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ABSTRACT
We design a space efficient algorithm that approximates the
transitivity (global clustering coefficient) and total triangle
count with only a single pass through a graph given as a
stream of edges. Our procedure is based on the classic prob-
abilistic result, the birthday paradox. When the transitivity
is constant and there are more edges than wedges (common
properties for social networks), we can prove that our algo-
rithm requires O(

√
n) space (n is the number of vertices) to

provide accurate estimates. We run a detailed set of experi-
ments on a variety of real graphs and demonstrate that the
memory requirement of the algorithm is a tiny fraction of
the graph. For example, even for a graph with 200 million
edges, our algorithm stores just 60,000 edges to give accu-
rate results. Being a single pass streaming algorithm, our
procedure also maintains a real-time estimate of the transi-
tivity/number of triangles of a graph, by storing a miniscule
fraction of edges.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Com-
putations on Discrete Structures; G.2.2 [Graph Theory]:
Graph Algorithms

General Terms
Algorithms, Theory
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1. INTRODUCTION
Triangles are one of the most important motifs in real

world networks. Whether the networks come from social in-
teraction, computer communications, financial transactions,
proteins, or ecology, the abundance of triangles is pervasive
and it is critical feature that distinguishes real graphs from
random graphs. There is a rich body of literature on anal-
ysis of triangles and counting algorithms. Social scientists
use triangle counts to understand graphs [17, 28, 11, 39];
graph mining applications such as spam detection and find-
ing common topics on the WWW use triangle counts [18, 7];
motif detection in bioinformatics often count the frequency
of triadic patterns [25]. Nevertheless, counting triangles con-
tinues to be a challenge due to sheer size of the graphs (easily
in the order of billions of edges).

Many massive graphs come from modeling interactions in
a dynamic system. People call each other on the phone,
exchange emails, or become part of a tight unit (e.g, co-
authoring a paper); computers exchange messages; animals
come in the vicinity of each other; companies trade with
each other. These interactions manifest as a stream of edges.
The edges appear with timestamps, or “one at a time.” The
network (graph) that represents the system is an accumu-
lation of the observed edges. There are many methods to
deal with such massive graphs, such as random sampling [29,
36, 31], MapReduce paradigm [32, 27], distributed-memory
parallelism [4, 12], adopting external memory [13, 3], and
multithreaded parallelism [9].

But all of these methods need to store at least a large frac-
tion of the data. A small space streaming algorithm main-
tains a very small (using some randomness) set of edges,
called the “sketch” at any given time, and updates this sam-
ple as edges appear. Based on the sketch and some aux-
iliary data structures, the algorithm computes an accurate
estimate for the number of triangles for the graph seen so
far. The sketch size is orders of magnitude smaller than the
total graph. Furthermore, it can be updated rapidly when
new edges arrive, and hence maintains a real-time estimate
of the number of triangles. We also want a single pass al-
gorithm, so it only observes each edge once (think of it as
making a single scan of a log file). The algorithm cannot
revisit edges that it has forgotten.
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Figure 1: Realtime tracking of number of triangles and transitivities on cit-Patents (16M edges), storing only 60K edges from
the past. (Absolute values are shown with time (in years) on the x-axis.)

1.1 The streaming setting
Let G be a simple undirected graph with n vertices and m

edges. Let T denote the number of triangles in the graph and
W be the number of wedges, where a wedge is a path of length
2. A common measure is the transitivity κ = 3T/W [38],
a measure of how often friends of friends are also friends.
(This is also called the global clustering coefficient [31].)

Formally, a single pass streaming algorithm is defined as
follows. Consider a sequence of (distinct) edges e1, e2, . . . , em.
Let Gt be the graph at time t, formed by the edge set
{ei|i ≤ t}. The stream of edges can be thought of as a se-
quence of edge insertions into the graph. (Vertex insertions
can be trivially handled.) We do not know the number of
vertices ahead of time, and simply see each edge as a pair
(u, v) of vertex labels. So new vertices are implicitly added
as new labels. There is no assumption on the order of edges
in the stream. Edges incident to a single vertex do not nec-
essarily appear together.

In this paper, we do not consider edge/vertex deletions or
repeated edges. In that sense, this is a simplified version of
the full-blown streaming model. Nonetheless, previous work
on counting triangles focuses primarily of this model [6, 21,
10, 1, 22].

A streaming algorithm has a small memory M , and sees
the edges in stream order. At each edge et, the algorithm
can choose to update data structures in M (using the edge
et). Then the algorithm proceeds to et+1, and so on. The
algorithm is never allowed to recall an edge that has already
passed by. The memory M is much smaller than m, so the
algorithm keeps a small“sketch”of the edges it has seen. The
aim is to estimate the number of triangles in G := Gm at
the end of the stream. Usually, we desire the more stringent
guarantee of maintaining a running estimate of triangles and
transitivity of Gt at time t. We denote these quantities
respectively as Tt and κt.

1.2 Results
We present a single pass, O(m/

√
T )-space algorithm to

provably estimate the transitivity (with arbitrary additive
error) in a streaming graph. Streaming algorithms for count-
ing triangles or computing the transitivity have been stud-
ied before, but no previous algorithm attains this space
guarantee. (Buriol et al [10] give a single pass algorithm

with a stronger relative error guarantee that requires space
O(mn/T ). We discuss in more detail later.)

Although our theoretical result is interesting asymptoti-
cally, the constant factors and dependence on error in our
bound are large. Our main result is a practical streaming
algorithm (based on the theoretical one) for computing κ
and T , using some additional probabilistic heuristics. We
perform an extensive empirical analysis of our algorithm on
a variety of datasets (many thanks to SNAP [41], for their
extensive collection of downloadable graphs). The salient
features of our algorithm are:
• Theoretical basis: Our algorithm is based on the clas-

sic birthday paradox : if we choose 23 random people, the
probability that 2 of them share a birthday is at least 1/2
(Chap. II.3 of [19]). We extend this analysis for sampling
wedges in a large pool of edges. The final streaming algo-
rithm is designed by using reservoir sampling with wedge
sampling [31] for estimating κ. We prove a space bound of

O(m/
√
T ), which we show is O(

√
n) under common condi-

tions for social networks.
While our theory appears to be a good guide in designing the
algorithm and explaining its behavior, it should not be used
to actually decide space bounds in practice. Also, we point
out that for graphs where T is small, our algorithm does
not provide good guarantees for small space (since m/

√
T is

large).
• Accuracy and scalability with small sketches: We

test our algorithm on a variety of graphs from different
sources. In all instances, we get accurate estimates for κ
and T by storing at most 40K edges. This is even for graphs
where m is in the order of millions. Our relative errors on κ
and the number of triangles are mostly less than 5%. (In a
graph with very few triangles where κ < 0.01, our triangle
estimate has relative error of 12%.) Our algorithm processes
extremely large graphs. Our experiments include a run on a
streamed Orkut social network with 200M edges (by storing
only 40K edges, relative errors are at most 4%). We get
similar results on streamed Flickr and Live-journal graphs
with tens of millions of edges.
We run detailed experiments on some test graphs (with 1-3
million edges) with varying parameters to show convergence
of our algorithm. Comparisons with previous work [10] show
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that our algorithm gets within 5% of the true answer, while
the previous algorithm is off by more than 50%.
• Real-time tracking: For a temporal graph, our algo-

rithm precisely tracks both κt and Tt with less storage. By
storing 60K edges of the past, we can track this informa-
tion for a patent citation network with 16 million edges [41].
Refer to Fig. 1. We maintain a real-time estimate of both
the transitivity and number of triangles with a single pass,
storing less than 1% of the graph. We see some fluctuations
in the transitivity estimate due to the randomness of the
algorithm, but the overall tracking is fairly accurate.

2. PREVIOUS WORK
Enumeration of all triangles is a well-studied problem [14,

30, 24, 16, 8, 15, 32, 4]. Eigenvalue/trace based methods
have also been used [33, 5] to compute estimates of the
total and per-degree number of triangles. A long line of
work on sparsification methods [23, 35, 40, 26] started with
Tsourakakis et al. [34].

Theoretical streaming algorithms for counting triangles
were initiated by Bar-Yossef et al. [6]. Subsequent improve-
ments were given in [21, 10, 1, 22]. The space bounds

achieved are of the form mn/T . Note that m/
√
T ≤ mn/T

whenever T ≤ n2 (which is a reasonable assumption for
sparse graphs). These algorithm are rarely practical, since T
is often much smaller than mn. (Some multi-pass streaming
algorithms give stronger guarantees, but we will not discuss
them here.)

Buriol et al. [10] give an implementation of their algo-
rithm. For almost all of their experiments on graphs, with
storage of 100K edges, they get fairly large errors (always
more than 10%, and often more than 50%). Buriol et al pro-
vide an implementation in the incidence list setting, where
all neighbors of a vertex arrive together. In this case, their
algorithm is quite pratical since the errors are quite small.
Our algorithm scales to sizes (100 million edges) larger than
their experiments. We get better accuracy with far less stor-
age, without any assumption on the ordering of the data
stream. Furthermore, our algorithm performs accurate real-
time tracking. Becchetti et al. [7] gave a semi-streaming
algorithm for counting the triangles incident to every ver-
tex. Their algorithm uses clever methods to approximate
Jaccard similarities, and requires multiple passes over the
data.

Wedge-sampling based algorithms for various triadic mea-
sures on graphs [29, 31] work by sampling random wedges
of the graph. These algorithms are extremely accurate, but
the random sampling require the entire graph to be present.
Our algorithm can be thought of as a streaming variant of
wedge-sampling. The birthday paradox argument has been
connected to triangle counts, but in an entirely different con-
text. Alon et al [2] use this to prove lower bounds for finding
triangles in graphs.

3. OUTLINE
We begin in §4 by providing an intuitive high-level expla-

nation of the algorithm. §5 gives a formal description of our
implemented algorithm (denoted Streaming-Triangles).
The theoretical analysis is done in §6, for an idealized (and
inefficient) variant called Single-Bit. We stress that Single-
Bit is a thought experiment to highlight the theoretical as-
pects of our result, and we do not actually implement it.

In §6.1, we explain the heuristics used to get Streaming-
Triangles. The remainder of §6 gives a mathematical anal-
ysis of Single-Bit.

Finally, in §7, we give results on our runs of Streaming-
Triangles on real graphs.

4. INTUITION FOR THE ALGORITHM
The starting point is the idea of wedge sampling to esti-

mate κ [31]. A wedge is closed if it participates in a triangle
and open otherwise. Note that κ = 3T/W is exactly the
probability that a uniform random wedge is closed. This
gives a simple randomized algorithm for estimating κ (and
T ), by generating a set of (independent) uniform random
wedges and finding the fraction that are closed. But how do
we sample wedges from a stream of edges?

Suppose we just sampled a uniform random set of edges.
How large does this set need to be to get a wedge? The birth-
day paradox can be used to deduce that (as long as W ≥ m,
pretty much always true for real networks) O(

√
n) edges

suffice. A more sophisticated result, given in Lem. 1, pro-
vides (weak) concentration bounds on the number of wedges
generated by a random set of edges. A “small” number of
uniform random edges can give enough wedges to perform
wedge sampling (which in turn is used to estimate κ).

A set of uniform random edges can be maintained by the
standard method of reservoir sampling [37]. From these
edges, we generate a random wedge by doing a second level
of reservoir sampling. This implicitly treats the wedges cre-
ated in the edge reservoir as a stream, and performs reser-
voir sampling on that. Overall, this approximates uniform
random wedge sampling.

As we maintain our reservoir wedges, we check for closure
by the future edges in the stream. But there are closed
wedges that cannot be verified, because the closing edge may
have already appeared in the past. A simple observation
used by past streaming algorithms saves the day [21, 10]. In
each triangle, there is exactly one wedge whose closing edge
appears in the future. So we try to approximate the fraction
of these “future closed” wedges, which is exactly one-third
of the fraction of closed wedges. (Hence, the factor 3 that
pops up in Streaming-Triangles.)

Finally, to estimate T from κ, we need an estimate on
the total number of wedges W . This can be obtained by
reverse engineering the birthday paradox: given the number
of wedges in our reservoir sample of edges, we can estimate
W (again, using the workhorse Lem. 1).

5. THE PROCEDURE Streaming-Triangles
The streaming algorithm maintains two primary sets of

data: the edge reservoir and the wedge reservoir. These
are sets of edges and wedges that the algorithm stores from
the past. The parameters for the streaming algorithm are
the respective sizes of these sets, denoted by se and sw re-
spectively. The main algorithm is described in Streaming-
Triangles, although most of the technical computation is
performed in Update (which is invoked every time a new
edge appears). After processing edge et, the algorithm com-
putes running estimates for κt and Tt. These values do not
have to be stored, so they are immediately output and for-
gotten. We describe the main data structures of the algo-
rithm Streaming-Triangles.
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• Array edge res[1 · · · se]: This is the array of reservoir
edges and is the primary subsample of the stream main-
tained.
• New wedges Nt: This is a list of all wedges involving
et formed only by edges in edge res. This may often be
empty, if et is not in edge res. We do not necessarily
maintain this list explicitly, and we discuss implemen-
tational details later.
• Variable tot wedges: This is the total number of wedges

formed by edges in edge res.
• Array wedge res[1 · · · sw]: This is an array of reservoir

wedges of size sw.
• Array isClosed[1 · · · sw]: This is a boolean array. We

set isClosed[i] to be true if wedge wedge res[i] is found
to be closed.

Algorithm 1: Streaming-Triangles(se, sw)

1 Initialize edge res of size se and wedge res of size sw.
For each edge et in stream,

2 Call Update(et).
3 Let ρ be the fraction of entries in isClosed set to

true.
4 Set κt = 3ρ.

5 Set Tt = [ρt2/se(se − 1)]× tot wedges.

Algorithm 2: Update(et)

1 For every reservoir wedge wedge res[i] closed by et, set
isClosed[i] = true.

2 Flip a coin with heads probability = 1− (1− 1/t)se . If
it flips to tails, stop and proceed to the next edge in
stream. (So remaining code is processed only if coin
comes heads.)

3 Choose a uniform index i ∈ [se]. Set edge res[i] = et.
4 Determine Nt and let new wedges = |Nt|.
5 Update tot wedges, the number of wedges formed by

edge res.
6 Set q = new wedges/tot wedges.
7 For each index i ∈ [sw],
8 Flip coin with heads probability q.
9 If tails, continue to next index in loop.

10 Pick uniform random w ∈ Nt that involves et.
11 Replace wedge res[i] = w. Reset isClosed[i] = false.

5.1 Implementation details
Computing κt and Tt are simple and require no overhead.

We maintain edge res as a time-variable subgraph. Each
time edge res is updated, the subgraph undergoes an edge
insert and edge delete. Suppose et = (u, v). Wedges in
Nt are given by the neighbors of u and v in this subgraph.
From random access to the neighbor lists of u and v, we can
generate a random wedge from Nt efficiently.

Updates to edge res are very infrequent. At time t, the
probability of an update is 1 − (1 − 1/t)se . By linearity of
expectation, the total number of times that Nt is non-empty
is ∑

t≤m

1− (1− 1/t)se ≈
∑
t≤m

se/t ≈ se lnm

For a fixed se, this increases very slowly with m. So for most
steps, we neither update edge res or sample a new wedge.

The total number of edges that are stored from the past
is se + sw. The edge reservoir explicitly stores edges, and at
most sw edges are implicitly stored (for closure). Regardless
of the implementation, the extra data structures overhead is
at most twice the storage parameters se and sw. Since these
are at least 2 orders of magnitude smaller than the graph,
this overhead is easy to pay for.

6. THE IDEALIZED ALGORITHM Single-
Bit

The algorithm called Single-Bit is an idealized variant
of Streaming-Triangles that we can formally prove theo-
rems about. It requires more memory and expensive up-
dates, but explains the basic principles behind our algo-
rithm. We later give the memory reducing heuristics that
take us from Single-Bit to Streaming-Triangles.

The procedure Single-Bit has a single space parameter
s and outputs a single (random) bit at each t. The ex-
pectation of this bit is related to the transitivity κt. We
will describe Single-Bit in a more mathematical fashion.
Single-Bit maintains a set of edges Rt of size s. The
set of wedges constructed from Rt is Wt. Formally, Wt =
{wedge (e, e′)|e, e′ ∈ Rt}. For every et, Single-Bit records
all wedges closed by this edge. Single-Bit maintains a set
Ct, the set of wedges inWt for which it has detected a closing
edge. (Note that this is a subset of all closed wedges inWt.)
This set is easy to update as Rt changes.

Algorithm 3: Single-Bit(s)

1 Initialize R0 as a set of s dummy edges.
2 For each et in stream,
3 For each edge in Rt−1, replace it (independently) by
et with probability 1/t. This yields Rt.

4 Construct the set of wedges Wt.
5 Let Ct be the set of all wedges in Wt closed by et
6 Add all wedges in Ct−1 to Ct. If Wt is empty,

output bt = 0 and continue to next edge.
7 Pick a uniform random wedge in Wt.
8 Output bt = 1 if this wedge is in Ct and bt = 0

otherwise.

For convenience, we state this theorem for the final time
step. However, it also holds (with an identical proof) for
any large enough time t.

Theorem 1. Suppose s ≥ cm/(β3
√
T ), for some suffi-

ciently large constant c. Set est = m2|Wm|/(s(s − 1)).
Then |κ/3 − E[bm]| < β and with probability > 1 − β,
|W − est| < βW .

We now show that m/
√
T = O(

√
n/κ) (usually much

smaller for heavy tailed graphs) when W ≥ m. Denote
the degree of vertex v by dv. In this case, we can bound
2W =

∑
v dv(dv − 1) =

∑
v d

2
v − 2m ≥

∑
v d

2
v − 2W , so

W ≥
∑
v d

2
v/4. By 2m =

∑
v dv and the Cauchy-Schwartz

inequality,

m√
W
≤

∑
v dv√∑
v d

2
v

≤
√∑

v 1
√∑

v d
2
v√∑

v d
2
v

=
√
n
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Using the above bound, we get m/
√
T =

√
3m/
√
κW ≤√

3n/κ. Hence, when W ≥ m and κ is a constant (both
reasonable assumptions for social networks), we require only
O(
√
n) space.

6.1 Circumventing problems with Single-Bit
Single-Bit has two main problems, which are handled in

Streaming-Triangles by heuristic arguments.
Thm. 1 immediately gives a small sublinear space stream-

ing algorithm for estimating κ. The output of Single-Bit
has the right expectation. We can run many independent
invocations of Single-Bit and take the fraction of 1s out-
put to estimate E[bm] (which in turn is close to κ/3). A
Chernoff bound tells us that O(1/ε2) invocations suffice to
estimate E[bm] within additive error ε. The total space be-

comes O(m/(
√
Tε2)), which can be very expensive in prac-

tice. Even though m/
√
T is not large, for the reasonable

value of ε = 0.01, the storage cost blows up by a factor of
104. This is the standard method used in previous work for
streaming triangle counts.

This blowup is avoided in Streaming-Triangles by reusing
the same reservoir of edges for sampling wedges. Note that
Single-Bit is trying to generate a single uniform random
wedge from G, and we use independent reservoirs of edges to
generate multiple samples. Lem. 1 says that for a reservoir of
km/
√
W edges, we expect k2 wedges. So, if k > 1/ε and we

get > 1/ε2 wedges. Since the reservoir contains a large set
of wedges, we could just use a subset of these for estimating
E[bm]. Unfortunately, these wedges are correlated with each
other, and we cannot theoretically prove the desired concen-
tration. In practice, it appears that these wedges are suffi-
ciently uncorrelated that we get excellent results by reusing
the reservoir. This is an important distinction from past
streaming work [21, 10]. We can multiply our space by 1/ε
to (heuristically) get error ε, but this is not possible through
previous algorithms. Their space is multiplied by 1/ε2.

The second issue is that Single-Bit requires a fair bit of
bookkeeping. We need to generate a random wedge from the
large set Wt. While this is possible by storing edge res as a
subgraph, we have a nice (at least in the authors’ opinion)
heuristic fix that avoids these complications.

Suppose we have a uniform random wedge w ∈ Wt−1.
We can convert it to an “almost” uniform random wedge
in Wt. If Wt = Wt−1 is true (so Nt = ∅ which is true
most of of the time), then w is also uniform in Wt. Suppose
not. Note that Wt is constructed by removing some wedges
from Wt−1 and inserting Nt. Since w is uniform random in
Wt−1, if w is also present in Wt, then it is uniform random
in Wt \ Nt. Replacing w by a uniform random wedge in Nt
with probability |Nt|/|Wt| yields a uniform random wedge
in Wt. This is precisely what Streaming-Triangles does.

When w /∈ Wt, then the edge replaced by et must be
in w. We approximte this as a low probability event and
simply ignore this case. Hence, in Streaming-Triangles,
we simply assume that w is always inWt. This is technically
incorrect, it appears to have little effect on the accuracy in
practice. And it leads to a cleaner, efficient implementation.

6.2 Proving Thm. 1
Due to space considerations and for clarity’s sake, we pro-

vide proof sketches in this version. Mathematical details can
be found in the online full version [20].

We begin with some preliminaries. First, the set Rt is a
set of s uniform i.i.d. samples from {e1, e2, . . . , et}, a direct
consequence of reservoir sampling. Next, we define future-
closed wedges. Take the final graph G and label all edges
with their timestamp. For each triangle, the wedge formed
by the earliest two timestamps is a future-closed wedge. In
other words, if a triangle T has edges ei, ej , ek, (i < j < k),
then the wedge {ei, ej} is future-closed. The number of
future-closed wedges is exactly T , since each triangle con-
tains a single such wedge. We now have a simple yet impor-
tant claim about the output of Single-Bit.

Claim 1. The set Cm is exactly the set of future closed
wedges in Wm.

Proof. Consider some wedge {ei, ej}, i < j inWm. This
wedge was formed at time j, and remains in all Wt for j ≤
t ≤ m. If this wedge is future closed (say by edge et′ , for
t′ > j), then at time t′, the wedge will be detected to be
closed. Since this information is maintained by Single-Bit,
the wedge will be in Cm. If the wedge is not future closed,
then no closing edge will be found for it after time j. Hence,
it will not be in Cm.

Consider the situation of the data structures at the end.
The main technical effort goes into showing that the number
of wedges formed (by edges) in Rm (this is precisely |Wm|)
can be used to determine the actual number of wedges in
Gm. Furthermore, the number of future closed wedges in
Rm (precisely |Cm|, by Claim 1) can be used to estimate T .

This is formally expressed in the next lemma. Roughly,
if s = km/

√
W , then we expect k2 wedges formed by Rm.

We also get weak concentration bounds for the quantity. A
similar bound (with somewhat weaker concentration) holds
even when we consider the set of future closed wedges.

Lemma 1 (Birthday paradox for wedges). Let G be
a graph with m edges and S be some fixed subset of wedges in
G. Let R be a set of s uniformly and independently selected
edges (with replacement) from G. Let X be the random vari-
able denoting the number of wedges in S formed by edges in
R.

1. E[X] =
(
s
2

)
(2|S|/m2).

2. Let β > 0 be a parameter. If s ≥ 3m/(β3
√
|S|),

then with probability at least 1 − β, |X − E[X]| ≤
(βW/|S|)E[X].

Proof sketch. The first part is an adaptation of the birth-
day paradox calculation. Let the set R = {r1, r2, . . . , rs}.
We define random variables Xi,j for each i, j ∈ [s] with
i < j. Let Xi,j = 1 if the wedge {ri, rj} belongs to S and 0
otherwise. Then X =

∑
i<j Xi,j .

Since R consists of uniform i.i.d. edges from G, the fol-
lowing holds: for every i < j and every (unordered) pair
of edges {eα, eβ} from E, Pr[{ri, rj} = {eα, eβ}] = 2/m2.
This implies Pr[Xi,j = 1] = 2|S|/m2. By linearity of ex-
pectation, we have E[X] =

(
s
2

)
E[Xi,j ] =

(
s
2

)
Pr[Xi,j = 1]

=
(
s
2

)
(2|S|/m2), as required.

The second part is obtained by bounding the variance of
X and using the Chebyschev inequality. It is a fairly tech-
nical proof that can be found in the full version.

We now sketch the proof of Thm. 1. (As mentioned ear-
lier, the complete rigorous proof can be found in the full
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Table 1: Properties of the graphs used in the experiments

Graph n m W T κ
amazon0312 401K 2350K 69M 3686K 0.160
amazon0505 410K 2439K 73M 3951K 0.162
amazon0601 403K 2443K 72M 3987K 0.166
as-skitter 1696K 11095K 16022M 28770K 0.005
cit-Patents 3775K 16519K 336M 7515K 0.067

DBLP 317K 1049K 21M 224K 0.3064
roadNet-CA 1965K 2767K 6M 121K 0.060

web-BerkStan 685K 6649K 27983M 64691K 0.007
web-Google 876K 4322K 727M 13392K 0.055

web-NotreDame 326K 1090K 305M 8910K 0.088
web-Stanford 282K 1993K 3944M 11329K 0.009

wiki-Talk 2394K 4660K 12594M 9204K 0.002
youtube 1158K 2990K 1474M 3057K 0.006
flickr 1861K 15555K 14670M 548659K 0.112

livejournal 5284K 48710K 7519M 310877K 0.124
orkut 3073K 223534K 45625M 627584K 0.041

version [20].) At the end of the stream, the output bit bm is
1 if |Wm| > 0 and a wedge from Cm is sampled. Note that
both |Wm| and |Cm| are random variables.

To deal with the first event, we apply Lem. 1 with S being
the set of all wedges. So, E[|Wm|] =

(
s
2

)
(2W/m2). Since

s ≥ cm/(β3
√
T ) ≥ cm/(β3

√
W ), E[|Wm|] ≥ c2/β6 (a fairly

large number). Intuitively, the probability that |Wm| = 0
should be very small, and this can be bounded using the
concentration bound of Lem. 1.

For this informal discussion, let us just assume that |Wm| >
0 happens. Now, the probability that bm = 1 (which is
E[bm]) is exactly the fraction |Cm|/|Wm|. Suppose both
these behave like their expectation. By Claim 1, Cm is the
set of future closed wedges. The number of future closed
wedges is T , so Lem. 1 tells us that E[|Cm|] =

(
s
2

)
(2T/m2).

Hence, E[|Cm|]/E[|Wm|] = T/W = κ/3.
In general, the value of |Cm|/|Wm|might be quite different

from E[|Cm|]/E[|Wm|]. Note that E[|Cm|] ≥ c2/β6, by choice
of s. Using the concentration bounds of Lem. 1, we can argue
that the deviation of |Cm|/|Wm| from E[|Cm|]/E[|Wm|] is at
most β with probability > 1− β.

7. EXPERIMENTAL RESULTS
We implemented our algorithm in C++ and ran our ex-

periments on a MacBook Pro laptop equipped with a 2.8GHz
Intel core i7 processor and 8GB memory. The vital statistics
of all the graphs that we experiment upon are provided in
Tab. 1. For our case studies, we focus on the web-NotreDame
and amazon0505 graphs, having 1M and 3M edges respec-
tively.

Effects of storage on estimates: We explore the effect
that the parameters se, sw (referred to as the edge reservoir
and wedge reservoir sizes) have on the quality of the esti-
mates for κ and T . Both of these graphs have around 1M
edges. Each of these is converted into a random stream of
edges.

We set se to be 10K, 20K, and 40K, and vary sw from 10K
to 70K in increments of 10K. For each setting of the param-
eters, we perform a single run of Streaming-Triangles
on these streamed graphs. This is to give a true indication
of the behavior of Streaming-Triangles. The results are
shown in Fig. 3 and Fig. 4, both for the transitivity and tri-
angle counts for web-NotreDame and amazon0505. We fix a
setting of se and increase sw. In terms of the theory, a large

(a) Transitivity (b) Number of triangles

Figure 2: Output of a single run of Streaming-Triangles
on various orderings of the data stream for web-NotreDame.
The true value is given by the thick black line.

se helps generate wedges that are closer to uniform. A larger
sw then helps to get a sharper estimate for the fraction of
future closed wedges.

Observe that the algorithm is almost always within 10%
of the true answer. The statistical deviation is larger from
edge reservoirs of 10K and 20K, but it quite small for 40K.
Indeed for se =40K, the output is well within 5%. In gen-
eral, these figures show that the algorithm does not have
wild statistical fluctations and is fairly well behaved as we
increase the space. Increasing the space gives a predictable
improvement in the estimate.

Comparison with previous work: The streaming al-
gorithm of Buriol et al [10] was implemented and run on
real graphs. In general, they get fairly large error even with
storage of 100K edges. We provide comparisons with an im-
plementation of their algorithm for arbitrary streams (they
also have a version only for incidence streams, but we do not
compare with that). The basic sampling procedure involves
sampling a random edge and a random vertex and trying the
complete a triangle. This is repeatedly independently in par-
allel to get an estimate for the number of triangles. Buriol et
al provide various heuristics to speed up their algorithm, but
the core sampling procedure is what was described above.

In Fig. 5, we compare runs of Streaming-Triangles with
their algorithm for our test graphs. For convenience, we just
refer to their algorithm as “Buriol et al”. The x-axis is the
space used, and the y-axis gives the triangle estimate. For
simplicity, we fix se = 20K and increase sw in Streaming-
Triangles. For Buriol et al, we count the storage of a
single edge and vertex a single unit of space. (We ignore the
extra two edges needed to complete the triangle, and sim-
ply count the number of samples used.) While the previous
algorithm has estimates off by 50% or more, Streaming-
Triangles is much more accurate over all of its runs. (In-
deed, the figure is zoomed out so much that the statistical
flucations of Streaming-Triangles are barely visible.) For
amazon0505, the estimate give by Buriol et al is zero till 80K
samples. We note that these results are consistent with those
given in [10].

Runs on various graphs: We run Streaming-Triangles
on a variety of graphs obtained from the SNAP database
[41]. We simply set se as 20K and sw as 20K for all our
runs. Each graph is converted into a stream by taking a
random ordering on the edges. In Fig. 6, we show our re-
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(a) web-NotreDame: Transitivity (b) web-NotreDame: Triangles

Figure 3: web-NotreDame detailed runs: We fix the edge reservoir, se, to 10K, 20K, and 40K. Then we increase the wedge
reservoir size, sw, from 10K to 70K and track the output of Streaming-Triangles. We give plots for transitivity and triangle
counts.

(a) amazon0505: Transitivity (b) amazon0505: Triangles

Figure 4: amazon0505 detailed runs: We fix the edge reservoir, se, to 10K, 20K, and 40K. Then we increase the wedge reservoir
size, sw, from 10K to 70K and track the output of Streaming-Triangles. We give plots for transitivity and triangle counts.

sults for estimating both κ and T . The absolute values are
plotted for κ together with the true values. For triangles,
we plot the relative error (so |est − T |/T , where est is the
algorithm output) for each graph, since the true values can
vary over orders of magnitude. Observe that the transitiv-
ity estimates are very accurate. The relative error for T is
mostly below 8%, and often below 4%.

All the graphs listed have millions of edges, so our stor-
age is always 2 orders of magnitude smaller than the graph.
Most dramatically, we get accurate results on the Orkut so-
cial network, which has 220M edges. The algorithm stores
only 30K edges, a 0.0001-fraction of the graph. Also observe
the results on the Flickr and Livejournal graphs, which
also run into tens of millions of edges.

Effect of stream ordering: It is not possible to check
that our algorithm works for all orderings of the stream.
So we generate a different orderings of the edges in web-
NotreDame and run Streaming-Triangles on all the or-
derings. The results are given in Fig. 2. As before, we fix the
edge and wedge reservoir to 20K. We discuss the different
orderings below.

We first have two random orderings. Next, we generate a
stream through a bfs as follows. We take a bfs tree from a
random vertex and list out all edges in the tree. Then, we
list the remaining edges in random order. Since the average
degree of web-NotreDame is around 3, the tree has about
one-third of the total edges. So this ordering is fairly differ-
ent from a random ordering. Our fourth ordering involves
taking a dfs from a random vertex and list out edges in order
as seen by the dfs. Finally, we sort the vertices by degree
and list all edges incident to a vertex (this is an incidence
stream).

Streaming-Triangles performs reasonably on all these
different orderings. There is little deviation in the transitiv-
ity values. There is somewhat more difference in the triangle
numbers, but it never exceeds 10% relative error. This seems
to be simply deviations in repeated runs of Streaming-
Triangles.

Real-time tracking: A major benefit of Streaming-
Triangles is that it can maintain a real-time estimate of κt
and Tt. We take a real-world temporal graph, cit-Patents,
which contains patent citation data over decades. The edges
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(a) web-NotreDame (b) amazon0505

Figure 5: Comparison of our algorithm with Buriol et al [10] for amazon0505 and web-NotreDame. We use a 20K edge
reservoir and variable wedge reservoir for our storage.

(a) Transitivity (b) Triangles

Figure 6: Output of a single run of Streaming-Triangles on a variety of real datasets with 20K edge reservoir and 20K
wedge reservoir. The plot on the left gives the estimated transitivity values (labelled streaming) alongside their exact values.
The plot on the right gives the relative error of Streaming-Triangles’s estimate on triangles T . Observe that the relative
error for T is mostly below 8%, and often below 4%.

are time stamped with the year of citation, and hence give a
stream of edges. Using more storage of an edge reservoir of
40K and wedge reservoir of 15K, we accurately track these
values over time (refer to Fig. 1). Note that this is still orders
of magnitude smaller than the full size of the graph, which
is 16M edges. The errors of our estimates are overall quite
small. (The true values are only given for the year ends.)
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