Convolutional Networks

Yifan Gao

Outline

- The Convolution Operation
- Motivation of Convolution
- Pooling
- Example Architecture: AlexNet

The Convolution Operation

• Mathematical Definition of Convolution (Continues):

•
$$s(t) = (x * w)(t) = \int x(a)w(t - a)da$$

Input Kernel

 For example, x(t) represents location signal (with noise). To obtain a less noisy estimate of x(t), we can do this with a weighted function w(a):

•
$$s(t) = \int_{t-T}^{t} x(a)w(t-a)da$$

The Convolution Operation

• Mathematical Definition of Convolution (Continues):

•
$$s(t) = (x * w)(t) = \int x(a)w(t - a)da$$

Input Kernel

• Discrete Representation:

•
$$s(t) = (x * w)(t) = \sum_{-\infty}^{\infty} x(a)w(t-a)$$

The Convolution Operation

- For two-dimensional image I as input, and a two-dimensional kernel
 K:
 - $S(i,j) = (I * K)(i,j) = \Sigma_m \Sigma_n I(m,n) K(i-m,j-n)$
- Convolution is **commutative**, meaning we can equivalently write: • $S(i,j) = (I * K)(i,j) = \Sigma_m \Sigma_n I(i - m, j - n) K(m, n)$
- In fact, many neural network libraries implement a related function called **cross-correlation** but call it convolution...

•
$$S(i,j) = (I * K)(i,j) = \Sigma_m \Sigma_n I(i+m,j+n)K(m,n)$$

2D Convolution

Motivation of Convolution

- Sparse Interactions
- Parameter Sharing
- Equivariant Representations

Sparse Interactions

- (Top) Convolutional Network: Only s_2 , s_3 , s_4 are affected by x_3
- (Bottom) Fully Connected Network: All the outputs are affected by x_3

Sparse Interactions

- (Top) **Respective Field** of s_3 : x_2 , x_3 , x_4
- (Bottom) **Respective Field** of $s_3: x_1, x_2, x_3, x_4, x_5, x_6$

Sparse Interactions: Growing Receptive Fields

Parameter Sharing

Example: Edge Detection by Convolution

Efficiency of Convolution

- Input size: 320 by 280
- Kernel size: 2 by 1
- Output size: 319 by 280

	Convolution	Dense matrix	Sparse matrix
Stored floats	2	$319^*280^*320^*280 > 8e9$	$2^*319^*280 = 178{,}640$
Float muls or adds	$319^*280^*3 = 267,960$	$> 16\mathrm{e}9$	Same as convolution (267,960)

Credit: (Goodfellow)

Equivariant Representations

• For example, when processing images, it is useful to detect edges in different regions of the image.

Pooling

- makes the representations smaller and more manageable
- operates over each activation map independently

Max Pooling

У

max pool with 2x2 filters and stride 2

Credit: Fei-Fei Li

Why Pooling

- Invariant Representation
 - It is very useful if we care more about whether some feature is present than exactly where it is. fully-connected layers (fc₆, fc₇)
- Reducing the representation size
 - Efficiency
 - Handling inputs of varying size

Credit: Kaiming He ECCV14

Why Pooling

If we pool over the outputs of separately parametrized convolutions, the features can learn which transformations to become invariant to.

Example Classification Architectures: AlexNet

Architecture:

CONV1 MAX POOL1 NORM1 CONV2 MAX POOL2 NORM2 CONV3 CONV4 CONV5 Max POOL3 FC6 FC7 FC8

