer the community recommendation from the
model parameters and analyze the computational complex-
ity. As shown in Figure 1, we denote the per-user topic
distribution as θ, each being drawn independently from a
symmetric Dirichlet prior α, and the per-topic community
distribution as φ, each being drawn from a symmetric Dirich-
let prior β. For each occurrence, the topic assignment is
sampled from:

P (zi = j|wi = c, z−i,w−i) ∝

CCZ
cj + βP

c′ CCZ
c′j +Mβ

CUZ
uj + αP

j′ CUZ
uj′ +Kα

, (1)

where zi = j represents the assignment of the ith commu-
nity occurrence to topic j, wi = c represents the observa-
tion that the ith community occurrence is the community
c in the community corpus, z−i represents all topic assign-
ments not including the ith community occurrence, and w−i

represents all community occurrences not including the ith

Table 4: Sample MPI functions.
MPI Send: Blocking send message to destination process.
MPI Receive: Blocking receive a message from source process.
MPI Broadcast: Broadcasts information to all processes.
MPI AllGather: Gathers the data contributed by each process on all processes.
MPI Reduce: Performs a global reduction (i.e., sum) and returns the result to the specified root.
MPI AllReduce: Performs a global reduction (i.e., sum) and returns the result on all processes.

community occurrence. Furthermore, CCZ
cj is the number of

times community c is assigned to topic j, not including the
current instance, and CUZ

uj is the number of times topic j is
assigned to user u, not including the current instance. From
these count matrices, we can estimate the topic-community
distributions φ and user-topic distribution θ by:

φcj =
CCZ

cj + βP
c′ CCZ

c′j +Mβ
,

θuj =
CUZ

uj + αP
j′ CUZ

uj′ +Kα
, (2)

where φcj is the probability of containing community c in
topic j, and θuj is the probability of user u using topic j. The
algorithm randomly assigns a topic to each community oc-
currence, updates the topic to each occurrence using Gibbs
sampling (Equation 1), and then repeats the Gibbs sampling
process to update topic assignments for several iterations.

Once we have learned the model parameters, we can infer
user-community relations using Bayes’ rule. For example,
communities can be ranked for a given user according to the
score ξ:

ξcu =
X

z

φczθuz. (3)

Communities with high scores but not joined by the user are
good candidates for recommendation.

In each Gibbs sampling iteration, one needs to compute
the posterior probability for each community occurrence:

P (zi = j|wi = c, z−i,w−i). (4)

We assume that on average there are L community occur-
rences for every user and each P (zi = j|wi = c, z−i,w−i)
consists of K topics. Then, the total computational com-
plexity of running l Gibbs sampling iterations for N users is
O(K ·N · L · l).

4. PARALLELIZATION
We parallelized LDA with libraries of MPI [16] and MapRe-

duce [6]. (For our parallel ARM effort, please consult [12].)
With MPI, a program is loaded into the local memory of
each machine, where every local process receives a unique
ID. When needed, the processes can communicate and syn-
chronize with each other by calling the MPI library func-
tions shown in Table 4. With MapReduce, a user specifies
Map and Reduce functions and the program reads and writes
results to disks. For Gibbs sampling, which requires com-
putation of multiple iterations, we face a tradeoff decision
between efficiency (without disk IOs of MPI) and reliability
(with disk IOs of MapReduce). For our empirical studies
where the computation time is relatively short compared to
mean-time-between-failures (MTBF) of machines, we chose
the MPI implementation. (Though MPI itself does not per-
form logging for recovery, an application can perform check-

Figure 2: The user-community matrix is distribut-
edly computed and stored on multiple machines.

points to achieve fault tolerance, which is an issue beyond
the scope of this paper.) Since standard MPI implemen-
tations such as MPICH21 [8] cannot be directly ported to
our distributed data centers, we implemented our own MPI
system by modifying MPICH2. We have made LDA/MPI
open-source; please visit [1] for details.

The parameter estimation using Gibbs sampling in LDA
can be divided into parallel subtasks. Suppose P machines
are allocated in a distributed environment. We construct
N/P rows of the user-community matrix at each machine.
Thus, each machine i only deals with a specified subset of
users Ui ⊂ U , and is aware of all communities c. Recall
that in LDA, community memberships are viewed as occur-
rence counts. Each machine i randomly initializes a topic
assignment for every community occurrence and calculates
local counts CCZ

cj (i) and CUiZ
uj . All local counts are then

reduces (i.e., sum) to the specified root, and root broadcasts
the global count CCZ

cj to all machines. Most communica-
tion occurs here, and this is a MPI AllReduce function in
MPI shown in Table 4. We perform Gibbs sampling simul-
taneously on each machine independently, and updates the
topic assignment for each community occurrence. The sam-
pling process is repeated for l iterations. We summarize the
procedure in Algorithm 1.

The computational complexity for parallel LDA reduces
to O((K · N · L · l)/P). As for communication complex-
ity, CCZ

cj is reduced and broadcasted among P machines
in each training iteration through an MPI AllReduce call.
After some experiments, we use the recursive-halving and
recursive doubling algorithms [20] for an efficient implemen-
tation of MPI AllReduce functionality. Under this scheme,
the communication cost becomes O(α·log(P)+β · P−1

P
KM+

γ · P−1
P
KM) per iteration, where α is the startup time of a

transfer, β is the transfer time per byte, and γ is the compu-
tation time per byte for performing the reduction operation
locally on any machine.

5. EXPERIMENTS
We divide our experiments into two parts. The first part

is conducted on an Orkut community data set to evaluate

1http://www.mcs.anl.gov/research/projects/mpich2

Algorithm 1: Parallel LDA

Input: user-community matrix (N ×M)
Output: CCZ

cj , CUZ
uj

Variables:
l: number of iterations
Each machine i loads N/P rows of input matrix and1

randomly assigns a topic to each community occurrence
for iter = 1 to l do2

Each machine i calculates local counts3

CCZ
cj (i) and CUiZ

uj4

All local counts CCZ
cj (i) are reduced to the root5

CCZ
cj =

P
i C

CZ
cj (i)6

Root broadcasts global count CCZ
cj to all machines7

foreach u in Ui do8

foreach community occurrence do9

Performs Gibbs sampling using Equation (1)10

Updates the topic assignment11

end12

end13

end14

(a) Communities-per-user (b) Users-per-community

Figure 3: (a) Distribution of the number of commu-
nities per user, and (b) Distributions of the number
of users per community.

the recommendation quality of LDA and ARM using top-k
recommendations metric. The second part is conducted on
the same Orkut data set to investigate the scalability of our
parallel implementation.

5.1 Recommendation Quality

5.1.1 The Orkut Data Set
Orkut is an extremely active social network service with

more than two billion page views a day worldwide. Our
community membership information data set was a filtered
collection of Orkut in July 2007. To safeguard user privacy,
all user and community data were anonymized as performed
in [17]. After restricting our data to English communities
only, we have 492, 104 users and 118, 002 communities. The
density of the user-community matrix (percentage of non-
zero entries) is 0.01286%; the matrix is extremely sparse.
Figure 3(a) shows a distribution of the number of communi-
ties per user. About 45% of users have joined fewer than 10
communities, whereas 52% of users have joined more than
10 but fewer than 50 communities. Figure 3 (b) shows a dis-
tribution of the number of users per community. About 36%
of communities have more than 10 users but fewer than 1000
users. On average, each user has joined 15.18 communities,
and each community is joined by 63.29 users.

5.1.2 Evaluation Metric and Protocol
The metrics for evaluating recommendation algorithms

can be divided into two classes: (1) Prediction accuracy met-
rics measure the difference between the true values and the
predicted values. Commonly used metrics include Mean Ab-
solute Error (MAE) and Root Mean Square Error (RMSE);
(2) Ranking accuracy metrics measure the ability to pro-
duce an ordered list of items that matches how a user would
have ordered the same items. These include the top-k rec-
ommendations [11] and Normalized Discounted Cumulative
Gain (NDCG) [10]. Our overall goal is to measure the effec-
tiveness of suggesting top-ranked items to a user. Besides,
the predicted scores of recommended communities by LDA
and ARM are not in same range. Thus, to fairly compare
their performance, we employ the top-k recommendations
metric. That is, each ranking algorithm needs to suggest
the top k items to a user. We describe the evaluation pro-
tocol below.

First, for each user u, we randomly withhold one joined
community c from his original set of joined communities
to form user u’s training set. The training sets for all users
form the training input for both algorithms. Second, for each
user u, we select k− 1 additional random communities that
were not in user u’s original set; the withheld community c
together with these k − 1 other communities form user u’s
evaluation set (of size k).

For user u, LDA calculates the score for each of the k com-
munities in the evaluation set using Equation 3. ARM as-
signs the score of each community based on the mined rules.
Note that LDA is guaranteed to produce a well-defined score
for each evaluation community. However, this is not the case
for ARM. For a given user u, it is possible that an evalua-
tion community will not be recommended back by ARM’s
rules, because no rules for it apply to user u (based on his
training set). In this case, we assign such a “ruleless” com-
munity an infinite negative score to be worst ranked. Last,
for each user u, we order the k communities in his evaluation
set by their predicted score to obtain a corresponding rank
between 1 and k for each.

Our objective is to find the relative placement of each user
u’s withheld community c. There are k possible ranks for
c, ranging from the best rank where no random community
precedes c in the ordered list, to worst rank where all of
the random communities appear before c. The best result
we can hope for is that community c will precede the k − 1
random communities in our ranking.

5.1.3 Results
We first describe the parameter settings, and then present

the experimental results. For ARM, we ran a grid search
over different support values (50, 100, 200, 500, 1000, and
2000); for LDA, we searched a grid over the number of topics
(30, 60, 90, 120, and 150) and a grid of number of iterations
(100, 200, 300, 400, and 500), respectively. The default value
of α is 50/K (K is the number of topics), and the default
value of β is 0.1. We set k to be 1001, so that the number of
random communities selected for ranking evaluation is 1000.
Overall, there are 492, 104 communities withheld from Orkut
data set (one community withheld for each user).

We present the experimental results in three perspectives:
1) top-k recommendation performance of applying LDA and
ARM to the Orkut data set, 2) rank differences between
LDA and ARM, and 3) the analysis of latent information

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank

Cu
m

ul
at

ive
 D

ist
rib

ut
io

n

50 Support
100 Support
200 Support
500 Support
1000 Support
2000 Support

(a) ARM: macro view of top-k performance

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank

Cu
m

ul
at

ive
 D

ist
rib

ut
io

n

150 Topics
120 Topics
90 Topics
60 Topics
30 Topics

(b) LDA: macro view of top-k performance

Figure 4: The macro view (0% – 100%) of top-k recommendations performance: we plot the cumulative
distributions of ranks for withheld communities in the ordered list. Here, the length of the ordered list is
1001. The x -axis is the percentile rank for the withheld community; the lower the rank, the more successful
the recommendation.

0% 0.2% 0.4% 0.6% 0.8% 1% 1.2% 1.4% 1.6% 1.8% 2%

0.2

0.3

0.4

0.5

0.6

0.7

Rank

Cu
m

ul
at

ive
 D

ist
rib

ut
io

n

50 Support
100 Support
200 Support
500 Support
1000 Support
2000 Support

(a) ARM: micro view of top-k performance

0% 0.2% 0.4% 0.6% 0.8% 1% 1.2% 1.4% 1.6% 1.8% 2%

0.2

0.3

0.4

0.5

0.6

0.7

Rank

Cu
m

ul
at

ive
 D

ist
rib

ut
io

n

150 Topics
120 Topics
90 Topics
60 Topics
30 Topics

(b) LDA: micro view of top-k performance

Figure 5: The macro view (top 2%) of top-k recommendations performance. We plot the cumulative dis-
tributions of ranks for withheld communities in the ordered list. The x -axis is the percentile rank for the
withheld community; the lower the rank, the more successful the recommendation.

learned from LDA.

Top-k recommendation performance. Figure 4 shows
the cumulative distributions of ranks for withheld communi-
ties. For example, the 0% rank indicates that the withheld
community is ranked 1 in the ordered list, while 100% indi-
cates that it is ranked last in the list. The lower the rank,
the more successful the recommendation. From the figure
we can make the following three observations:

• ARM achieves the best performance when the support
value is 50. When the support value is higher, the
recommendation performance deteriorates. This is be-
cause when the support value is higher, there are fewer
frequent itemsets being mined, and thus fewer rules are
generated. Thus, the coverage of communities avail-
able for recommendations becomes smaller. Note that
a support value of 50, at 0.01% of the number of trans-
actions, is already extremely low in the ARM domain.
Rules discovered via ARM with support values lower
than this would likely not be statistically significant.

• LDA achieves more consistent performance than ARM.
The performance gap of LDA between different num-
ber of topics are very minor and thus the performance
curves basically overlap.

• ARM (with support values 50, 100, and 200) performs
slightly better than LDA for the top 0% rank (the with-
held community was ranked 1 in the ordered list of
length 1001) and then LDA outperforms ARM for the
rest of the ranks. Since recommender systems focus
more on recommending top-ranked items to users, we
zoom in on the top 2% performance for both LDA and
ARM in Figure 5. We then can make two more find-
ings. First, ARM (with support value 50) performs
slightly better than LDA only before the top 0.4%
rank. After that, LDA’s performance curves climb
more quickly than ARM’s. Second, the ARM curves
do not grow much between 0.2% ranks and 2% ranks.
That is, for the top 2% ranks, ARM leans toward ei-
ther assigning the very top rank, or the rank after 20,

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5 x 105

Rank Difference

N
um

be
r o

f C
om

m
un

iti
es

(a) ARM-50 vs. LDA-30

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5 x 105

Rank Difference

N
um

be
r o

f C
om

m
un

iti
es

(b) ARM-50 vs. LDA-150

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5 x 105

Rank Difference

N
um

be
r o

f C
om

m
un

iti
es

(c) ARM-2000 vs. LDA-30

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5 x 105

Rank Difference

N
um

be
r o

f C
om

m
un

iti
es

(d) ARM-2000 vs. LDA-150

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
0

1

2

3

4

5 x 105

Rank Difference

N
um

be
r o

f C
om

m
un

iti
es

(e) ARM-2000 vs. ARM-50

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
0

1

2

3

4

5 x 105

Rank Difference

N
um

be
r o

f C
om

m
un

iti
es

(f) LDA-30 vs. LDA-150

Figure 6: Histograms of each withheld community’s rank difference by various pairs of two algorithms. (a)
ARM with support value 50 versus LDA with 30 topics; (b) ARM with support value 50 versus LDA with
150 topics; (c) ARM with support value 2000 versus LDA with 30 topics; (d) ARM with support value 2000
versus LDA with 150 topics; (e) ARM with support value 2000 versus support value 50; (f) LDA with 30
topics versus 150 topics. For each withheld community, the rank difference is calculated by subtracting the
rank by the right-hand algorithm from the rank by the left-hand algorithm.

to the withheld communities.

These findings lead to two interesting questions: 1) for a
withheld community, what is the rank difference between
LDA and ARM, and how do their parameters affect the dif-
ferences? and 2) for what types of communities does LDA
rank better or worse than ARM, and what are the character-
istics of these communities and their corresponding users?
How does the latent information learned from LDA influence
the ranking performance? We address these questions next.

Rank differences between LDA and ARM. We exam-
ine each withheld community’s rank difference to plot the
histograms shown in Figure 6. To calculate the rank differ-
ence, taking Figure 6 (a) for example, we subtract the rank
by LDA-30-topics (the algorithm on the right-hand side)
from the rank by ARM-50-support (the algorithm on the
left-hand side). We obtained the remaining subfigures in a
similar fashion.

We compare the best-performing ARM to the worst and
best LDA in Figure 6 (a) and (b), respectively. Most of the
withheld communities have positive rank difference rather
than negative rank difference. This means LDA ranked most
of the communities better than ARM did. Moreover, when
LDA is better than ARM, it is likely that LDA is much bet-
ter than ARM (high variance for positive rank differences).
On the other hand, when ARM is better than LDA, it is
likely to be only a little better than LDA (low variance for
negative rank differences). Besides, when LDA trains with
more topics, the rank differences from ARM do not differ
much. This is expected, as LDA performs consistently with
different numbers of topics, as shown in Figure 4.

We compare the worst-performing ARM to the worst and

best LDA in Figure 6 (c) and (d), respectively. Comparing
to Figure 6 (a) and (b), we observe a similar pattern, but
fewer communities have rank difference zero. Instead, more
communities have positive rank differences. This is due to
ARM’s higher support value – ARM has fewer association
rules that would include the withheld community in the rec-
ommendation. Thus the withheld community is very likely
to be assigned an infinite negative score and ranked worst.

Comparing the worst and best ARM in Figure 6 (e), we
observe that there are far fewer communities with negative
rank differences than positive rank differences. This again
shows that ARM with a lower support value ranks better for
the withheld communities, because it has more rules. Com-
paring the worst and best LDA in Figure 6 (f), we observe
that unlike ARM, there is a nearly equal number of commu-
nities for positive and negative rank differences. Thus the
performances of LDA with varying numbers of topics are
similar.

Analysis of latent information learned from LDA.
To analyze the types of communities for which LDA ranks
better or worse than ARM, we investigate the latent infor-
mation learned from LDA. In Figure 7, we show the topic
distributions of each community in a user’s training set on
the left, and the topic distributions for the corresponding
user and his withheld community on the right. We study
four user cases: two where LDA ranks better, as shown
in Figure 7 (a) to (d), and two for the opposite, as shown
in Figure 7 (e) to (h). All user data were anonymized for
safeguarding user privacy. We can make three observations
about the type of community, similarity between communi-
ties, and population of community.

Table 5: The community information for user
Doe#1. The category of each community is defined
on Orkut. Last community is the withheld commu-
nity while the rest are joined communities.

Comm ID Community Name Category Size

59641 THE “8085” MICROPROCESSOR Alumni/Schools 84
102299 Windows Vista Computers/Internet 7041
18663 Turbo C/C++ Programming Computers/Internet 198
104613 Free Books Downloads Computers/Internet 4190
95076 Novell Computers/Internet 11
111431 JAVA Reference Computers/Internet 504
31820 ImageJ - JAVA Image processing Computers/Internet 1015
53474 Web Design Computers/Internet 4598

Table 6: The community information for user
Doe#2. Last community is the withheld commu-
nity while the rest are joined communities.

Comm ID Community Name Category Size

60640 Java Certification Computers/Internet 731
58344 Professor Ayaz Isazadeh Alumni/Schools 19
25422 PersianComputing Computers/Internet 39
100953 Iranian J2EE Developers Group Computers/Internet 297
53474 Web Design Computers/Internet 4598
27999 Yazd Sampad Schools/Education 17
43431 Tabriz University CS Students Alumni/Schools 13
80441 C# Computers/Internet 2247
66948 Delphi Computers/Internet 142

First, consider users Doe#1 and Doe#2, for whom LDA
ranks better than ARM. The topic distributions of their
joined communities tend to be more concentrated (Figure 7
(a) and (c)), i.e., they have low entropy. To uncover the se-
mantics behind these topics, we summarize the users’ com-
munity information, such as name, category and size, in Ta-
bles 5 and 6. We observe that these users are interested in
communities related to Computer Technology. Even though
the joined communities have different names, these users
essentially have similar interests. On the contrary, consider
users Doe#3 and Doe#4, for whom ARM ranks better. The
topic distributions of their joined communities tend to be
more scattered (Figure 7 (e) and (g)), i.e., they have high
entropy. We summarize these users’ community information
in Tables 7 and 8. Note that they have joined communities
of different interests, such as Automotive, Culture, Food,
Romance, and Education.

Second, when LDA ranks better, the withheld community
and joined communities have a common set of highest-peak
topics. For user Doe#1 (Figure 7 (a) and (b)), her with-
held community 53474 overlaps with her joined communi-
ties at the peak topic 30. However, when ARM ranks better
for a given user, there is no overlap at highest-peak topics
between the withheld community and joined communities.
Similarly, this is true for the topic distributions between a
withheld community and its user. When LDA works better,
user Doe#2 (Figure 7 (d)) has overlapped with his with-
held community 66948 at peak topic 30; when ARM works
better, user Doe#4 (Figure 7 (h)) has no overlap with his
withheld community at peak topic 39.

Third, ARM ranks better for users whose communities are
relatively large. For example, users Doe#3 and Doe#4 have
relatively larger communities than users Doe#1 and Doe#2.
This is perhaps because when a joined community is larger,
it more frequently co-occurs with the withheld community.
Hence, ARM can work better.

Overall, both LDA and ARM perform well for different
types of users. LDA performs better for users who have
joined relatively small communities of concentrated inter-
ests, and ARM is better for those who have joined relatively
large communities of scattered interests.

Table 7: The community information for user
Doe#3. Last community is the withheld commu-
nity while the rest are joined communities.

Comm ID Community Name Category Size

35049 Illegal street racin in KHI Automotive 8526
95173 May 1985 Cultures/Community 381
3541 CCD-LAW college road! Food/Drink/Wine 650
14470 BMW Enthusiasts Automotive 32171
90730 17th May Individuals 191
34939 I Love To Walk In The Rain Romance/Relationships 3895
116805 heights of laziness Other 232
29789 Honda-Owners and lovers Automotive 4584

Table 8: The community information for user
Doe#4. Last community is the withheld commu-
nity while the rest are joined communities.

Comm ID Community Name Category Size

50279 The Shahrukh Khan Fan Club Individuals 50857
44363 Girl power Religion/Beliefs 1467
109245 Love Never Dies Romance/Relationships 22600
111271 Why do friendz break our heart Romance/Relationships 10301
38320 Holy Angels School Alumni/Schools 95
15760 Why Life Is So Unpredictable?? Other 3878
8886 Men in Blue T20 WC Champs Recreation/Sports 43662
77269 star-one fame serial- REMIX Other 403
51302 Left Right Left Arts/Entertainment 13744
68215 Life is too short to live ! Other 8197

5.2 Scalability: Runtime Speedup in Distributed
Environments

Having demonstrated LDA’s promising performance for
the community recommendation task, we then parallelize it
to gain speedup. Our parallel LDA code was implemented in
C++. To conduct our scalability experiments, we used the
same Orkut data set as was used in Section 5.1. In analyzing
the runtime speedup for parallel LDA, we trained LDA with
150 topics and 500 iterations. Our experiments were run on
up to 32 machines at our distributed data centers. While not
all machines are identical, each machine is configured with
a CPU faster than 2GHz and memory larger than 4GB.

In Table 9 we report the speedup on the Orkut data set.
We separate total running time into three parts: compu-
tation time, communication time and synchronization time.
Communication time is incurred when message-passing takes
place between machines. Synchronization time is incurred
when the root machine waits for task completion on the slow-
est machine. Table 9 indicates that parallel LDA can achieve
approximately linear speedup on up to 8 machines. Af-
ter that, adding more machines yields diminishing returns.
When we use 32 machines, the communication time takes
up nearly half of the total running time. Hence, it is not
worthwhile to add more machines after that.

Figure 8 shows the speedup curves and overhead analysis.
In the figure, we draw on the top the computation-only line
(Comp), which approaches the linear speedup line. Compu-
tation speedup can become sublinear when adding machines
beyond a threshold. Note that other jobs may be run simul-
taneously with ours on each machine, though we chose a
data center with a light load. The result is expected due to
Amdahl’s law: the speedup of a parallel algorithms is limited
by the time needed for the sequential fraction of the algo-
rithm (i.e., step 12 in Algorithm 1). When accounting for
communication and synchronization overheads (the Comp
+ Comm line and the Comp + Comm + Sync line), the
speedup deteriorates. Between the two overheads, the syn-
chronization overhead has very little impact on the speedup
compared to the communication overhead.

10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Topic Index

Pr
ob

ab
ilit

y

Comm−59641 (84)
Comm−102299 (7041)
Comm−18663 (198)
Comm−104613 (4190)
Comm−95076 (11)
Comm−111431 (504)
Comm−31829 (1015)

(a) Topic distributions of 7 joined communities for user
Doe#1.

10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Topic Index

Pr
ob

ab
ilit

y

Comm−53474 (4598)
User−Doe#1

(b) Topic distributions for user Doe#1 and her withheld
community 53474. The withheld community is ranked
1 by LDA and 438 by ARM.

10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Topic Index

Pr
ob

ab
ilit

y

Comm−60640 (731)
Comm−58344 (19)
Comm−25422 (39)
Comm−100953 (297)
Comm−53474 (4598)
Comm−27999 (17)
Comm−43431 (13)
Comm−80441 (2247)

(c) Topic distributions of 8 joined communities for user
Doe#2.

10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Topic Index

Pr
ob

ab
ilit

y

Comm−66948 (142)
User−Doe#2

(d) Topic distributions for user Doe#2 and his withheld
community 66948. The withheld community is ranked
11 by LDA and 449 by ARM.

10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Topic Index

Pr
ob

ab
ilit

y

Comm−35049 (8526)
Comm−95173 (381)
Comm−3541 (650)
Comm−14470 (32171)
Comm−90730 (191)
Comm−34939 (3895)
Comm−116805 (232)

(e) Topic distributions of 7 joined communities for user
Doe#3.

10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Topic Index

Pr
ob

ab
ilit

y

Comm−29789 (4584)
User−Doe#3

(f) Topic distributions for user Doe#3 and her withheld
community 29789. The withheld community is ranked
8 by LDA and 1 by ARM.

10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Topic Index

Pr
ob

ab
ilit

y

Comm−50279 (50857)
Comm−44363 (1467)
Comm−109245 (22600)
Comm−111271 (10301)
Comm−38320 (95)
Comm−15760 (3878)
Comm−8886 (43662)
Comm−77269 (403)
Comm−51302 (13744)

(g) Topic distributions of 9 joined communities for user
Doe#4.

10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Topic Index

Pr
ob

ab
ilit

y

Comm−68215 (8197)
User−Doe#4

(h) Topic distributions for user Doe#4 and his withheld
community 68215. The withheld community is ranked
5 by LDA and 1 by ARM.

Figure 7: The topic distributions of joined communities (on the left) and withheld communities (on the
right) for four users. We also graph the topic distribution for each user. The number in parentheses for each
community is its size.

Table 9: Orkut data set. Runtime for LDA using dif-
ferent numbers of machines. 492,104 users, 118,002
communities, 150 topics, α=0.33, β=0.1.

Machines Comp Comm Sync Total Speedup

1 28911s 0s 0s 28911s 1
2 14543s 417s 1s 14961s 1.93
4 7755s 686s 1s 8442s 3.42
8 4560s 949s 2s 5511s 5.25
16 2840s 1040s 1s 3881s 7.45
32 1553s 1158s 2s 2713s 10.66

100 101100

101

Number of Machines

Sp
ee

du
p

Linear
Comp
Comp+Comm
Comp+Comm+Sync

Figure 8: Speedup and overhead analysis.

6. CONCLUSIONS
In this paper, we have compared ARM and LDA for the

community recommendation task, and evaluated their per-
formances using the top-k recommendations metric. Our
empirical comparisons using the top-k recommendations met-
ric show a surprisingly intuitive finding: that LDA performs
consistently better than ARM for the community recom-
mendation task when recommending a list of 4 or more
communities. However, for recommendation lists of up to
3 communities, ARM is still a bit better. We analyzed the
latent information learned from LDA to illustrate why it is
better at generating longer recommendation lists. To han-
dle large-scale data sets efficiently, we parallelized LDA to
take advantage of the distributed computing infrastructure
of modern data centers [1]. Our scalability study on the
same Orkut data set shows that our parallelization can re-
duce the training time from 8 hours to less than 46 minutes
using up to 32 machines.

There are several directions for future research. First,
our current user-community data is binary-valued to denote
membership or non-membership (one or zero). We can con-
sider extending our recommendation algorithms to handle
integer-valued or real-valued relations. For example, to de-
note the strength of relationship between a user and a com-
munity, we can use either the number of posts from this user
to that community’s forum, or the number of visits by the
user to the community’s forum. Second, we can extend our
ARM method to take multi-order rules into consideration
rather than just first-order rules.

7. ACKNOWLEDGMENTS
The authors would like to thank Ellen Spertus for provid-

ing the Orkut data used in the experiments, and Feng Yan
for his stimulating discussions and helpful comments.

8. REFERENCES
[1] Open source parallel lda. http://code.google.com/p/glda/.
[2] R. Agrawal, T. Imieliński, and A. Swami. Mining

association rules between sets of items in large databases.
In Proc. of the 1993 ACM SIGMOD conference, pages
207–216, 1993.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In Proc. of the 20th
VLDB conference, pages 487–499, 1994.

[4] D. M. Blei and M. I. Jordan. Modeling annotated data. In
Proc. of the 26th ACM SIGIR conference, pages 127–134,
New York, NY, USA, 2003.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet
allocation. Journal of Machine Learning Research,
3:993–1022, 2003.

[6] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Communications of the ACM,
51(1):107–113, 2008.

[7] T. L. Griffiths and M. Steyvers. Finding scientific topics.
Proceedings of the National Academy Science, 101 (suppl.
1):5228–5235, April 2004.

[8] W. Gropp, E. Lusk, and A. Skjellum. Using MPI-2:
Advanced Features of the Message-Passing Interface. MIT
Press, 1999.

[9] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent
patterns without candidate generation: A frequent-pattern
tree approach. Data Min. Knowl. Discov., 8(1):53–87, 2004.

[10] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of IR techniques. ACM Transactions on
Information Systems, 20(4):422–446, 2002.

[11] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In Proc. of the
14th ACM SIGKDD conference, pages 426–434, 2008.

[12] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang.
Pfp: parallel fp-growth for query recommendation. In Proc.
of the 2008 ACM RecSys conference, pages 107–114, 2008.

[13] A. McCallum, A. Corrada-Emmanuel, and X. Wang. The
author-recipient-topic model for topic and role discovery in
social networks: Experiments with enron and academic
email. Technical report, Computer Science, University of
Massachusetts Amherst, 2004.

[14] J. J. Sandvig, B. Mobasher, and R. Burke. Robustness of
collaborative recommendation based on association rule
mining. In Proc. of the 2007 ACM Recommender Systems
conference, pages 105–112, New York, NY, USA, 2007.
ACM.

[15] M.-L. Shyu, C. Haruechaiyasak, S.-C. Chen, and N. Zhao.
Collaborative filtering by mining association rules from user
access sequences. In Proc. of the International workshop on
Challenges in WIRI, pages 128–135, 2005.

[16] M. Snir and S. Otto. MPI-The Complete Reference: The
MPI Core. MIT Press, 1998.

[17] E. Spertus, M. Sahami, and O. Buyukkokten. Evaluating
similarity measures: a large-scale study in the orkut social
network. In Proc. of the 11th ACM SIGKDD Conference,
pages 678–684, 2005.

[18] R. Srikant and R. Agrawal. Mining generalized association
rules. Future Gener. Comput. Syst., 13(2-3):161–180, 1997.

[19] M. Steyvers, P. Smyth, M. Rosen-Zvi, and T. Griffiths.
Probabilistic author-topic models for information discovery.
In Proc. of the 10th ACM SIGKDD Conference, pages
306–315, 2004.

[20] R. Thakur, R. Rabenseinfer, and W. Gropp. Optimization
of collective communication operations in MPICH.
International Journal of High Performance Computing
Applications, 19(1):49–66, 2005.

	Introduction
	Related Work
	Recommendation Algorithms
	Association Rule Mining and Prediction
	LDA Training and Inference

	Parallelization
	Experiments
	Recommendation Quality
	The Orkut Data Set
	Evaluation Metric and Protocol
	Results

	Scalability: Runtime Speedup in Distributed Environments

	Conclusions
	Acknowledgments
	References

