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ABSTRACT
In this paper, we reveal a common deficiency of the current
retrieval models: the component of term frequency (TF)
normalization by document length is not lower-bounded prop-
erly; as a result, very long documents tend to be overly
penalized. In order to analytically diagnose this problem,
we propose two desirable formal constraints to capture the
heuristic of lower-bounding TF, and use constraint analysis
to examine several representative retrieval functions. Anal-
ysis results show that all these retrieval functions can only
satisfy the constraints for a certain range of parameter values
and/or for a particular set of query terms. Empirical results
further show that the retrieval performance tends to be poor
when the parameter is out of the range or the query term is
not in the particular set. To solve this common problem, we
propose a general and efficient method to introduce a suffi-
ciently large lower bound for TF normalization which can be
shown analytically to fix or alleviate the problem. Our ex-
perimental results demonstrate that the proposed method,
incurring almost no additional computational cost, can be
applied to state-of-the-art retrieval functions, such as Okapi
BM25, language models, and the divergence from random-
ness approach, to significantly improve the average precision,
especially for verbose queries.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms
Algorithms, Theory

Keywords
Term frequency, lower bound, formal constraints, data anal-
ysis, document length, BM25+, Dir+, PL2+

1. INTRODUCTION
Optimization of retrieval models is a fundamentally im-

portant research problem in information retrieval because
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an improved retrieval model would lead to improved perfor-
mance for all search engines. Many effective retrieval models
have been proposed and tested, such as vector space mod-
els [16, 18], classical probabilistic retrieval models [13, 8,
14, 15], language models [12, 20], and the divergence from
randomness approach [1]. However, it remains a significant
challenge to further improve these state-of-the-art models
and design an ultimately optimal retrieval model.

In order to further develop more effective models, it is
necessary to understand the deficiencies of the current re-
trieval models [4]. For example, in [18], it was revealed that
the traditional vector space model retrieves documents with
probabilities different from their probabilities of relevance,
and the analysis led to the pivoted normalization retrieval
function which has been shown to be substantially more ef-
fective than the traditional vector space model. In this work,
we reveal a common deficiency of existing retrieval models
in optimizing the TF normalization component and propose
a general way to address this deficiency that can be applied
to multiple state-of-the-art retrieval models to improve their
retrieval accuracy.

Previous work [4] has shown that all the effective retrieval
models tend to rely on a reasonable way to combine mul-
tiple retrieval signals, such as term frequency (TF), inverse
document frequency (IDF), and document length. A major
challenge in developing an effective retrieval model lies in
the fact that multiple signals generally interact with each
other in a complicated way. For example, document length
normalization is to regularize the TF heuristic which, if ap-
plied alone, would have a tendency to overly reward long
documents due to their high likelihood of matching a query
term more times than a short document. On the other hand,
document length normalization can also overly penalize long
documents [18, 4]. What is the best way of combining mul-
tiple signals has been a long-standing open challenge. In
particular, a direct application of a sound theoretical frame-
work such as the language modeling approach to retrieval
does not automatically ensure that we achieve the optimal
combination of necessary retrieval heuristics as shown in [4].

To tackle this challenge, formal constraint analysis was
proposed in [4]. The idea is to define a set of formal con-
straints to capture the desirable properties of a retrieval
function related to combining multiple retrieval signals. These
constraints can then be used to diagnose the deficiency of
an existing model, which in turn provides insight into how
to improve an existing model. Such an axiomatic approach
has been shown to be useful for motivating and developing
more effective retrieval models [6, 7, 2].
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In this paper, we follow this axiomatic methodology and
reveal a common deficiency of the current retrieval models
in their TF normalization component and propose a general
strategy to fix this deficiency in multiple state-of-the-art re-
trieval models. Specifically, we show that the normalized TF
may approach zero when the document is very long, which
often causes a very long document with a non-zero TF (i.e.,
matching a query term) to receive a score too close to or
even lower than the score of a short document with a zero
TF (i.e., not matching the corresponding query term). As a
result, the occurrence of a query term in a very long docu-
ment would not ensure that this document be ranked above
other documents where the query term does not occur, lead-
ing to unfair over-penalization of very long documents.

The root cause for this deficiency is that the component of
TF normalization by document length is not lower-bounded
properly, i.e., the score “gap” between the presence and ab-
sence of a query term could be infinitely close to zero or
even negative. In order to diagnose this problem, we first
propose two desirable constraints to capture the heuristic of
lower-bounding TF in a formal way, so that it is possible to
apply them to any retrieval function analytically. We then
use constraint analysis to examine several representative re-
trieval functions and show that all these retrieval functions
can only satisfy the constraints for a certain range of param-
eter values and/or for a particular set of query terms. Em-
pirical results further show that the retrieval performance
tends to be poor when the parameter is out of the range or
the query term is not in the particular set.

Motivated by this understanding, we propose a general
and efficient methodology for introducing a sufficiently large
lower bound for TF normalization, which can be applied di-
rectly to current retrieval models. Constraint analysis shows
analytically that the proposed methodology can successfully
fix or alleviate the problem.

Our experimental results on multiple standard collections
demonstrate that the proposed methodology, incurring al-
most no additional computational cost, can be applied to
state-of-the-art retrieval functions, such as Okapi BM25 [14,
15], language models [12, 20], and the divergence from ran-
domness approach [1], to significantly improve their average
precision, especially when queries are verbose. Due to its ef-
fectiveness, efficiency, and generality, the proposed method-
ology can work as a “patch” to fix or alleviate the problem
in current retrieval models, in a plug-and-play way.

2. RELATED WORK
Developing effective retrieval models is a long-standing

central challenge in information retrieval. Many different re-
trieval models have been proposed and tested, such as vector
space models [16, 18], classical probabilistic retrieval models
[13, 8, 14, 15], language models [12, 20], and the divergence
from randomness approach [1]; a few representative retrieval
models will be discussed in detail in Section 3.1. In our
work, we reveal and address a common “bug” of these re-
trieval models (i.e., TF normalization is not lower-bounded
properly), and develop a general plug-and-play “patch” to
fix or alleviate this bug.

Term frequency is the earliest and arguably the most im-
portant retrieval signal in retrieval models [15, 18, 12, 20,
17, 1, 4, 10]. The use of TF can be dated back to Luhn’s
pioneer work on automatic indexing [9]. It is widely recog-
nized that linear scaling in term frequency puts too much

weight on repeated occurrences of a term. Thus, TF is of-
ten upper-bounded through some sub-linear transformations
[15, 18, 12, 20, 1, 2, 10] to prevent the contribution from re-
peated occurrences from growing too large. Particularly, in
Okapi BM25 [14, 15], it is easy to show that there is a strict
upper bound (k1 + 1) for TF normalization. However, the
other interesting direction, lower-bounding TF, has not been
well addressed before. Our recent work [11] appears to be
the first study that notices the inappropriate lower-bound
of TF in BM25 through empirical analysis, but there is no
theoretic diagnosis of the problem. Besides, the approach
proposed in [11] is not generalizable to lower-bound TF nor-
malization in retrieval models other than BM25. In this
paper, we extend [11] to show analytically and empirically
that lower-bounding TF is necessary for all representative
retrieval models and develop a general approach to effec-
tively lower-bound TF in these retrieval models.

Document length normalization also plays an important
role in almost all existing retrieval models to fairly retrieve
documents of all lengths [18, 4], since long documents tend
to use the same terms repeatedly (higher TF). For example,
both Okapi BM25 [14, 15] and the pivoted normalization
retrieval model [18] use the pivoted length normalization
schema [18], which uses the average document length as the
pivoted length to coordinate the normalization effects for
documents longer than this pivoted length and documents
shorter than it. The PL2 model, a representative of the di-
vergence from randomness models [1], also uses the average
document length to control document length normalization.
A common deficiency of all these existing length normaliza-
tion methods is that they tend to force the normalized TF
to approach zero when documents are very long. As a re-
sult, a very long document with a non-zero TF could receive
a score too close to or even lower than the score of a short
document with a zero TF, which is clearly unreasonable.
Although some exiting studies have attempted to use a sub-
linear transformation of document length (e.g., the squared
root of document length [3]) to heuristically replace the orig-
inal document length in length normalization, they are not
guaranteed to solve the problem and often lose to standard
document length normalization such as the pivoted length
normalization in terms of retrieval accuracy. Our work aims
at addressing this inherent weakness of traditional document
length normalization in a more general and effective way.

Constraint analysis has been explored in information re-
trieval to diagnostically evaluate existing retrieval models
[4, 5], introduce novel retrieval signals into existing retrieval
models [19], and guide the development of new retrieval
models [6, 2]. The constraints in these studies are basic
and are designed mostly based on the analysis of some com-
mon characteristics of existing retrieval formulas. Although
we also use constraint analysis, the proposed constraints are
novel and are inspired by our empirical finding of a common
deficiency of the existing retrieval models. Moreover, al-
though some existing constraints (e.g., LNCs and TF-LNC
in [4, 5]) are also meant to regularize the interactions be-
tween TF and document length, they tend to be loose and
cannot capture the heuristic of lower-bounding TF normal-
ization. For example, the modified Okapi BM25 satisfies
all the constraints proposed in [4, 5], but it still fails to
lower-bound TF normalization properly. In this sense, the
proposed two new constraints are complimentary to existing
constraints [4, 5].
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Model G (c(t, Q)) F (c(t, D), |D|, td(t))
BM25 (k3+1)·c(t,Q)

k3+c(t,Q)
(k1+1)c(t,D)

k1(1−b+b·|D|/avdl)+c(t,D)
· log N+1

df(t)

PL2 c(t,Q)

⎧⎨
⎩

tfnD
t ·log2 (tfnD

t ·λt)+log2 e·(1/λt−tfnD
t )+0.5 log2 (2π·tfnD

t )
tfnD

t +1
if tfnD

t > 0 and λt > 1

0 otherwise

Dir c(t,Q) log
(

μ
|D|+μ

+
c(t,D)

(|D|+μ)p(t|C)

)
Piv c(t,Q)

{
1+log(1+log(c(t,D)))

1−s+s·|D|/avdl · log N+1
df(t)

if c(t, D) > 0

0 otherwise

Table 1: Document and query term weighting components of representative retrieval functions.

Notation Description
c(t, D) Frequency of term t in document D
c(t, Q) Frequency of term t in query Q
N Total number of docs in the collection
df(t) Number of documents containing term t
td(t) Any measure of discrimination value of term t
|D| Length of document D
avdl Average document length
c(t, C) Frequency of term t in collection C
p(t|C) Probability of a term t given by the collection

language model [20]

Table 2: Notation

3. MOTIVATION OF LOWER-BOUNDING
TF NORMALIZATION

In this section, we discuss and analyze a common defi-
ciency (i.e., lack of appropriate lower bound for TF normal-
ization) of four state-of-the-art retrieval functions, which re-
spectively represent the classical probabilistic retrieval model
(Okapi BM25 [14, 15]), the divergence from randomness ap-
proach (PL2 [1]), the language modeling approach (Dirichlet
prior smoothing [20]), and the vector space model (pivoted
normalization [18, 17]).

An effective retrieval function is generally comprised of
two basic separable components: a within-query scoring for-
mula for weighting the occurrences of a term in the query
and a within-document scoring formula for weighting the
occurrences of this term in a document. We will represent
each retrieval function in terms of these two separable com-
ponents to make it easier for us to focus on studying the
document side weighting:

S(Q,D) =
∑
t∈Q

G (c(t,Q)) · F (c(t, D), |D|, td(t)) (1)

where S(Q,D) is the total relevance score assigned to doc-
ument D with respect to query Q, and G(·) and F (·) are
within-query scoring function and within-document scoring
function respectively. In Table 1, we show how this general
scheme can be used to represent all the four major retrieval
models. Other related notations are listed in Table 2. Note
that most of the notations were also used in some previous
work, e.g., [4], and will be adopted throughout our paper.

3.1 Deficiency of Existing Retrieval Functions

3.1.1 Okapi BM25 (BM25)
The Okapi BM25 method [14, 15] is a representative re-

trieval function that represents the classical probabilistic re-
trieval model. The BM25 retrieval function is summarized
in the second row of Table 1. Following work [4], we modify
the original IDF formula of BM25 to avoid the problem of

possibly negative IDF values. The within-document scoring
function of BM25 can be re-written as follows:

FBM25 (c(t, D), |D|, td(t)) = (k1 + 1) · tfnD
t

k1 + tfnD
t

· log N + 1

df(t)
(2)

where k1 is a parameter, and tfnD
t is the normalized TF by

document length using pivoted length normalization [18].

tfnD
t =

c(t, D)

1− b+ b |D|
avdl

(3)

where b is the slope parameter in pivoted normalization.
When a document is very long (i.e., |D| is much larger

than avdl), we can see that tfnD
t could be very small and

approach 0. Consequently, FBM25 will also approach 0 as if
t did not occur in D. It can be seen clearly in Figure 1 (1):
when |D2| becomes very large, the score difference between
D2 and D1 appears to be very small. This by itself, would
not necessarily be a problem, but the problem is that, the
occurrence of t in a very long document D fails to ensure D
to be ranked above other documents where t does not occur.
It suggests that the occurrences of a query term in very long
documents may not be rewarded properly by BM25, and
thus those very long documents could be overly penalized,
which as we will show later, is indeed true.

3.1.2 PL2 Method (PL2)
The PL2 method is a representative retrieval function of

the divergence from randomness framework [1]. In this pa-
per, we use the modified PL2 formula derived by Fang et
al. [5] instead of the original PL2 formula [1]. The only
difference between this modified PL2 function and the orig-
inal PL2 function is that the former essentially ignores non-
discriminative query terms. It has been shown that the mod-
ified PL2 is more effective and robust than the original PL2
[5]. The modified PL2 (still called PL2 for convenience in
the following sections) is presented in the third row of Table
1, where λt = N

c(t,C)
is the term discrimination value, and

tfnD
t is the normalized TF by document length:

tfnD
t = c(t, D) · log2

(
1 + c · avdl|D|

)
(4)

where c > 0 is a retrieval parameter.
We can see that, when a document is very long, tfnD

t

could be very small and approach 0, which is very similar
to the corresponding component in BM25. What is worse is
that, when tfnD

t is sufficiently small, the within-document
score FPL2 will be a negative number surprisingly. How-
ever, as shown in Table 1, even if the term is missing, i.e.,
c(t,D) = 0, FPL2 can still receive a default zero score. This
interesting observation is illustrated in Figure 1 (2). It sug-
gests that a very long document that matches a query term
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Figure 1: Comparison of the within-document term scores, i.e., F (·), of documents D1 and D2 w.r.t. query
term t against different document lengths, where we assume c(t,D1) = 0 and c(t,D2) = 1. Here, x-axis and
y-axis stand for the length of documents and the within-document term scores respectively.
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Figure 2: Comparison of retrieval and relevance
probabilities against all document lengths when us-
ing BM25 on short (left) and verbose (right) queries.

may be penalized even more than another document (the
length can be arbitrary) that does not match the term; con-
sequently, those very long documents tend to be overly pe-
nalized by PL2.

3.1.3 Dirichlet Prior Method (Dir)
The Dirichlet prior method is one of the best performing

language modeling approaches [20]. It is presented in the
fourth row of Table 1, where μ is the Dirichlet prior.

It is observed that, the within-document scoring func-
tion FDir is monotonically decreasing with the document
length variable. And when a document D2 is very long,
say 50 ∗ avdl, even if it matches a query term, the within-
document score of this term could still be arbitrarily small.
And this score could be smaller than that of any average-
length document D1 which does not match the term. This
is shown clearly in Figure 1 (3). Thus, the Dirichlet prior
method can also overly penalize very long documents.

3.1.4 Pivoted Normalization Method (Piv)
The pivoted normalization retrieval function [17, 4] repre-

sents one of the best performing vector space models. The
detailed formula is shown in the last row of Table 1, where
s is the slope parameter. Similarly, the analysis of the piv-
oted normalization method also shows that it tends to overly
penalize very long documents, as shown in Figure 1 (4).

3.2 Likelihood of Relevance/Retrieval
Our analysis above has shown that, in principle, all these

retrieval functions tend to overly penalize very long docu-
ments. Now we turn to seeking empirical evidence to see if
this common deficiency hurts document retrieval in practice.

Inspired by Singhal et al.’s finding that a good retrieval
function should retrieve documents of all lengths with simi-
lar chances as their likelihood of relevance [18], we compare

the retrieval pattern of different retrieval functions with the
relevance pattern. We follow the binning analysis strategy
proposed in [18] and plot the two patterns against all docu-
ment lengths on WT10G in Figure 2, where the bin size is
set to 5000. Due to the space reason, we only plot BM25
as an example. But it is observed that other retrieval func-
tions have similar trends as BM25. The plot shows clearly
that BM25 retrieves very long documents with chances much
lower than their likelihood of relevance. This empirically
confirms our previous analysis that very long documents
tend to be overly penalized.

4. FORMAL CONSTRAINTS ON LOWER-
BOUNDING TF NORMALIZATION

A critical question is thus how we can regulate the inter-
actions between term frequency and document length when
a document is very long so that we can fix this common
deficiency of current retrieval models?

To answer this question, we first propose two desirable
heuristics that any reasonable retrieval function should im-
plement to properly lower bound TF normalization when
documents are very long: (1) there should be a sufficiently
large gap between the presence and absence of a query term,
i.e., the effect of document length normalization should not
cause a very long document with a non-zero TF to receive
a score too close to or even lower than a short document
with a zero TF; (2) a short document that only covers a
very small subset of the query terms should not easily domi-
nate over a very long document that contains many distinct
query terms.

Next, in order to analytically diagnose the problem of
over-penalizing very long documents, we propose two for-
mal constraints to capture the above two heuristics of lower
bounding TF normalization so that it is possible to apply
them to any retrieval function analytically. The two con-
straints are defined as follows:

LB1: Let Q be a query. Assume D1 and D2 are two
documents such that S(Q,D1) = S(Q,D2). If we refor-
mulate the query by adding another term q /∈ Q into Q,
where c(q, D1) = 0 and c(q, D2) > 0, then S(Q∪ {q}, D1) <
S(Q ∪ {q}, D2).

LB2: Let Q = {q1, q2} be a query with two terms q1
and q2. Assume td(q1) = td(q2), where td(t) can be any
reasonable measure of term discrimination value. If D1 and
D2 are two documents such that c(q2, D1) = c(q2, D2) = 0,
c(q1, D1) > 0, c(q1, D2) > 0, and S(Q,D1) = S(Q,D2), then
S(Q,D1 ∪ {q1} − {t1}) < S(Q,D2 ∪ {q2} − {t2}), for all t1
and t2 such that t1 ∈ D1, t2 ∈ D2, t1 /∈ Q and t2 /∈ Q.
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The first constraint LB1 captures the basic heuristic of
0-1 gap in TF normalization, i.e., the gap between presence
and absence of a term should not be closed by document
length normalization. Specifically, if a query term does not
occur in document D1 but occurs in document D2, and both
documents receive the same relevance score from matching
other query terms, then D1 should be scored lower than D2,
no matter what are the length values of D1 and D2. In
other words, the occurrence of a query term in a very long
document should still be able to differentiate this document
from other documents where the query term does not occur.

In fact, when F (0, |D|, td(t)) is a document-independent
constant, LB1 can be derived from a basic TF constraint,
TFC1 [4]. Here, F (0, |D|, td(t)) is the document weight for
a query term t not present in document D, i.e., t ∈ Q but
t /∈ D. This property is presented below in Theorem 1.

Theorem 1. LB1 is implied by the TFC1 constraint, if
the within-document weight for any missing term is a docu-
ment independent constant.

Proof: Let Q be a query. Assume D1 and D2 are two
documents such that S(Q,D1) = S(Q,D2). We reformu-
late query Q by adding another term q /∈ Q into the query,
where c(q,D1) = 0 and c(q, D2) > 0. If D′

2 is another
document, which is generated by replacing all the occur-
rences of q in D2 with a non-query term t /∈ Q ∪ {q}, then
c(q, D′

2) = 0 and S(Q,D1) = S(Q,D2) = S(Q,D′
2). Due

to the assumption that the document weight for the missing
term q is a document independent constant, it follows that
S(Q∪ {q}, D1) = S(Q∪ {q}, D′

2). Finally, since |D′
2| = |D2|

and c(q, D′
2) = 0 < c(q,D2), according to TFC1, we get

S(Q ∪ {q}, D1) = S(Q ∪ {q}, D′
2) < S(Q ∪ {q}, D2).

However, when the document weights for missing terms
are document dependent, LB1 will not be redundant in the
sense that it cannot be derived from other constraints such
as the proposed LB2 and the seven constraints proposed
in [4]. For example, the Dirichlet prior retrieval function, as
shown in Table 1, has a document-dependent weighting func-
tion for a missing term, which is log μ

|D|+μ
. As will be shown

later, the Dirichlet prior method violates LB1, although it
satisfies LB2 and most of the constraints proposed in [4].

The second constraint LB2 states that if two terms have
the same discrimination value, a repeated occurrence of one
term is not as important as the first occurrence of the other.
LB2 essentially captures the intuition that covering more
distinct query terms should be rewarded sufficiently, even
if the document is very long. For example, given a query
Q = {“computer”, “virus”}, if two documents D1 and D2

with identical relevance scores with respect to Q both match
“computer”, but neither matches “virus”, then if we add an
occurrence of “virus” to D1 to generate D′

1 and add an oc-
currence of “computer” to D2 to generate D′

2, we should
ensure that D′

1 has a higher score than D′
2. This intuitively

makes sense because D′
1 is more likely to be related to com-

puter virus, while D′
2 may be just about other aspects of

computer.
LB1 and LB2 are two necessary constraints to ensure that

very long documents would not be overly penalized. When
either is violated, the retrieval function would likely not per-
form well for very long documents and there should be room
to improve the retrieval function through improving its abil-
ity of satisfying the corresponding constraint.

5. CONSTRAINT ANALYSIS ON CURRENT
RETRIEVAL MODELS

5.1 Okapi BM25 (BM25)
BM25 satisfies TFC1 [4], and the within-document weight

for any missing term is always 0. Therefore, BM25 satisfies
LB1 unconditionally according to Theorem 1.

We now examine LB2. Due to the sub-linear property of
TF normalization, we only need to check LB2 in the case
when c(q1, D1) = 1, since when c(q1, D1) > 1, it is even
harder to violate the constraint. Consider a common case
when |D1| = avdl. It can be shown that the LB2 constraint
is equivalent to the following constraint on |D2|:

|D2| <
(

2k1 + 2

(k1)2 · b + 1

)
· avdl (5)

This means that LB2 is satisfied only if |D2| is smaller
than a certain upper bound. Thus, a sufficiently long doc-
ument would violate LB2. Note that the upper bound of
|D2| is a monotonically decreasing function with both b and
k1. This suggests that a larger b or k1 would lead BM25 to
violate LB2 more easily, which is confirmed by our experi-
ments.

5.2 PL2 Method (PL2)
In Fang et al.’s work [5], the TFC1 constraint is regarded

equivalent to that “the first partial derivative of the formula
w.r.t. the TF variable should be positive”, which has been
shown to be satisfied by the modified PL2 [5]. However, the
PL2 function is not continuous when the TF variable is zero,
and what is worse is that,

lim
c(t,D)→0

FPL2 (c(t, D), |D|, td(t)) < FPL2 (0, |D|, td(t)) = 0 (6)

which shows that even the modified PL2 still fails to satisfy
TFC1. So we cannot use Theorem 1 for PL2.

We thus check both LB1 and LB2 directly. Since the
optimal setting of parameter c is usually larger than 1 [4],
we consider a common case when |D1| = c

3
· avdl. Similar

to the analysis on BM25, we only need to examine LB2
for c(q1, D1) = 1. The LB1 constraint is approximately
equivalent to

|D2| < c

2
exp

(
− 2

λt
−1.84

)
− 1

· avdl (7)

and LB2 is approximately equivalent to

|D2| < c

2
exp

(
0.27 log(λt)− 2.27

λt
−2.26

)
− 1

· avdl (8)

Due to space limit, we cannot show all the derivation details.
We can see that both LB1 and LB2 set an upper bound

for document length, suggesting that a very long document
would violate both LB1 and LB2. However the upper bound
introduced by LB1 is always larger than that introduced by
LB2. So we focus on LB2 in the following sections.

The upper bound of document length in LB2 is mono-
tonically increasing with both c and λt. It suggests that,
when c is very small, there is a serious concern that long
documents would be overly penalized. On the other hand, a
more discriminative term also violates the constraint more
easily. These analyses are confirmed by our experiments.
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5.3 Dirichlet Prior Method (Dir)
With Dir, the within-document weight for a missing term

is log μ
|D|+μ

, which is document dependent. So Theorem 1

is not applicable to the Dirichlet method. We thus need to
examine LB1 and LB2 directly.

First, we only check LB1 at the point of c(q, D2) = 1,
which is the easiest case for LB1 to be violated. By consid-
ering the common case that |D1| = avdl, the LB1 constraint
is equivalent to the following constraint on |D2|:

|D2| < avdl +
1

p(q|C)

(
1 +

avdl

μ

)
(9)

It shows that the Dirichlet method can only satisfy LB1 if
|D2| is smaller than a certain upper bound, suggesting again
that a very long document would violate LB1. And this up-
per bound is monotonically decreasing with both p(q|C) and
μ. On the one hand, a non-discriminative (i.e., large p(q|C))
term q violates LB1 easily; for example, if μ ·p(q|C) = 1, the
upper bound appears to be as low as (2 ∗ avdl + μ). Thus,
the Dirichlet method would overly penalize very long docu-
ments more for verbose queries. On the other hand, a large
μ would also worsen the situation according to Formula 9.
These are all confirmed by our experimental results.

Next, we turn to check LB2, which is equivalent to

n+ 1 + μ · p(q|C)

n+ μ · p(q|C)
<

1 + μ · p(q|C)

μ · p(q|C)
(10)

where n ∈ {1, 2, · · · }. Interestingly, this inequality is always
satisfied, suggesting that the Dirichlet method satisfies LB2
unconditionally. We thus expect that the Dirichlet method
would have some advantages in the cases when other re-
trieval functions tend to violate LB2.

5.4 Pivoted Normalization Method (Piv)
It is easy to show that the pivoted normalization method

also satisfies LB1 unconditionally.
We now examine LB2. Similar to the analysis on BM25,

we only need to check LB2 in the case of c(q1, D1) = 1. By
considering a common case when |D1| = avdl, we see that
LB2 is equivalent to the following constraint on |D2|:

|D2| <
(
0.899

s
+ 1

)
· avdl (11)

This means that LB2 is satisfied only if |D2| is smaller
than a certain upper bound. And this upper bound is a
monotonically decreasing function with s. So, in principle,
a larger s would lead the pivoted normalization method to
violate LB2 more easily, which can also explain why the
optimal setting of s tends to be small [4]. Of course, if s
is set to zero, LB2 would be satisfied, but that would be to
turn off document length normalization completely, which
would clearly lead to non-optimal retrieval performance.

6. A GENERAL APPROACH FOR LOWER-
BOUNDING TF NORMALIZATION

The analysis above shows analytically that all the state-of-
the-art retrieval models would tend to overly penalize very
long documents. In order to avoid overly penalizing very
long documents, we need to lower-bound TF normalization
to make sure that the “gap” of the within-document scores
F (c(t,D), |D|, td(t)) between c(t,D) = 0 and c(t, D) > 0 is

sufficiently large. However, we do not want that the addi-
tion of this new constraint changes the implementations of
other retrieval heuristics in these state-of-the-art retrieval
functions, because the implementations of existing retrieval
heuristics in these retrieval functions have been shown to
work quite well [4].

We propose a general heuristic approach to achieve this
goal by defining an improved within-document scoring for-
mula F ′ as shown in Equation 12, where δ is a pseudo TF
value to control the scale of the TF lower bound, and l is a
pseudo document length which is document-independent. In
this new formula, a retrieval model-specific, but document-
independent value F (δ, l, td(t)) − F (0, l, td(t)) would serve
as an ensured “gap” between matching and missing a term:
if c(t,D) > 0, the component of TF normalization by doc-
ument length will be lower-bounded by such a document-
independent value, no matter how large |D| would be.

F ′(c(t, D), |D|, td(t))

=

{
F (c(t, D), |D|, td(t)) + F (0, l, td(t)) if c(t, D) = 0

F (c(t, D), |D|, td(t)) + F (δ, l, td(t)) otherwise

(12)

It is easy to verify that F ′(c(t,D), |D|, td(t)) is able to
satisfy all the basic retrieval heuristics [4] that are satis-
fied by F (c(t,D), |D|, td(t)): first, it is trivial to show that,
if F (c(t,D), |D|, td(t)) satisfies TFCs, F ′(c(t,D), |D|, td(t))
will also satisfy them; secondly, F (δ, l, td(t)) and F (0, l, td(t)),
as two special points of F (c(t,D), |D|, td(t)), satisfy the TDC
constraint in exactly the same way as F (c(t,D), |D|, td(t)),
so does F ′(c(t,D), |D|, td(t)); finally, since the newly intro-
duced components are document-independent, they raise no
problem for LNCs and TF-LNC.

The proposed methodology is very efficient, as it only adds
a retrieval model specific but document-independent value
to those standard retrieval functions. For a query Q, we only
need to calculate |Q| such values, which can even be done
offline. Therefore, our method incurs almost no additional
computational cost.

Finally, we can obtain the corresponding lower-bounded
retrieval function through substituting F ′(c(t,D), |D|, td(t))
for F (c(t,D), |D|, td(t)) in each retrieval function,

Take BM25 as an example. Obviously F ′(0, |D|, td(t)) =
0. In F (δ, l, td(t)), since l is a constant document length vari-
able used for document length normalization, its influence
can be absorbed into the TF variable δ, we thus set l = avdl
simply. Then, we obtain F (δ, avdl, td(t)) = (k1+1)δ

k1+δ
log N+1

df(t)
.

Clearly parameter k1 can also be absorbed into δ, and the
above formula is simplified again as δ log N+1

df(t)
. Finally, we

derive a lower-bounded BM25 function, namely BM25+,
as shown in the following Formula 13.

∑
t∈Q∩D

(k3 + 1)c(t, Q)

k3 + c(t, Q)
×

⎡
⎣ (k1 + 1)c(t, D)

k1
(
1− b+ b |D|

avdl

)
+ c(t, D)

+ δ

⎤
⎦

× log
N + 1

df(t)
(13)∑

t∈Q∩D

c(t, Q)

[
log

(
1 +

c(t, D)

μ · p(t|C)

)
+ log

(
1 +

δ

μ · p(t|C)

)]

+|Q| · log μ

|D|+ μ
(14)∑

t∈Q∩D

c(t,Q)

[
1 + log (1 + log(c(t, D)))

1− s+ s
|D|
avdl

+ δ

]
log

N + 1

df(t)
(15)
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∑
t∈Q∩D,λt>1

c(t, Q)

⎡
⎢⎢⎣ tfnD

t log2

(
tfnD

t · λt

)
+ log2 e ·

(
1
λt

− tfnD
t

)
+

log2

(
2π·tfnD

t

)
2

tfnD
t + 1

+
δ log2 (δ · λt) + log2 e ·

(
1
λt

− δ
)
+

log2 (2πδ)
2

δ + 1

⎤
⎥⎥⎦ (16)

Similarly, we can derive a lower-bounded Dirichlet prior
method (Dir+), a lower-bounded pivoted normalization method
(Piv+), and a lower-bounded PL2 (PL2+), which are pre-
sented in Formulas 14, 15, and 16 respectively.

Next, we check LB1 and LB2 on these four improved re-
trieval functions.

6.1 Lower-Bounded BM25 (BM25+)
It is trivial to verify that BM25+ still satisfies LB1 uncon-

ditionally. To examine LB2, we apply an analysis method
that is consistent with our analysis for BM25 in Section 5.1.
The LB2 constraint on BM25+ is equivalent to

k1

k1 + 2
<

(k1 + 1) · 1
k1

(
1− b+ b

|D2|
avdl

)
+ 1

+ δ (17)

which can be shown to be satisfied unconditionally if

δ ≥ k1
k1 + 2

(18)

Clearly, if we set δ to a sufficiently large value, BM25+ is
able to satisfy LB2 unconditionally, which is also confirmed
in our experiments that BM25+ works very well when we
set δ = 1.

6.2 Lower-Bounded PL2 (PL2+)
We only need to check LB2 on PL2+, since it is easier to

violate than LB1. With a similar analysis strategy as used
for analyzing PL2, the LB2 constraint on PL2+ is equivalent
to

|D2| < c · avdl

2
exp

((
0.27− 2δ

δ+1

)
log(λt)−

2.27− 2
δ+1

λt
−2.26−g(δ)

)
− 1

(19)

where g(δ) = (2δ+1) log δ−2δ+log(2π)
δ+1 . Due to space limit, we

cannot show all the derivation details in this section.
We can see that, given a δ, the right side of the Formula

19 (i.e., the upper bound of |D2|) is minimized when λt =
2.27δ+0.27
1.73δ−0.27

. This suggests that, in contrast to PL2, the upper

bound of |D2| is not monotonically decreasing with λt. This
interesting difference is shown clearly in Figure 3. Thus,
if we set δ to an appropriate value to make the minimum
upper bound still large enough (e.g., larger than the length
of the longest document), PL2+ would not violate LB2.

6.3 Lower-Bounded Dirichlet Method (Dir+)
It is easy to show that Dir+ also satisfies LB2 uncondi-

tionally. We analyze Dir+ in the same way as analyzing Dir,
and obtain the following equivalent constraint of LB1:

|D2| < avdl +
1 + δ

p(t|C)

(
1 +

avdl

μ

)
+

δ

μ · p2(t|C)

(
1 +

avdl

μ

)
(20)

We can see that, although Dir+ does not guarantee that
LB1 is always satisfied, it indeed enlarges the upper bound
of document length as compared to Dir in Section 5.3, and
thus makes the constraint harder to violate. Generally, if we
set δ to a sufficiently large value, the chance that very long
documents are overly penalized would be reduced.
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Figure 3: Comparison of upper bounds of document
length in PL2 and PL2+ to satisfy LB2.

Terabyte WT10G Robust04 WT2G

queries 701-850 451-550
301-450

401-450
601-700

#qry(with qrel) 149 100 249 50
avg(ql short) 3.13 4.24 2.74 2.46
avg(ql verb) 11.55 11.61 15.47 13.86
#total qrel 28, 640 5, 981 17, 412 2, 279
#documents 25205k 1692k 528k 247k

avdl 949 611 481 1056
std(dl)/avdl 2.63 2.31 1.19 2.14

Table 3: Document set characteristic

6.4 Lower-Bounded Pivoted Method (Piv+)
It is easy to verify that Piv+ also satisfies LB1. Regarding

LB2, similar to our analysis on Piv, the LB2 constraint on
Piv+ is equivalent to

log(1 + log 2) <
1

1− s+ s
|D2|
avdl

+ δ (21)

which is always satisfied if

δ ≥ log(1 + log(2)) ≈ 0.53 (22)

This shows that Piv+ can be able to satisfy LB2 uncondi-
tionally with a sufficiently large δ.

7. EXPERIMENTS

7.1 Testing Collections and Evaluation
We use four TREC collections: WT2G, WT10G, Ter-

abyte, and Robust04, which represent different sizes and
genre of text collections. WT2G, WT10G, and Terabyte are
small, medium, and large Web collections respectively. Ro-
bust04 is a representative news dataset. We test two types of
queries, short queries and verbose queries, which are taken
from the title and the description fields of the TREC top-
ics respectively. We use the Lemur toolkit and the Indri
search engine (http://www.lemurproject.org/) to carry out
our experiments. For all the datasets, the preprocessing of
documents and queries is minimum, involving only Porter’s
stemming. An overview of the involved query topics, the
average length of short/verbose queries, the total number
of relevance judgments, the total number of documents, the
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Query Method
WT10G WT2G Terabyte Robust04

MAP P@10 MAP P@10 MAP P@10 MAP P@10

Short
BM25 0.1879 0.2898 0.3104 0.4840 0.2931 0.5785 0.2544 0.4353
BM25+ 0.19624 0.3040 0.31721 0.4820 0.30041 0.5685 0.2553 0.4357

BM25+ (δ = 1.0) 0.19273 0.3010 0.31781 0.4840 0.29974 0.5718 0.2548 0.4349

Verbose
BM25 0.1745 0.3250 0.2484 0.4380 0.2234 0.5221 0.2260 0.4036
BM25+ 0.18501 0.3360 0.26243 0.4400 0.23364 0.5309 0.2274 0.4056

BM25+ (δ = 1.0) 0.18411 0.3340 0.25651 0.4340 0.23394 0.5329 0.2275 0.4052

Table 4: Comparison of BM25 and BM25+ using cross validation. Superscripts 1/2/3/4 indicate that the
corresponding MAP improvement is significant at the 0.05/0.02/0.01/0.001 level using the Wilcoxon test.

average document length, and the standard deviation of doc-
ument length in each collection are shown in Table 3.

We employ a 2-fold cross-validation for parameter tuning,
where the query topics are split into even and odd number
topics as the two folds. The top-ranked 1000 documents
for each run are compared in terms of their mean average
precisions (MAP), which also serves as the objective function
for parameter training. In addition, the precision at top-10
documents (P@10) is also considered. Our goal is to see if
the proposed general heuristic can work well for improving
each of the four retrieval functions.

7.2 BM25+ VS. BM25
In both BM25+ and BM25, we train b and k1 using cross

validation, where b is tuned from 0.1 to 0.9 in increments
of 0.1, and k1 is tuned from 0.2 to 4.0 in increments of
0.2. Besides, in BM25+, parameter δ is trained using cross
validation, where δ is tuned from 0.0 to 1.5 in increments of
0.1, but we also create a special run in which δ is fixed to 1.0
empirically (labeled as BM25+ (δ = 1.0)). The comparison
results of BM25+ and BM25 are presented in Table 4.

The results demonstrate that BM25+ outperforms BM25
consistently in terms of MAP and also achieves P@10 scores
better than or comparable to BM25. The MAP improve-
ments of BM25+ over BM25 are much larger on Web collec-
tions than on the news collection. In particular, the MAP
improvements on all Web collections are statistically signif-
icant. This is likely because there are generally more very
long documents in Web data, where the problem of BM25,
i.e., overly-penalizing very long documents, would presum-
ably be more severe. For example, Table 3 shows that the
standard deviation of the document length is indeed larger
on the three Web collections than on Robust04.

Another interesting observation is that, BM25+, even with
a fixed δ = 1.0, can still work effectively and stably across
collections and outperform BM25 significantly. This empir-
ically confirms the constraint analysis results in Section 6.1
that, when δ > k1

k1+2
, BM25+ can satisfy LB2 uncondition-

ally. It thus suggests that the proposed constraints can even
be used to guide parameter tuning.

We further plot the curves of MAP improvements of BM25+
over BM25 against different δ values in Figure 4, which
demonstrates that, when δ is set to a value around 1.0,
BM25+ works very well across all collections. Therefore,
δ can be safely “eliminated” from BM25+ by setting it to a
default value 1.0.

Regarding different query types, we observe that BM25+
improves more on verbose queries than on short queries. For
example, the MAP improvements on Web collections are of-
ten more than 5% for verbose queries and are around 2%
for short queries. We hypothesize that BM25 may overly-

Query
WT10G WT2G Terabyte Robust04
b k1 b k1 b k1 b k1

Short 0.3 1.0 0.2 0.8 0.3 1.0 0.4 0.6
Verbose 0.6 2.0 0.6 1.6 0.4 1.8 0.7 1.2

Table 5: Optimal settings of b and k1 in BM25.
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Figure 5: Comparison of retrieval and relevance
probabilities against all document lengths when us-
ing BM25 (left) and BM25+ (right) for retrieval. It
shows that BM25+ alleviates the problem of BM25
that overly penalizes very long documents.

penalize very long documents more seriously when queries
are verbose, and thus there is more room for BM25+ to
boost the performance. To verify our hypothesis, we collect
the optimal settings of b and k1 for BM25 in Table 5, which
show that the optimal settings of b and k1 are clearly larger
for verbose queries than for short queries. Recall that our
constraint analysis in Section 5.1 has shown that the like-
lihood of BM25 violating LB2 is monotonically increasing
with parameters b and k1. We can now conclude that BM25
indeed tends to overly penalize very long documents more
when queries are more verbose.

So far we have shown that BM25+ is more effective than
BM25, but if it is really because BM25+ has alleviated the
problem of overly-penalizing very long documents? To an-
swer this question, we plot the retrieval pattern of BM25+
as compared to the relevance pattern in a similar way as we
have done in Section 3.2. The pattern comparison is pre-
sented in Figure 5. We can see that the retrieval pattern of
BM25+ is more similar to the relevance pattern, especially
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Figure 4: Performance Sensitivity to δ of BM25+, where y-axis shows the relative MAP improvements of
BM25+ over BM25, and suffix ‘-even’/‘-odd’ indicates that only even/odd-number query topics are used.

Query Method WT10G WT2G Robust04

Short
PL2 0.1883 0.3231 0.2531
PL2+ 0.1920 0.3227 0.2549

PL2+ (δ = 0.8) 0.1912 0.3255 0.2540

Verbose
PL2 0.1695 0.2473 0.2185
PL2+ 0.18864 0.2595 0.23484

PL2+ (δ = 0.8) 0.18864 0.26392 0.23474

Table 6: Comparison of PL2 and PL2+ using cross
validation. Superscripts 1/2/3/4 indicate that the
corresponding MAP improvement is significant at
the 0.05/0.02/0.01/0.001 level using the Wilcoxon test.

Query WT10G WT2G Robust04
Short 9 23 9

Verbose 2 3 2

Table 7: Optimal settings of c in PL2.

for the retrieval of very long documents. This suggests that
BM25+ indeed retrieves very long documents more fairly.

7.3 PL2+ VS. PL2
In both PL2+ and PL2, we train parameter c using cross

validation, where c is tuned from 0.5 to 25 (27 values). Be-
sides, in PL2+, parameter δ is also trained using cross vali-
dation, where δ is tuned from 0.0 to 1.5 in increments of 0.1.
Also we create a special run of PL2+ in which δ is fixed to
0.8 empirically without training. The comparison results of
PL2+ and PL2 are presented in Table 6.

The results show that PL2+ outperforms PL2 consistently,
and even if we fix δ = 0.8, PL2+ can still achieve stable
improvements over PL2. Specifically, PL2+ improves signif-
icantly over PL2 for about 10% on verbose queries, yet it
only improves slightly on short queries; PL2+ appears to be
less sensitive to the genre of collections, since it also improves
significantly over PL2 on news data (verbose queries). We
hypothesize that, PL2 may overly-penalize very long docu-
ments seriously on verbose queries but works well on short
queries, and thus there is more room for PL2+ to improve
the performance on verbose queries than on short queries.
To verify it, we collect the optimal settings of c in PL2 and
show them in Table 7. We can see that the optimal settings
of c are “huge” for short queries as compared to that for ver-
bose queries, presenting an obvious contrast. As a result,
recalling the upper bound of document length in Formula 8,

Query Method WT10G WT2G Robust04

Short
Dir 0.1930 0.3088 0.2521
Dir+ 0.1961 0.31122 0.25301

Dir+ (δ = 0.05) 0.19671 0.31233 0.2525

Verbose
Dir 0.1790 0.2742 0.2329
Dir+ 0.18743 0.28671 0.24404

Dir+ (δ = 0.05) 0.18713 0.28712 0.24404

Table 8: Comparison of Dir and Dir+ using cross
validation. Superscripts 1/2/3/4 indicate that the
corresponding MAP improvement is significant at
the 0.05/0.02/0.01/0.001 level using the Wilcoxon test.

verbose queries would be more likely to violate LB2 even if a
document is not very long (e.g., a news article), while short
queries would only have a very small chance to violate LB2
even if a document is very long. Again, we can see that our
constraint analysis is consistent with empirical results.

7.4 Dir+ VS. Dir
In both Dir+ and Dir, we train parameter μ using cross

validation, where μ is tuned in a parameter space of 12 values
from 500 to 10000. Besides, in Dir+, parameter δ is also
trained, the candidate values of which are from 0.0 to 0.15
in increments of 0.01. Similarly, we also create a special run
in which δ is fixed to 0.05 empirically without training. The
comparison of Dir+ and Dir is presented in Table 8.

Overall, we observe that Dir+ improves over Dir consis-
tently and significantly across different collections, and even
if we fix δ = 0.05 without training, Dir+ can still outperform
Dir significantly in most cases. Note that, similar to BM25+
and PL2+, Dir+ works more effectively on verbose queries,
which is consistent with our constraint analysis that Dir is
more likely to overly penalize very long documents when a
query contains more non-discriminative terms. In addition,
we further compare Dir+ and Dir thoroughly by varying μ
from 500 to 10000. It shows that Dir+ is consistently better
than Dir no matter how we change the μ value.

Moreover, comparing Table 8 with Table 4 and 6, we can
see that Dir works clearly better on verbose queries than
BM25 and PL2. One possible explanation is that Dir satis-
fies LB2 unconditionally, but BM25 and PL2 do not.

7.5 Piv+ VS. Piv
In both Piv+ and Piv, we train s using cross-validation,

where s is tuned from 0.01 to 0.25 in increments of 0.02.
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Query Method WT10G WT2G Robust04

Short
Piv 0.1870 0.2915 0.2410
Piv+ 0.1869 0.29451 0.24551

Verbose
Piv 0.1493 0.2148 0.2144
Piv+ 0.1493 0.2154 0.2150

Table 9: Comparison of Piv and Piv+ using cross
validation. Superscripts 1 indicates that the corre-
sponding MAP improvement is significant at the 0.05
level using the Wilcoxon test.

Query WT10G WT2G Robust04
Short 0.05 0.01 0.05

Verbose 0.05 0.11 0.19

Table 10: Optimal settings of s in Piv.

Besides, in Piv+, parameter δ is also trained, the candidate
values are from 0.0 to 1.5 in increments of 0.1. The compar-
ison results of Piv+ and Piv are presented in Table 9.

Unfortunately, Piv+ does not improve over Piv signifi-
cantly in most of the cases, which, however, is also as we
expected: although there is an upper bound of document
length for Piv to satisfy LB2 (as shown in Formula 11), this
upper bound is often very large because the optimal setting
of parameter s is often very small as presented in Table 10.
Nevertheless, Piv+ would work much better than Piv when
s is large, as observed in our experiments.

7.6 Summary
Our experiments demonstrate empirically that, the pro-

posed general methodology can be applied to state-of-the-
art retrieval functions to successfully fix or alleviate their
problem of overly-penalizing very long documents.

We have derived three effective retrieval functions, BM25+
(Formula 13), PL2+ (Formula 16), and Dir+ (Formula 14).
All of them are as efficient as but more effective than their
corresponding standard retrieval functions, i.e., BM25, PL2,
and Dir, respectively. There is an extra parameter δ in the
derived formulas, but we can set it to some default values
(i.e., δ = 1.0 for BM25+, δ = 0.8 for PL2+, and δ = 0.05
for Dir+), which perform quite well. The proposed retrieval
functions can potentially replace its corresponding standard
retrieval functions in all retrieval applications.

8. CONCLUSIONS
In this paper, we reveal a common deficiency of the current

retrieval models: the component of term frequency (TF)
normalization by document length is not lower-bounded prop-
erly; as a result, very long documents tend to be overly-
penalized. In order to analytically diagnose this problem,
we propose two desirable formal constraints to capture the
heuristic of lower-bounding TF, and use constraint analy-
sis to examine several representative retrieval functions. We
find that all these retrieval functions can only satisfy the
constraints for a certain range of parameter values and/or
for a particular set of query terms. Empirical results further
show that the retrieval performance tends to be poor when
the parameter is out of the range or the query term is not
in the particular set. To solve this common problem, we
propose a general and efficient method to introduce a suf-
ficiently large lower bound for TF normalization which can
be shown analytically to fix or alleviate the problem.

Our experimental results on standard collections demon-
strate that the proposed methodology, incurring almost no
additional computational cost, can be applied to state-of-
the-art retrieval functions, such as Okapi BM25 [14, 15],
language models [20], and the divergence from randomness
approach [1], to significantly improve the average precision,
especially for verbose queries. Our work has also helped re-
veal interesting differences in the behavior of these state-of-
the-art retrieval models. Due to its effectiveness, efficiency,
and generality, the proposed methodology can work as a
“patch” to fix or alleviate the problem in current retrieval
models, in a plug-and-play way.
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