Learning SVM Classifiers with Indefinite Kernels

Suicheng Gu and Yuhong Guo

Dept. of Computer and Information Sciences Temple University

Support Vector Machines (SVMs)

- (Kernel) SVMs are widely used in various learning scenarios, due to
 - \succ Nice theoretical properties.
 - ➤Good generalization performance!

Support Vector Machines (SVMs)

Dual formulation of standard SVMs:

$$\max_{\alpha} \qquad \alpha^{\top} e - \frac{1}{2} \alpha^{\top} Y K_0 Y \alpha$$

s.t.
$$\alpha^{\top} \operatorname{diag}(Y) = 0, \quad 0 \le \alpha \le C$$

- A natural form to address nonlinear classification using kernels: $K_0 = \Phi^{\top} \Phi$
- Efficient global training using convex quadratic solvers.
- Natural on data expressed using pairwise similarities! (on conditions)

Problem

Standard SVMs require positive semi-definite property of the kernel matrix K₀

Problem

- In many applications, pairwise similarity is a natural, convenient or suitable way of data expression.
- But the underlying similarity functions produce indefinite kernel matrices
 - E.g., similarity matrix produced by protein sequence similarity measures; by KL-divergence between probability distributions

➢syntactic kernels are shown to be useful for automatic relational learning from pairs of natural language sentences [A. Moschitti, F. Zanzotto, ICML07]

Question

Can we still apply SVMs with indefinite kernels?

≻Not directly, but yes ...

Methods

Given indefinite kernel matrix $K_0 = U\Lambda U^{\top}$ $\Lambda = diag(\lambda_1, \dots, \lambda_N)$

Simple spectrum modification methods:

Clip: drop all negative eigenvalues

 $K_{clip} = U \operatorname{diag}(\max(\lambda_1, 0), \cdots, \max(\lambda_N, 0)) U^{\top}.$

Flip: flip the sign of negative eigenvalues

 $K_{flip} = U \operatorname{diag}(|\lambda_1|, \cdots, |\lambda_N|) U^{\top}$

Shift: shift the whole spectrum to remove negative eigenvalues

 $K_{shift} = U \operatorname{diag}(\lambda_1 + \eta, \dots, \lambda_N + \eta) U^{\top}$

Methods

Given indefinite kernel matrix $K_0 = U\Lambda U^{\top}$ $\Lambda = diag(\lambda_1, \dots, \lambda_N)$

Simple spectrum modification methods:

≻Clip:

Straightfoward and simple to use

≻Flip:

Shift:

Changed data independent of the classification.

Information valuable for classification might be lost

Methods

Learn approximated p.s.d. kernel matrix and simultaneously train the classification model

(Chen and Ye 2008; Chen, Gupta, and Recht 2009; Luss and d'Aspremont 2007)

Fig.,
$$\max_{\alpha} \min_{K} \qquad \alpha^{\top} e - \frac{1}{2} \alpha^{\top} Y K Y \alpha + \rho \| K - K_0 \|_F^2$$

s.t.
$$\alpha^{\top} \operatorname{diag}(Y) = 0; \quad 0 \le \alpha \le C; \quad K \succeq 0$$

- How about the testing procedure?
 - Use the original similarities? Inconsistent treatment of training and test samples.
 - Solving extra large positive semi-definite programming ?
 Provide some consistency, but with computational cost, not a principled solution

Proposed Approach

- A novel joint optimization model over SVMs and kernel principal component analysis (KPCA) for learning with indefinite kernels
 - reformulate the KPCA into a general kernel transformation framework
 - Incorporate the framework into SVM classifications to formulate a joint convex optimization problem
 - Principled and consistent transformations over training and test samples

KPCA Framework

• Given high-dimensional feature map ϕ of data X, $K_0 = \Phi^{\top} \Phi$, KPCA minimizes the reconstruction loss, transform the data to low dimension $Z = W^{\top} \Phi$

KPCA Framework

• Generalization of the kernel transformation: $\max_{V} tr(V^{\top}K_{0}K_{0}V), \quad \text{s.t. } V^{\top}K_{0}V = I_{d}.$

works for indefinite kernel matrix as well, as long as a feasible *d* value is given and V has real values

Principled and consistent transformations:

 \triangleright on training samples: $K_v = K_0 V V^T K_0$

For a similarity vector between training samples and a new test sample x:

$$k_v = K_0 V V^T k_0$$
 Original similarities

Connections with Spectrum Modifications

• Using different **V** matrix, the transformation framework $K_v = K_0 V V^T K_0$ can recover the spectrum modification methods:

≻Clip:

$$V_{clip} = U|\Lambda|^{-\frac{1}{2}} \operatorname{diag} \left(I_{\{\lambda_1 > 0\}}, \dots, I_{\{\lambda_N > 0\}} \right)$$

> Flip:

$$V_{flip} = U|\Lambda|^{-\frac{1}{2}}$$

> Shift:

 $V_{shift} = U|\Lambda|^{-1}(\Lambda + \eta I)^{\frac{1}{2}}$

Training SVM with Indefinite Kernels

• A joint optimization over SVM and KPCA $\|\Phi - WW^{T}\Phi\|_{F}^{2}$

$$\begin{split} \min_{\mathbf{w},b,\xi,V} & \frac{1}{2}\mathbf{w}^{\top}\mathbf{w} + C\sum_{i}\xi_{i} - \rho \ tr(V^{\top}K_{0}K_{0}V) & \text{ in the feature space} \\ \text{s.t.} & y_{i}(\mathbf{w}^{\top}V^{\top}K_{0}(:,i)+b) \geq 1-\xi_{i}, \ \xi_{i} \geq 0, \ \forall i; \\ V^{\top}K_{0}V = I_{d}; \ K_{0}VV^{\top}K_{0} \succeq 0. \end{split}$$

Alternatively, consider Dual SVM:

$$\begin{split} \max_{\alpha} \min_{V} & \alpha^{\top} e - \frac{1}{2} \alpha^{\top} Y K_{0} V V^{T} K_{0} Y \alpha \\ & -\rho \operatorname{tr}(V^{\top} K_{0} K_{0} V) \\ \text{s.t.} & \alpha^{\top} \operatorname{diag}(Y) = 0; \ 0 \leq \alpha \leq C; \\ & V^{\top} K_{0} V = I_{d}; \end{split}$$
 Convex!
For 2-class SVMs

Multiclass SVMs

- 1-vs-1 strategy
 - > Training multiple binary SVMs independently?
 - **Problem:** different transformation matrix V can be learned for each pair of classes, which leads to inconsistent transformation of the training samples.
 - > A joint training framework:

Idea: maintain one overall kernel transformation

$$K_v = K_0 V V^T K_0$$

the kernel matrix involved in a pair of classes a,b is a sub-matrix of K_v by selecting related entries

$$K_{ab} = D_{ab}^{\top} K_v D_{ab}.$$

Multiclass SVMs

1-vs-1 strategy: A joint training framework:

$$\max_{\alpha} \min_{V} \sum_{1 \le a < b \le k} \left(\alpha_{ab}^{\top} e - \frac{1}{2} \alpha_{ab}^{\top} Y_{ab} D_{ab}^{T} K_{0} V V^{T} K_{0} D_{ab} Y_{ab} \alpha_{ab} \right) -\rho tr(V^{\top} K_{0} K_{0} V)$$

s.t. $\alpha_{ab}^{\top} \operatorname{diag}(Y_{ab}) = 0, \quad \forall 1 \le a < b \le k;$
 $0 \le \alpha_{ab} \le C, \quad \forall 1 \le a < b \le k;$

A convex optimization problem.

 $V^{\top}K_0V = I_d$

Optimization: alternative optimization procedure

Experiments

- Synthetic Experiments
 - ➤Constructed four 3-class data sets
 - Each data set is generated using three Gaussian distributions with covariance matrix $\Lambda = \text{diag}(\sigma^2, \sigma^2)$ and mean vectors $\mu_1 = (-3, 3), \mu_2 = (3, -3)$ and $(3\sqrt{3}, 3\sqrt{3})$
 - Add Gaussian noise to the linear kernel matrix to produce indefinite kernel matrix

 $K_0(i,j) = \mathbf{x}_i^T \mathbf{x}_j + z_{ij}$, where $z_{ij} \sim N(0,\eta)$.

 Eight real-world data sets with indefinite kernels produced by different similarity measures

Synthetic Experiments

Characteristics of the four synthetic data sets

Data	σ^2	η	λ_{min}	$\left rac{\lambda_{min}}{\lambda_{max}} ight $	$\left \frac{\sum \lambda_i^-}{\sum \lambda_j^+}\right $
Synth 1	2	20	-143	.02	.47
Synth 1 Synth 2	2	100	-693	.11	.82
Synth 3	4		-140	.02	.44
Synth 4	4	100	-702	.11	.80

classification errors (%)

Data	Clip	Flip	Shift	Robust SVM	IKFD	SVM-CA
Synth 1	1.50	2.00	15.83	1.53	1.20	0.72
Synth 2	9.67	11.00	22.33	9.05	2.43	1.83
Synth 3	4.00	4.83	21.50	4.11	1.69	1.17
Synth 4	16.17	16.67	38.17	15.24	4.70	3.50

Synthetic Experiments

Characteristics of the four synthetic data sets

Data	σ^2	η	λ_{min}	$\left rac{\lambda_{min}}{\lambda_{max}} ight $	$\left \frac{\sum \lambda_i^-}{\sum \lambda_j^+}\right $
Synth 1	2	20	-143	.02	.47
Synth 1 Synth 2	2	100	-693	.11	.82
Synth 3	4		-140	.02	.44
Synth 4	4	100	-702	.11	.80

classification errors (%)

Data	Clip	Flip	Shift	Robust SVM	IKFD	SVM-CA
Synth 1	1.50	2.00	15.83	1.53	1.20	0.72
Synth 2	9.67	11.00	22.33	9.05	2.43	1.83
Synth 3	4.00	4.83	21.50	4.11	1.69	1.17
Synth 4	16.17	16.67	38.17	15.24	4.70	3.50

Real World Data Sets

classification error rates (%) on binary classification data sets.

Dataset	Yeast5v7	Yeast5v12	Yeast7v12	Amazon	Aural Sonar	Voting
Clip+SVM	40.0 ± 1.1	20.0 ± 1.3	25.5±1.2	10.3 ± 0.9	11.2 ± 0.8	3.0±0.3
Flip+SVM	46.0±0.6	17.8 ± 1.2	22.0 ± 1.0	11.0 ± 0.9	16.8 ± 0.9	3.2 ± 0.3
Shift+SVM	35.0 ± 0.5	42.8 ± 1.5	46.7 ± 1.9	$16.0 {\pm} 0.8$	17.3 ± 0.9	5.8 ± 0.5
IKFD	34.2 ± 1.0	17.5 ± 1.0	14.0 ± 1.0	15.6 ± 0.9	8.4±0.6	5.7 ± 0.3
Robust SVM	29.0 ± 1.0	18.0 ± 1.0	15.0 ± 0.9	8.8±0.8	11.0 ± 0.9	3.3 ± 0.3
SVM-CA	25.0±0.9	$10.7{\pm}0.8$	$10.5{\pm}0.8$	9.5 ± 0.9	8.6±0.6	2.7 ± 0.3

classification error rates (%) on multi-class classification data sets.

Dataset	Protein	Glass	Patrol	Catcortex
Clip+SVM	6.3±0.7	41.1 ± 1.2	48.6±1.5	10.5 ± 2.0
Flip+SVM	4.0 ± 0.7	39.4±1.1	44.8 ± 1.4	13.5 ± 2.3
Shift+SVM	5.5 ± 0.7	38.3 ± 0.9	51.4 ± 1.5	49.0 ± 4.0
IKFD	8.2±0.9	$43.3 {\pm} 1.1$	$25.7{\pm}1.8$	12.5 ± 1.9
Robust SVM	16.4 ± 1.1	39.1±1.0	31.3 ± 1.4	$9.4{\pm}1.7$
SVM-CA	2.5 ± 0.5	$37.3{\pm}0.8$	$12.4{\pm}0.8$	4.5±1.4

Thanks!