Convolutional Networks

Yifan Gao
Outline

• The Convolution Operation
• Motivation of Convolution
• Pooling
• Example Architecture: AlexNet
The Convolution Operation

• Mathematical Definition of Convolution (Continues):
 • \(s(t) = (x \ast w)(t) = \int x(a)w(t - a)da \)

• For example, \(x(t) \) represents location signal (with noise). To obtain a less noisy estimate of \(x(t) \), we can do this with a weighted function \(w(a) \):
 • \(s(t) = \int_{t-T}^{t} x(a)w(t - a)da \)
The Convolution Operation

• Mathematical Definition of Convolution (Continues):
 \[s(t) = (x * w)(t) = \int x(a)w(t - a)\,da \]

• Discrete Representation:
 \[s(t) = (x * w)(t) = \sum_{-\infty}^{\infty} x(a)w(t - a) \]
The Convolution Operation

• For two-dimensional image I as input, and a two-dimensional kernel K:
 • $S(i, j) = (I \ast K)(i, j) = \sum_m \sum_n I(m, n)K(i - m, j - n)$

• Convolution is **commutative**, meaning we can equivalently write:
 • $S(i, j) = (I \ast K)(i, j) = \sum_m \sum_n I(i - m, j - n)K(m, n)$

• In fact, many neural network libraries implement a related function called **cross-correlation** but call it convolution…
 • $S(i, j) = (I \ast K)(i, j) = \sum_m \sum_n I(i + m, j + n)K(m, n)$
2D Convolution

Credit: (Goodfellow 2016)
Motivation of Convolution

• Sparse Interactions
• Parameter Sharing
• Equivariant Representations
Sparse Interactions

- (Top) Convolutional Network: Only s_2, s_3, s_4 are affected by x_3
- (Bottom) Fully Connected Network: All the outputs are affected by x_3

Credit: (Goodfellow 2016)
Sparse Interactions

- (Top) **Respective Field** of $s_3: x_2, x_3, x_4$
- (Bottom) **Respective Field** of $s_3: x_1, x_2, x_3, x_4, x_5, x_6$

Credit: (Goodfellow 2016)
Sparse Interactions: Growing Receptive Fields

Credit: (Goodfellow 2016)
Parameter Sharing

Convolution shares the same parameters across all spatial locations.

Traditional matrix multiplication does not share any parameters.

Credit: (Goodfellow 2016)
Example: Edge Detection by Convolution

Credit: (Goodfellow 2016)
Efficiency of Convolution

- Input size: 320 by 280
- Kernel size: 2 by 1
- Output size: 319 by 280

<table>
<thead>
<tr>
<th></th>
<th>Convolution</th>
<th>Dense matrix</th>
<th>Sparse matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stored floats</td>
<td>2</td>
<td>319280320*280 > 8e9</td>
<td>2319280 = 178,640</td>
</tr>
<tr>
<td>Float muls or adds</td>
<td>3192803 = 267,960</td>
<td>> 16e9</td>
<td>Same as convolution (267,960)</td>
</tr>
</tbody>
</table>

Credit: (Goodfellow)
Equivariant Representations

- For example, when processing images, it is useful to detect edges in different regions of the image.
Pooling

- makes the representations smaller and more manageable
- operates over each activation map independently

Credit: Fei-Fei Li
Max Pooling

Single depth slice

max pool with 2x2 filters and stride 2

Credit: Fei-Fei Li
Why Pooling

- Invariant Representation
 - It is very useful if we care more about whether some feature is present than exactly where it is.

- Reducing the representation size
 - Efficiency
 - Handling inputs of varying size

Credit: Kaiming He ECCV14
Why Pooling

If we pool over the outputs of separately parametrized convolutions, the features can learn which transformations to become invariant to.

Credit: (Goodfellow 2016)
Example Classification Architectures: AlexNet

[Krizhevsky et al. NIPS 2012]

Architecture:
- CONV1
- MAX POOL1
- NORM1
- CONV2
- MAX POOL2
- NORM2
- CONV3
- CONV4
- CONV5
- Max POOL3
- FC6
- FC7
- FC8
Q&A

Thanks