
Prototype Hierarchy Based Clustering for the
Categorization and Navigation of Web Collections

Zhao-Yan Ming1,2, Kai Wang2 and Tat-Seng Chua2

1NUS Graduate School for Integrative Sciences and Engineering
2Department of Computer Science, School of Computing

National University of Singapore
{mingzy,kwang,chuats}@comp.nus.edu.sg

ABSTRACT
This paper presents a novel prototype hierarchy based clus-
tering (PHC) framework for the organization of web collec-
tions. It solves simultaneously the problem of categorizing
web collections and interpreting the clustering results for
navigation. By utilizing prototype hierarchies and the un-
derlying topic structures of the collections, PHC is modeled
as a multi-criterion optimization problem based on mini-
mizing the hierarchy evolution, maximizing category cohe-
siveness and inter-hierarchy structural and semantic resem-
blance. The flexible design of metrics enables PHC to be
a general framework for applications in various domains.
In the experiments on categorizing 4 collections of distinct
domains, PHC achieves 30% improvement in μF1 over the
state-of-the-art techniques. Further experiments provide in-
sights on performance variations with abstract and concrete
domains, completeness of the prototype hierarchy, and ef-
fects of different combinations of optimization criteria.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—clustering

General Terms
Algorithms, Performance, Experimentation.

Keywords
Hierarchical Clustering, Prototype Hierarchy, Hierarchy In-
duction, Criterion Function

1. INTRODUCTION
With the flourishing of user contributed services like Ya-

hoo! Answers, discovering the utility of user-generated-contents
becomes a research topic of interest to many researchers.
The utility of user-generated-contents comes in two major
aspects, the quality and accessibility. Efforts have been put

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’10, July 19–23, 2010, Geneva, Switzerland.
Copyright 2010 ACM 978-1-60558-896-4/10/07 ...$10.00.

to distinguish the good and bad quality content [1]. To make
contents more accessible, state-of-the-art retrieval models
like translation based language model [18] and syntactic tree
matching [15] have achieved promising performance. Orga-
nizing the huge collections of data for information navigation
is another important direction in exploring web collections.
Categorization, especially hierarchical clustering with labels
and descriptions of clusters, enables browsing style of infor-
mation access. Users can navigate through the hierarchy
driven by their information needs [11, 17].

Currently, web services rely on users to construct topic
hierarchies and assign objects into their nodes. Open Di-
rectory Project (ODP) and Wikipedia are both examples
of hierarchically organized web collections formed by com-
munity of editors. Yahoo! Answers (YA) is organized in a
hierarchical tree containing 728 nodes with 26 top-level cate-
gories, relying on users to select a category for their postings.
Besides the reliance on manual assignment, a hierarchy as
large as YA’s directory is too coarse to contain a category
like IPod (it is in Music & Music players) whose subtopics
might be of interest to many users. These suggest the ne-
cessity of automatic fine-grained hierarchical categorization.

Toward automatic categorization of web collections into
hierarchies, supervised techniques that require manually-
labeled corpora are not appropriate for dynamic Web infor-
mation services [9]. Existing unsupervised techniques gen-
erally focus either on clustering the collections into smaller
groups [5, 17], or extracting labels for clustered groups [4].
SnakeT [6] is a successful hierarchical clustering engine that
performs sequential clustering and labeling on snippets re-
turned by search engines. However, the resulting clusters
and labels may not be consistent and systematic because of
its data-driven nature. LiveClassifier [9] addresses the cat-
egorization and navigation in one go by utilizing predefined
topic hierarchies and searching the training instances to feed
into a supervised learner. This approach, however, ignores
the underlying topic structure of the target collection; and
the result is confined to the predefined hierarchy which may
not be a perfect match to the collection.

In this paper, we propose an unsupervised approach called
Prototype Hierarchy based Clustering (PHC) to tackle
the problem of web collection categorization and navigation.
PHC utilizes the world knowledge in the form of prototype
hierarchies, while adapts to the underlying topic structures
of the collections. By following the structure of the proto-
type hierarchy, PHC eliminates the problem of determining
the number of clusters and assigning initial clusters.

Moreover, the PHC results are interpretable, comprehen-

2

Figure 1: Categorizing a Yahoo! Answers dataset
using the Prototype Hierarchy of IPhone

sive, and organized. Unlike in general clustering schemes
where no label is provided for the resulting groups, or in
conceptual clustering [12] where extra efforts are needed to
extract labels, in PHC the labels or the descriptions of clus-
ters are already provided by the prototype hierarchy used.
Therefore the trouble of inventing cluster labels is elimi-
nated. What’s more, the labels provided by the supervision
hierarchy are logically and systematically arranged, while
the labels extracted from unsupervised clustering might be
inconsistent and disorganized.

PHC allows flexible forms of supervision: the prototype
hierarchy can come in different level of granularity, in dif-
ferent forms, and even tailored to any specific applications.
Thanks to the diversity of web content, the hierarchy can
even be automatically extracted. It is thus less rigid than
the example-based learning and constraining.

In the rest of this paper, we first provide an overview
of PHC in Section 3. Section 4 gives details of the PHC
problem and algorithm. Section 5 presents experiments and
results analysis. Related work is reviewed in Section 5, and
with the conclusion in Section 6.

2. PROTOTYPE HIERARCHY BASED
CLUSTERING

Generally, PHC takes in as input a prototype hierarchy
and a target collection on the same topic, and produces as
output a data hierarchy that contains all the data items from
the collection. For ease of discussion, we first give some basic
definitions and notations.

2.1 Preliminaries and Notations
Preliminary 1. A Hierarchy (H) is defined as a tree that

consists of a set of uniquely labeled nodes V and a set of
parent-child relations R between these nodes. A Concept
Hierarchy (CH) is a hierarchy whose V represents a set of
concepts �, with each � being used as a label for each V .

Definition 1. A Prototype Hierarchy (PH) is defined
as a hierarchy whose nodes set V represents a set of < �, ρ >
tuples, with ρ a Prototype serving as a typical example,
description, or standard for the concept �.

Definition 2. Data Hierarchy (DH) is a hierarchy that
organizes a collection of objects d. Each node of DH rep-
resents a category of objects CO. Non-leaf nodes subsumes

their child nodes in a recursive manner. The root of DH
consists of a single broadest category containing all objects,
and the leaves correspond to the finest categories.

PH is the hierarchy that supervises the categorization
process. It can be seen as a concept hierarchy CH with each
� labeled node embodied by a prototype ρ. With PH and
DH , we define the problem of Prototype Hierarchy based
Clustering (PHC) as follows. Given a collection D of objects
on a topic τ , PHC partitions and maps D into the categories
that are predefined by a PH on τ , such that the formed
objects clusters CO1, CO2,..., COk are organized in a DH
with similar structures. The output DH is readily labeled
by the PH , and thus could be easily browsed by users to
find information at different granularity.

2.2 An Example
Figure 1 illustrates how the prototype hierarchy based

categorization works. Suppose the problem is to organize
an archive of Yahoo! Answer questions on iPhone. Given
the dataset of questions and the predefined prototype hi-
erarchy as shown in Figure 1, PHC assigns each object
(question) of the dataset into the leaf nodes of the hierar-
chy. For instance, question 1 is categorized into MobileMe
and naturally becomes a member of Online Services. Note
that the category IPhone:Software:Interface does not have
a single object and question 7 has no appropriate category
to assign to. These are two typical cases to be handled in
the PHC algorithm. With all the objects being assigned,
a data hierarchy that has the same structure with the pro-
totype hierarchy is formed. A user may thus easily browse
the organized dataset by navigating the prototype hierar-
chy and clicking on any node to view the questions from the
corresponding node of the data hierarchy.

This example suggests that clustering of a dataset accord-
ing to a supervision hierarchy is not trivial. We identify the
following requirements in the study of this paper:

1. The data hierarchy, like a taxonomy or an ontology,
is incrementally evolving into a compact structure en-
coding the underlying topics of the collection.

2. The data and prototype hierarchy are to be matched
at both the node and relation level, while special tech-
niques are needed to handle the mis-match between
the data hierarchy and the prototype hierarchy.

3. The distance between objects are measured by appro-
priate metrics, so as to partition the objects into ho-
mogeneous clusters that are far apart from each other.

These requirements suggest the criteria in constructing
a data hierarchy from a dataset. They form the basis of
the PHC framework. In the following Section, we address
the requirements in the first three subsections, and induce a
multi-criterion optimization function in the last subsection.

3. PROBLEM FORMULATION

3.1 Data Hierarchy Structure Evolution

3.1.1 Hierarchy Metric and Information Function
To characterize the structure of a hierarchy, we introduce

Hierarchy Metric and Information Function inspired by re-
search in automatic taxonomy induction [19] and ontology

3

Figure 2: Illustration of Prototype Hierarchy (i-iii)
and Data Hierarchy (iv). The prototype hierarchy
(i) is a full match of (iv), (ii) an incomplete match
of (iv), and (iii) an excess match of (iv).

learning, due to the similar nature of hierarchy and taxon-
omy.

We define a hierarchy metric as a function that operates
on all the nodes in a hierarchy, similar to ontology metric [19]
on an ontology. Formally, it is a function h : V × V → R+,
where V is the set of nodes in H . h(., .) is recursively defined.
For an adjacent pair of nodes vp and vq , the hierarchy metric
is defined as the edge weight w(evpvq). For the other pairs,
the hierarchy metric h(., .) on H with edge weights w for
any node pair vi, vj ∈ V is the sum of all edge weights along
the shortest path between the pair:

hH,w(vi, vj) =
∑

evpvq ∈P (vi,vj)

w(evpvq) (1)

where P (vi, vj) is the set of edges defining the shortest path
from nodes vi to vj . The quality of the structure of a hier-
archy is measured by the amount of information carried in
H , defined as the sum of all hierarchy metrics in H :

Info(H) =
∑

i<j,vi,vj∈V

h(vi, vj) (2)

where i < j reduces duplicated entries of h(., .) since the
hierarchy metric is a symmetric measure.

Figure 2 (i) gives an example of a 6-node hierarchy. We
can calculate the hierarchy metric between A and F as
h(A, F) = h(A,C) + h(C, F) = 2.8, and the Information
Function of the hierarchy as the sum of 15 pairs of nodes,
resulting in Info(H) = 38.5.

3.1.2 Objective Functions
Minimum Evolution(obj1) is designed to monitor the

structural evolution of the data hierarchy. The data hierar-
chy is incrementally hosting more objects until the whole
collection is categorized and allocated. We assume that
DH(n+1) with n+1 nodes to be the one that introduces the
least changes of information from its previous status DH(n):

DH(n+1) = arg minDH′ ||Info(DH(n))− Info(DH ′)|| (3)

Therefore the optimal DH organizes the whole collection
so as to introduce the least information changes since the ini-
tial data hierarchy DH(0): D̂H = arg minDH′ ||Info(DH(0))−
Info(DH ′)||, where Info(DH(0)) = 0 since the initial DH
is empty. By plugging in Equation 1 and 2, the minimum
evolution objective function becomes:

minimize obj1 =
∑

i<j,vi,vj∈V

∑

evpvq∈P (i,j)

w(evpvq)
(4)

obj1 suggests that the optimal DH on a collection is the one
that contains the least information. It makes intuitive sense
that the DH that compactly “encodes” the collection into
topic categories is the best.

3.1.3 Data Hierarchy Centroid
The hierarchy metric and information function discussed

above are defined in “node space”. For PH , the nodes are
represented by prototypes. For DH , we use centroid to rep-
resent a node of objects CO. Note that in previous work [7]
on classification, centroid and prototype are two equivalent
and interchangeable concepts. In this paper, we distinguish
the two concepts by emphasizing that prototype is knowl-
edge oriented and centroid is data oriented.

The centroids for DH nodes are generated in an incre-
mental manner. When the first object is categorized into
a category, it acts as the initial centroid of the category
(and its ancestor categories). With subsequent objects be-
ing inserted into the same category, the centroid is updated
incrementally upon its previous status.

Suppose that the centroids and the objects are represented

by vectors on the term space as −→v centroid and
−→
d . When a

new object d is inserted into a node, its centroid is updated
by taking the algorithmic average of all the existing objects

and
−→
d , as (n−→v (n)

centroid +
−→
d)/(n + 1).

The new object in a leaf node automatically becomes
members of its ancestor nodes whose centroids are to be
updated too. We consider that the magnitude of the change
decreases with the levels from the leaf node. The updating
formula for a data hierarchy centroid is defined as

−→v (n+1)
centroid =

n−→v (n)
centroid + g(t)

−→
d

n + 1
(5)

where t is the number of edges on the shortest path be-
tween the updated node and its descendent leaf nodes, and
g(t) is a monotonically decreasing updating coefficient. In
the implementation, a heuristic function g(t) = 1 − t/|H |
is utilized, |H | is the height of the data hierarchy H , and
g(t) ∈ (0.0, 1.0]. For example,when v is a leaf node, t = 0,
and g(t) = 1.0.

3.2 Matching of Prototype Data Hierarchy
Preliminary 2. A full match between two hierarchies H1

and H2 is defined such that nodes V1 = V2 and relations
R1 = R2. A partial match between H1 and H2 can be ei-
ther an incomplete match or an excess match. When H1 is
an incomplete match of H2, V1 + Vin = V2, R1 + Rin = R2,
and the incomplete rate is defined as |Vin|/|V2|; when H1

is an excess match of H2, V1 = V2 + Ve, R1 = R2 + Re,
and the excess rate is defined as |Ve|/|V2|. In the case of a
partial match, the matched nodes and relations constitute a
sub-hierarchy called a common hierarchy.

Figure 2(iv) shows a data hierarchy, and Figure 2(i-iii) show
three prototype hierarchies that are respectively a full match,
an incomplete match, and an excess match of the data hier-
archy. The common hierarchies of Figure 2(iii) and (iv) are
(A,B,C,D,E,F) and (a,b,c,d,e,f), and G is an excess node.

3.2.1 Objective Functions
Prototype Centrality (obj2) We assume that a proto-

type is located at the center of an object cluster in the object

4

space. Formally, the prototype centrality is expressed as

maximize obj2 =
1

|V |
∑

∀voi
�=∅

c(vpi , voi)

where |V | is the number of nodes in the hierarchy, vpi is
represented by its prototype ρi, and voi is represented by
its centroid. voi is updated with incrementally added new
objects. c(., .) measures the similarity between a vpi and
a voi that is not empty. For this study, c(., .) employs the
simple and effective cosine similarity function on the term
vectors of vpi and voi .

The maximization of the prototype centrality objective is
actually equivalent to adding a data object into a node, so
that the updated centroids (including the parental node cen-
troids), are most similar to their corresponding prototypes.

Prototype-Data Hierarchy Resemblance (obj3) con-
siders the common part of the data hierarchy and the pro-
totype hierarchy. Formally, the prototype-data hierarchy
resemblance is defined as follows:

minimize obj3 =
1

|M |
∑

i<j

||h(vpi , vpj) − h(voi , voj)|| (6)

where |M | is the size of the common hierarchy, vpi , vpj ∈ Vp

and voi , voj ∈ Vo are the corresponding nodes of PH and
DH respectively.

Since PH is predefined and static, it is usually a partial
match of DH . To enable DH to flexibly adjust to the col-
lection distribution by having more or less nodes, obj2 and
obj3 are measured on the common hierarchy.

3.2.2 Considerations for Partially Matched Prototype
Hierarchy

In the ideal setting, the prototype hierarchy is the one that
fully represents the underlying topic structure in the target
collection, i.e., the resulting data hierarchy is a full match.
However, it is not possible to define such an ideal prototype
hierarchy. Therefore the implementation should consider the
cases when the predefined PH is a partial match.

If the predefined PH is an incomplete match of the un-
derlying DH of a collection, we expand PH by adding more
nodes to accommodate more categories. This is solved by
adding dummy child nodes to the existing nodes in PH .
For instance, in the Figure 1 example, equestion 7 has no
appropriate category to assign to. This question will thus
be assigned to an unnamed (dummy) node as the child of
category IPhone:Online Service: Itunes Store1.

The added nodes, however, do not have a specific concept
label and prototype description. For such scenario, we adopt
the existing label extraction algorithms [4] for these new
categories. The disadvantage of post-categorizing labeled
concepts is that they may be less consistent with the existing
concept space.

If the predefined PH is an excess match of the underlying
DH of a collection, some of the nodes in PH may result in
empty category in DH , such as IPhone:Software:Interface in
the Figure 1 example. For such cases, the empty nodes will
be labeled as empty or removed from the browsing interface.

1This is a combined effect of all the objectives, if only
obj2 and obj3 are considered, question 7 will be assigned
to IPhone:Online Service: Itunes Store:audio category.

3.3 Object Metric
Under Data Hierarchy, Object Metric M(di, dj) is defined

as the distance (similarity) between a pair of objects di and
dj within a node. Theoretically, any metric that satisfies
the non-negativity, symmetricity, and triangular inequality
criteria is a valid metric. For text clustering, a desirable
metric is the one that captures the lexical, syntactic, and
semantic features of the texts. We explore two state-of-the-
art text retrieval models for estimation the distance metrics,
the translation-based language model and the syntactic tree
kernel matching model.

3.3.1 Translation-based Language Model
Translation-based language model (TBLM) is originally

proposed to solve the lexical gap problem in document re-
trieval. The monolingual translation probabilities capture
the lexical semantic relatedness between mismatched terms
in the query and the documents. We employ TBLM to mea-
sure the semantic similarity between two texts d1 and d2.
The similarity score function is similar to the retrieval func-
tion proposed by Xue et al [18]:

PTBLM (d1|d2) = Πw∈d1P (w|d2)

P (w|d2) = (1 − λ)Pmx(w|d2) + λPml(w|D)

Pmx(w|d2) = (1 − β)Pml(w|d2) + β
∑

t∈d2

P (w|t)Pml(t|d2)

where P (w|d2), the probability that w is generated from
document d2, is smoothed using Pml(w|D), the prior proba-
bility that w is generated from the document collection D. λ
is the smoothing parameter. Pmx(w|d2) is the interpolated
probability of Pml(w|d2) and the sum of the probabilities
that w is a translation of t, P (w|t), weighted by Pml(t|d2).
Pml is computed using the maximum likelihood estimator.

Due to its asymmetricity, PTBLM (d1|d2) cannot be di-
rectly applied as a metric between a pair of text d1 and d2.
We thus define a symmetric distance metric by taking the
average of the two scores that switch the role of d1 and d2

as the “query” and “document”:

MTBLM (d1, d2) =
1

2
(PTBLM (d1|d2) + PTBLM (d2|d1)) (7)

3.3.2 Syntactic Tree Kernel Matching Model
The tree kernel function is one of the most effective ways

to represent the syntactic structure of a sentence [15]. Syn-
tactic Tree Kernel Matching Model(STKM) is designed based
on the idea of counting the number of tree fragments (sub-
trees) that are common to both parsing trees:

Sim(T1, T2) =
∑

w1∈W1,w2∈W2

C(w1, w2)

where W1 and W2 are sets of nodes(terms) in two syntactic
trees T1 and T2, and C(w1, w2) is the number of common
tree fragments rooted in nodes w1 and w2. Wang et al [15]
improved node matching function C(w1, w2) by adapting the
tree kernel function to take into account the syntactic as well
as semantic variations.

STKM is originally designed to measure the similarity be-
tween two sentences. We generalize it into a similarity met-
ric between multiple-sentence texts as follows:

MSTKM (d1, d2) =

∑
si∈d1

∑
sj∈d2

sim(T (si), T (sj))

|d1||d2| (8)

5

Table 1: Statistics of Dataset (� indicates webpages,
† indicates question answer pairs).

ODP Yahoo!Answers

statistics Computer
Science

Religion&
Spirituality

Dental IPod

Prototype Max.depth 6 5 5 4
Hierarchy �concepts 145 177 104 87

� leaf concepts 83 106 62 51

Collection �objects 2085� 3909� 6735† 4381†

where si and sj are sentences from d1 and d2 respectively.
MTBLM and MSTKM emphasize on semantic and syn-

tactic similarity of text objects respectively, we propose an
integrated object metrics by taking their interpolation:

MTB−ST (d1, d2) = αMTBLM (d1, d2)+(1−α)MSTKM (d1, d2)
(9)

With the above defined M(., .), similar objects can be better
clustered into the same category.

3.3.3 Objective Functions
Category Cohesiveness (obj4) objective requires that

the collection is categorized such that objects in the same
category are similar to each other and those in different cat-
egories are dissimilar to each other. More specifically, when
the intra-category similarity is the highest, and the inter-
category similarity is the lowest, the categorization achieves
the highest cohesiveness. Formally, the cohesiveness of the
data hierarchy is defined as:

maximize obj4 =

∑
∀vk �=root

∑
dp,dq∈vk

M(dp, dq)
∑

∀vp �=leaf

∑
vi,vj∈child(vp) c(vi, vj)

(10)

where c(vi, vj) measures the cosine similarity between the
centroids of vi and vj . Note that in the denominator, only
sibling categories compared, rather than as a whole as in [4].
The assumption is that categories at different levels could be
different in terms of abstractness and thus not comparable.

3.4 Multi-Criterion Optimization Function
In Section 3.1-3.3, we have discussed the criteria on con-

structing a data hierarchy, and induced four objective func-
tions obj1,obj2, obj3, and obj4. In our proposed prototype
hierarchy based clustering framework, all the criteria are to
be satisfied, therefore the four objectives are to be optimized
simultaneously:

minimize Om = π1obj1 − π2obj2 + π3obj3 − π4obj4 (11)

where π1, π2, π3, and π4 are introduced to control the con-
tribution of each objective within the range of 0 to 1.

The multi-criterion optimization function leads to a greedy
optimization algorithm, which at each object insertion step,
produces a new data hierarchy by adding the new object
into an appropriate node, which minimizes Om.

4. EXPERIMENTS

4.1 Datasets
To evaluate the proposed prototype hierarchy based clus-

tering scheme, we apply the techniques developed to recon-
struct the subdirectories of ODP, and to organize Yahoo!

Answers questions according to prototype hierarchies from
external knowledge source. Table 1 shows the statistics of
the prototype hierarchies and the associated collections of
the four datasets.

For the ODP datasets, the prototype hierarchies are con-
structed by extracting the subcategories of two topics, Com-
puter Science (CS) and Religion and Spirituality (RS). The
subcategory descriptions are extracted as prototypes. Some
subcategories for portals (e.g., classified, directory) or those
labeled by alphabetic orders, which are uninformative for the
purpose of categorization and navigation, are removed. The
two collections contain websites belonging to the categories
of the extracted prototype hierarchies; where homepages of
these websites are the objects of the collections.

The datasets under the topics Dental and IPod are col-
lected from YA. The prototype hierarchy for the Dental
dataset is directly extracted from Wikipedia hierarchy un-
der Dentistry, where the prototype for each subcategory is
the first part (the definition) of the corresponding Wikipedia
article. The prototype hierarchy for IPod is a manually con-
structed hybrid hierarchy by combining Wikipedia IPod ar-
ticle hierarchy, Wordnet IPod meronyms, and product spec-
ification from IPod website). The corresponding prototypes
are also the combined descriptions from these three sources.
The objects of the two collections are questions downloaded
using YA API from Dental and Music & Music players. We
asked two dentistry graduate students and two computer
science graduate students to organize the two collections by
reading through the downloaded archives. Inter-rater agree-
ments in terms of Kappa statistics are 85% and 91% for
Dental and IPod respectively. The differences between the
two annotators are made consistent by discussion.

Each of the four collections are equally divided into two
parts (C1 and C2) for training/developing and testing. The
results are presented by taking the average of the two suits
of experiments, using either part as testing sets.

The four datasets are carefully constructed to represent
different scenarios. CS is a topic with a deep hierarchy,
while RS has a broad hierarchy. IPod represents a con-
crete domain and RS an abstract domain. ODP hierarchies
(CS and RS) are noisier than Wikipedia hierarchy (Dental);
while the semi-manually constructed hierarchy (IPod) has
better quality.

4.2 Overall Performance

4.2.1 Experimental Setting
To evaluate the performance of the proposed PHC model,

we compare the following systems:
1) proKmeans: a prototype hierarchy enhanced K-means

divisive hierarchical clustering. We choose a divisive algo-
rithm as our baseline, as divisive algorithms has been found
to be better solutions than agglomerative algorithms [20].
K-means works well when K and the initial partitioning are
properly set. At each step of the division, we set K to be
the number of leaf nodes in the prototype hierarchy; and the
associate prototypes as the initial centroids. In this way, an
intuitive unsupervised method is enhanced to be a relatively
strong baseline.

2) LiveClassifier [9]: a state-of-the-art hierarchical classi-
fier. We employ the approach 3 and KNN as the learning
algorithm as in [9]. We adopt Yahoo BOSS API2 as the

2http://developer.yahoo.com/search/boss/

6

Table 2: Comparison of the proposed PHC, the two
baselines, and a supervised method CFC in terms of
μF1 and mF1.

Methods CS RS Dental IPod

μF1 mF1 μF1 mF1 μF1 mF1 μF1 mF1

proKmeans-B1 0.623 0.547 0.63 0.644 0.601 0.592 0.612 0.608

LiveClassifier-B2 0.656 0.641 0.618 0.625 0.683 0.663 0.667 0.629

PHC-BOW 0.732 0.713 0.741 0.729 0.755 0.703 0.764 0.713

over B1 17.5% 30.3% 17.6% 13.2% 25.6% 18.8% 24.8% 17.3%

over B2 11.6% 11.2% 19.9% 16.6% 10.5% 6.0% 14.5% 13.4%

PHC-TBLM 0.757 0.732 0.749 0.756 0.803 0.783 0.822 0.767

over B1 21.5% 33.8% 18.9% 17.4% 33.6% 32.3% 34.3% 26.2%

over B2 15.4% 14.2% 21.2% 21.0% 17.6% 18.10% 23.2% 21.9%

PHC-STKM 0.791 0.78 0.775 0.788 0.764 0.721 0.778 0.719

over B1 26.9% 42.6% 23.0% 22.4% 27.1% 21.8% 27.1% 18.3%

over B2 20.5% 21.7% 25.4% 26.1% 11.9% 8.7% 16.6% 14.30%

PHC-TB-ST 0.869 0.853 0.842 0.851 0.885 0.879 0.893 0.889

over B1 39.5% 55.9% 33.7% 32.1% 47.2% 48.5% 45.9% 46.2%

over B2 32.5% 33.1% 36.2% 36.2% 29.6% 32.6% 33.9% 41.3%

supervised CFC 0.904 0.884 0.851 0.857 0.879 0.904 0.866 0.854

search engine to gather snippets as training examples. The
number of pseudo nodes for leaf node is set to be 6. We
set K=1 for result evaluation. This method is used as the
second baseline.

3) PHC-BOW, PHC-TBLM, PHC-STKM, and PHC-TB-
ST : 4 variations of PHC using Bag-of-Word, TBLM, STKM,
and the combined TBLM and STKM respectively as the
object metric. For π1, π2, π3, and π4 in Equation 10, we
perform an exhaustive grid search of step size 0.1 on [0, 1]
to find parameters that produce the best μF1 on the de-
veloping set. For TBLM, λ is set to 0.8 and β to 0.5;
the translation probabilities are trained using the set C1/C2

and tested on C2/C1. For STKM, the four parameters (the
node/size/depth weighting factors, and the weight of the
matching tree fragment) are tuned by using the set C1/C2

as the development set. For TB-ST, α is set to 0.5.
4) CFC Classifier [7]: a state-of-the-art supervised text

categorization technique. It is included to test the effective-
ness of semi-supervised PHC against a supervised method.
Experimental results are averaged using either set C1/C2 as
the training set.

We use the average accuracy of categorizing the leaf cat-
egories as the performance measure for each dataset. In
particular, we use the micro-averaging F1 (μF1) and macro-
averaging F1 (mF1) as the performance metrics. F1 is a
combined form for precision (p) and recall (r), which is de-
fined as F1 = 2rp/(r + p).

4.2.2 Results and Discussion
The results are evaluated on all the leaf nodes and dis-

played in Table 2. By comparing the vertical entries by
different methods, we draw the following observations:

(1) Both (unsupervised) baselines achieve reasonably high
μF1 of about 0.6. For LiveClassifier, the results are con-
sistent with that reported in the original experiment in [9]
which shown it to be comparable to a supervised approach.
For proKmeans, it achieves better μF1 than that reported
in a state-of-the-art K-means clustering algorithm [8] that
employs the sophisticated semantic features. This suggests
that by specifying a prototype hierarchy for a collection,

even a simple method like divisive K-means can categorize
the collection reasonably well.

(2) PHC with TB-ST surpasses all the other unsupervised
systems. All the four PHC systems perform significantly
better than the two baselines. Even the simplest PHC de-
sign with BOW-based metric achieves improvement of above
10% over both baselines. This indicates that PHC is supe-
rior in terms of utilizing the prototype hierarchy. proKmeans
makes use of the prototypes and the number of children un-
der each node; whereas LiveClassifier makes use of the re-
lations of nodes and node labels (concepts). Either baseline
benefits from the prototype hierarchy but not as compre-
hensively as the PHC’s.

(3) PHC achieves the best performance when the object
metrics (TBLM and STKM) are used in combination (TB-
ST). It is however difficult to compare the PHC with TBLM
and PHC with STKM. Generally, syntactic tree kernel based
method works better on the two ODP collections; and trans-
lation based method works better on the two YA collections.
We conjecture that the ODP collections are more standard
than YA in term of English grammar and thus more suit-
able for syntactic tree parsing; while the YA collections use
parallel question-answer corpus which is more suitable for
generating translation probabilities. The combination of
TBLM and STKM yields significant performance improve-
ment when compared to the individual model. This shows
that semantic and syntactic features complement each other
and contribute to the overall result.

(4) PHC with TB-ST even achieves comparable result
with CFC, a state-of-the-art supervised classification algo-
rithm. CFC can be deemed as using the hand-labeled cor-
pora, while PHC makes use of hand-built hierarchy. This
implies that a prototype hierarchy created by experts or web
community is enough to help create good categorization of
a large web collection, instead of needing to manually or-
ganize and label the large corpus. Moreover, PHC provides
the additional benefit of facilitating navigation.

(5) PHC introduces new nodes into predefined hierarchy.
In PHC-TB-ST setting, the numbers of new nodes intro-
duced are 7 for CS, 11 for RS, 5 for Dental, and 3 for IPod.
Since we deem the prototype hierarchies and collections in
Table 1 as fully matched, the objects in the newly added
nodes are simply evaluated as incorrect for ease of experi-
mentation. This indicates that the results in Table 2 may
underestimate the actual performance of PHC.

4.3 Impact of Domain Abstractness and
Prototype Quality

By comparing the horizontal entries of Table 2, we draw
the following observations of PHC performance on different
domains and prototype hierarchies:

(1) PHC works better on concrete domains than on ab-
stract domains. This is evidenced by comparing PHC per-
formances on the two ODP collections. Computer Science
achieves higher μF1 scores than Religion and Spirituality
for the last 3 settings of PHC. It can be explained by two
reasons: (i) the concepts in concrete domains like CS are
more specific, therefore the prototypes associated with the
concepts are more precise, informative, and have poten-
tially more word overlapping with the target objects; (ii)
the subtopics of abstract domains like RS are less systemat-
ically arranged in a hierarchical structure and the ancestor-
descendent relations between the subtopics are less obvious;

7

Table 3: Objectives analysis. % of change in μF1

when a single objective is removed.
objectives CS RS Dental IPod
All-obj1 -1.4% +3.2% +2.7% 0.0
All-obj2 -11.1% -10.6% -8.7% -9.6%
All-obj3 -5.8% -4.0% -6.6% -7.4%
All-obj4 -10.5% -6.7% -9.3% -8.8%

therefore PHC is harder to benefit from the “loose” hierar-
chies of the abstract domains.

(2) A better prototype hierarchy can potentially enhance
the categorization performance. Table 2 shows that in the
PHC settings, IPod collections (with semi-manually com-
piled hierarchy) attains the best results, followed by Dental
(with Wikipedia hierarchy), and the worst are the two ODP
collections. This indicates that high quality hierarchy will
lead to better results. Besides the quality of prototype hier-
archy, the quality of the prototypes used may also influence
the categorization performance. Prototypes from ODP cat-
egory descriptions are of various qualities, depending on the
devotion of the category editor. Prototypes from Wikipedia
articles are mediated by a larger community and thus main-
tain a high level of quality. We conjecture that when more
high quality hierarchies are available in digital form, PHC
can achieve even better performance and wider adaptability.

4.4 Ablation Study on Optimization Objectives
We do a leave-one-out study on the optimization objec-

tives to analyze the effects of each objective on the catego-
rization. In the implementation, we set one of the parame-
ters (π1, π2, π3, and π4) in Equation 11 to 0, and optimize
the rest using grid search.

Table 3 shows that removing an objective from the multi-
criterion optimization generally results in degraded perfor-
mance. Prototype Centrality (obj2) influences all the four
collections greatly, followed by Category Cohesiveness (obj4).
Prototype-Data Hierarchy Resemblance (obj3) influences Den-
tal and IPod more than CS and RS.

obj2 is a bit more complex. A prototype may not repre-
sent the perfect center for a cluster. Two cases exist: (i)
the prototype provided is roughly located at the center of
a category’s object space; the objects that are closer to the
true center but farther away from the prototype may be ad-
versely influenced by the prototype centrality score. (ii) the
target collection is not large enough to form typical cate-
gories; even though the prototype provided might be good,
the object center itself may shift from general knowledge.

An interesting observation is that removing obj1(minimum
evolution) increases the μF1 measure on RS and Dental.
By examining the clustering output, we find that the data
hierarchy varies less from the prototype hierarchy without
the minimum evolution. For example, two websites about
Youth for Human Rights are under ODP category Religion
and Spirituality: Scientology: Church of Scientology: Vol-
unteer and Community Activities; the two websites are cor-
rectly categorized when the minimum evolution objective is
removed. Under the full-fledge multi-criterion setting, the
output data hierarchy has a new node created to accom-
modate the two websites under Religion and Spirituality:
Scientology: Church of Scientology, as a sibling of Volunteer
and Community Activities. Since there is no standard on

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 5 10 15 20

uF
1

Excess Rate(%)

Excess Match

CS
RS

Dental
IPod

(i)

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 5 10 15 20

uF
1

Incomplete Rate(%)

Incomplete Match

CS
RS

Dental
IPod

(ii)

Figure 3: The influence of partially matched proto-
types on PHC performance.

whether some objects should be assigned into a new node
or an existing node, the phenomenon implies that minimum
evolution objective leads to a self-contained data hierarchy.

4.5 Robustness with Mismatched Prototype
Hierarchy

To further study the tolerance of PHC with partially matched
prototype hierarchies, we deliberately manipulate the pro-
totype hierarchies and the collections to examine the two
types of mismatching effects: incomplete and excess proto-
type hierarchy.

We mimic an incomplete (insufficient) prototype hierar-
chy by deleting nodes from the completely matched proto-
type hierarchy. Similarly, we mimic an excess(overfitted)
prototype hierarchy by inserting dummy nodes into the cur-
rent hierarchy. Alternatively, we remove objects belong to
a certain node from the collection, such that the node in
the prototype hierarchy becomes redundant. We adopt the
second approach because lacking certain groups of objects
is more common in practical applications.

In Figure 3, we plot μF1 of PHC results on the four col-
lections with excess rate and incomplete rate ranging from
0 to 20%. The two rates are defined in Section 3.2. From
Figure 3(i), we can see that the μF1 measures on all the four
collections slight degrade over the 0 − 15% excess rate. By
examining the output object hierarchy, we find that for most
excess nodes, PHC produces empty clusters. It suggests that
PHC’s is robust against overfitted prototype hierarchies.

From Figure 3(ii), we can see that incomplete match is
well tackled at 0 − 5% range and degrades drastically from
10% onwards. In the experimental setting, at the lower in-
complete rate, only some leaf nodes are removed; whereas
at higher incomplete rate, even those sub-hierarchies are re-
moved. This suggests that PHC has only limited ability to
“create” categories. We conjecture that it is because PHC
is designed to add one level of child nodes to existing nodes
in the prototype hierarchy without considering multiply lev-
els. In other words, our system needs further improvement
to tackle the high incomplete rate, or seek more complete
match prototype hierarchies to avoid the problem.

5. RELATED WORK
Hierarchical clustering has long been recognized as a nat-

ural way to organize and navigate text collections [10, 5,
17]. Existing algorithms for hierarchical clustering are gen-
erally either agglomerative, divisive, or combined [20]. The
automatically generated clusters are however less neatly or-
ganized as a manually constructed hierarchical tree like the
ODP and Wikipedia hierarchies. Another limitation is that
the clusters do not have labels to indicate the topics con-

8

tained. Further more hierarchical clustering, labeling is more
complicated since an internal node in the hierarchy has to
be distinguished from its siblings, parent, and children.

World knowledge has been found to be useful in enhanc-
ing clustering and labeling. For clustering, metric based [16]
and constraints based [14] approaches utilize knowledge in
the form of a small amount of labeled samples. Bilenko et
al [2] integrated the two approaches and obtained further
improvement over either approach. Hu et al [8] proposed
to enrich short texts representation for clustering with syn-
tactic and semantic features from WordNet and Wikipedia.
For cluster labeling, Carmel et al [4] successfully enhanced it
by extracting candidate labels from Wikipedia, in addition
to the important terms that are extracted directly from the
text. In our work, world knowledge comes in the form of a
topic hierarchy and prototype descriptions.

Various criterion functions for document clustering have
been studied in [20]. These functions represent some of the
most widely used criteria for document clustering, but not
cover the structural aspects of the hierarchies.

Hierarchy and taxonomy induction has long been studied
on concepts [13], noun-phrases [19], and word-based top-
ics [3]. For the first time it has been applied as a crite-
rion on hierarchical clustering in this work. Moreover, the
concept hierarchies [13] and taxonomies [19] could be used
to automatically extract prototype hierarchies for the PHC
framework.

Our work is similar in spirit to conceptual clustering [12]
which is distinguished from ordinary data clustering by gen-
erating a concept description for each generated class. An-
other similar work is LiveClassifier [9]. It tries to tackle the
clustering and labeling problem in a reverse order. Assuming
a predefined topic hierarchy, it augments the hierarchy and
uses search engines to automatically gather training corpus
for classifying websites into the hierarchy. Our framework is
similar to theirs in term of specifying a topic hierarchy, but
exploits more on the structure and evolution of the hierarchy
rather than searching for training data.

6. CONCLUSION
This paper proposed a prototype hierarchy based cluster-

ing framework for web collection categorization and navi-
gation. By minimizing the hierarchy evolution, maximizing
category cohesiveness and inter-hierarchy structural and se-
mantic resemblance, the hierarchical clustering task is mod-
eled as a multi-criterion optimization problem. Empirical
results on categorizing 4 web collections of various domains
have shown that PHC is superior to the two strong unsuper-
vised baseline methods and comparable to a state-of-the-art
supervised method.

In future work, we plan to optimize the efficiency of the
proposed PHC algorithm and explore its applicability to
multimedia collections with domain specific hierarchy and
object metrics.

7. REFERENCES
[1] R. Baeza-Yates. User generated content: how good is

it? In Proc. of the 3rd workshop on Information
credibility on the web, pages 1–2, Spain, 2009. ACM.

[2] M. Bilenko, S. Basu, and R. J. Mooney. Integrating
constraints and metric learning in semi-supervised
clustering. In Proc. Machine learning, page 11, Banff,
Alberta, Canada, 2004. ACM.

[3] D. M. Blei, T. L. Griffiths, M. I. Jordan, and J. B.
Tenenbaum. Hierarchical topic models and the nested
chinese restaurant process. In Advances in Neural
Information Processing Systems, page 2003. MIT
Press, 2003.

[4] D. Carmel, H. Roitman, and N. Zwerdling. Enhancing
cluster labeling using wikipedia. In Proc. SIGIR,
pages 139–146, Boston, MA, USA, 2009. ACM.

[5] S. Dumais and H. Chen. Hierarchical classification of
web content. In Proc. SIGIR, pages 256–263, Athens,
Greece, 2000. ACM.

[6] P. Ferragina and A. Gulli. A personalized search
engine based on web-snippet hierarchical clustering. In
Proc. WWW, pages 801–810, Japan, 2005. ACM.

[7] H. Guan, J. Zhou, and M. Guo. A
class-feature-centroid classifier for text categorization.
In Proc. WWW, pages 201–210, Spain, 2009. ACM.

[8] X. Hu, N. Sun, C. Zhang, and T.-S. Chua. Exploiting
internal and external semantics for the clustering of
short texts using world knowledge. In Proc. CIKM,
pages 919–928, Hong Kong, China, 2009. ACM.

[9] C.-C. Huang, S.-L. Chuang, and L.-F. Chien.
Liveclassifier: creating hierarchical text classifiers
through web corpora. In Proc. WWW, pages 184–192,
New York, NY, USA, 2004. ACM.

[10] S. Johnson. Hierarchical clustering schemes.
Psychometrika, 32(3):241–254, 1967.

[11] D. J. Lawrie and W. B. Croft. Generating hierarchical
summaries for web searches. In Proc. SIGIR, pages
457–458, Toronto, Canada, 2003. ACM.

[12] R. Michalski and R. Stepp. Learning from observation:
Conceptual clustering. Machine Learning, 1:331–363,
1983.

[13] M. Sanderson and B. Croft. Deriving concept
hierarchies from text. In Proc. SIGIR, pages 206–213,
New York, NY, USA, 1999. ACM.

[14] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl.
Constrained k-means clustering with background
knowledge. In Proc. Machine Learning.

[15] K. Wang, Z. Ming, and T.-S. Chua. A syntactic tree
matching approach to finding similar questions in
community-based qa services. In Proc. SIGIR, pages
187–194, Boston, MA, USA, 2009. ACM.

[16] E. Xing, A. Ng, M. Jordan, and S. Russell. Distance
metric learning with application to clustering with
side-information. Advances in neural information
processing systems, pages 521–528, 2003.

[17] G.-R. Xue, D. Xing, Q. Yang, and Y. Yu. Deep
classification in large-scale text hierarchies. In Proc.
SIGIR, pages 619–626, Singapore, 2008. ACM.

[18] X. Xue, J. Jeon, and W. B. Croft. Retrieval models
for question and answer archives. In Proc. SIGIR,
pages 475–482, Singapore, 2008. ACM.

[19] H. Yang and J. Callan. A metric-based framework for
automatic taxonomy induction. In Proc. ACL, pages
271–279, Suntec, Singapore, 2009. ACL.

[20] Y. Zhao, G. Karypis, and U. Fayyad. Hierarchical
clustering algorithms for document datasets. Data
Min. Knowl. Discov., 10(2):141–168, 2005.

9

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

