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ABSTRACT

With the advent of Massive Open Online Courses (MOOCs),
students from all over the world can access to quality courses
via a web browser. Due to their great convenience, a popu-
lar MOOC can easily attract tens of thousands of students
to enroll. Hence, a challenging problem in MOOCs is to
find an efficient way to grade a large scale of assignments.
To address this problem, peer assessment was proposed to
grade the assignments in a scalable way. In peer assessment,
each student is asked to access a subset of his/her peers’ as-
signments via a web interface, then all these peer grades
are aggregated to predict a final grade for each submitted
assignment. These peer grades are very noisy due to the
fact that different students have different bias and reliabil-
ity. Several probabilistic models were proposed to improve
the accuracy of the predicted grades by explicitly modeling
the bias and reliability of each student. However, existing
methods assumed that all students are independent of each
other while ignoring the social interactions among the stu-
dents. In real life, students’ grading bias are easily affected
by their friends. For example, a student tends to have a
tough grading standard if his/her friends are harsh graders.
Following this intuition, we propose three probabilistic mod-
els for peer assessment by incorporating social connections to
model the dependencies of bias among the students. More-
over, we evaluate our models in a new peer grading dataset,
which is enhanced with the social information of users in
the discussion forums of the MOOC platform. Experimen-
tal results show that our models improve the accuracy of
the predicted grades by leveraging social connections of stu-
dents.

Keywords: Massive Open Online Courses (MOOCs); Peer
Assessment; Social Network

1. INTRODUCTION

Massive Open Online Courses (MOOCs) are courses that
allow open and unlimited access, they offer a handy way for
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people to access university level courses via a web browser.
Recently, studying in MOOCs became a popular way of
learning due to its great convenience. The enrollment of
a popular MOOC can reach up to tens of thousands. Hence,
one of the most challenging problems in MOOCs is that it
is infeasible for the teaching staffs to grade all the assign-
ments in such a large scale. To avoid this problem, most
MOOCs only offer assignments that can be graded auto-
matically, such as multiple choice questions. However, open-
ended assignments such as essays are indispensable for many
courses [14], and there are no effective auto grading methods
for such open-ended assignments.

Peer assessment was proposed to tackle the large-scale
grading problem in MOOCs. MOOC platforms such as
Coursera ! and edX 2 allow instructors to use peer assess-
ment to grade open-ended assignments, in which students
grade a subset of their peers’ assignments via a web inter-
face. The grades given by the students (peer grades) are then
aggregated by the system to compute a final score for each
assignment. Since the number of graders naturally scales
with the number of assignments, peer assessment provides a
scalable way to grade assignments in MOOC:s.

Most existing MOOC platforms simply use the median of
the peer grades received by an assignment as its final score.
However, each student has a different bias when grading
open-ended assignments. The bias of a grader is the con-
stant inflation or deflation of the peer grades given by that
grader. For example, the true score of student u’s assign-
ment is 8. Student v; thinks that student u’s assignment is
only worth a score of 5 (a bias of -3), while student v, thinks
that the same assignment is worth a score of 9 (a bias of
+1). Moreover, different students have different reliability.
Reliable students honestly give grades to their peers while
unreliable students randomly assign grades to their peers. It
will be difficult to obtain a fair or accurate score for each as-
signment if we do not consider the bias and the reliability of
each student. Different probabilistic models were proposed
to address the above issues by introducing random variables
to model the bias and reliability of each student [15, 12].

Although these methods improved the accuracy of peer
assessment, they assumed that students are completely in-
dependent of each other. Such assumption ignores the exis-
tence of social connections and social inferences among stu-
dents. Studies showed that web users’ preferences are likely
to be affected by their friends’ preferences [22, 27]. Fol-
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lowing this intuition, many existing recommender system
algorithms leveraged social connections to model the pref-
erences of web users [10, 29, 26]. Similarly, we believe that
the bias of graders on open-ended assignments will be influ-
enced by the bias of their friends. For example, a student
tends to have a tougher grading standard (a more negative
bias) if his/her friends are harsh graders. Thus, the bias
that imposed on a peer grade by a grader is a compound
of the grader’s own bias and the social influences received
by the grader. Ignoring the social inferences among the stu-
dents leads to a suboptimal model of grader bias, and in
consequence, leads to a less accurate estimation of the true
grades of assignments.

In order to address the above limitation of existing peer
assessment methods, based on the intuition that a grader’s
bias will be affected by their friends, we leverage social con-
nections to build more accurate models for peer assessment.
To achieve this goal, we extend existing probabilistic mod-
els [15, 12] for peer assessment by modeling the dependencies
among the students. In our solution, we estimate the true
score of each assignment from peer grades by modeling the
reliability as well as two types of bias for each grader: origi-
nal bias and influenced bias. The original bias of a grader is
the grader’s own bias before affected by the grader’s friends.
The influenced bias of a grader is the grader’s bias after af-
fected by his/her friends, which is assumed to be a combina-
tion of a grader’s own bias and the bias of his/her neighbors
in the social graph. With this assumption, the knowledge
gathered about the bias of a single grader can be used to in-
fer the bias of his/her friends, i.e., learn the bias of graders
in a collaborative manner. Thus, this method can better
model the bias of each student imposed in the peer grades,
and in consequence, leads to a more accurate estimation of
the true grades of assignments from the peer grades.

To evaluate our proposed model, we conduct experiments
on a new peer grading dataset from xuetangX®, which is one
of the biggest MOOC platforms in China. We enhance this
peer grading dataset with social information of students in
the discussion forums of the platform. Experimental results
show that our models improve the accuracy of the predicted
grades by leveraging social connections among students.

We summarize our contributions as follows:

1. We propose novel extensions to existing probabilistic
models for peer assessment by incorporating social con-
nections to model the dependencies of bias among the
students.

2. We devise an inference algorithm based on the Gibbs
sampling technique to infer the latent variables in our
models, including the true score of each student, the
reliability, the original bias, and the influenced bias of
each grader.

3. We evaluate our proposed models in a real peer grading
dataset, which is enhanced with the social information
of students. Empirical results show that our models
outperform existing models in terms of the accuracy
of the predicted grades.

The rest of the paper is organized as follows. In Section 2,
we review existing methods for peer assessments. Section
3 describes the notations and formally defines the problem
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that we solve. Section 4 describes our proposed probabilistic
models for peer assessment. The description of the dataset
we use and the experimental results are presented in Section
5, followed by the conclusions in Section 6.

2. RELATED WORK

There are several empirical studies on real peer grading
datasets to discover the factors that affect peer grading per-
formances [4, 8] and compare the performances of different
peer grading algorithms [20]. Existing peer grading methods
can be divided into two categories: cardinal peer assessment
and ordinal peer assessment. In cardinal peer assessment,
each student gives grades to their peers’ assignments in ab-
solute scale, e.g., 30. The goal is to estimate the ground
truth score of each assignment from the peer grades given
by the students. In ordinal peer assessment, each student is
asked to rank a subset of assignments, e.g., a1 > as > as,
and the goal is to aggregate all the partial rankings from the
students to obtain a full ranking of all the assignments [25],
e.g. ai > ... = an. Since the goal of our work is to improve
the accuracy of the predicted grades of assignments, our
work belongs to the category of cardinal peer assessment.

2.1 Cardinal Peer Assessment

Several iterative algorithms were proposed to learn the
score of each assignment from the peer grades. De Alfaro
and Shavlovsky proposed the Vancouver algorithm which
iteratively updates the score of each assignment and the
grading accuracy of each grader [3]. In each iteration, the
algorithm weights the peer grades by the accuracy of the
graders and used these weighted inputs to estimate a score
for each submission; the accuracy of each grader is then
updated by the estimated score of each grader. Walsh pro-
posed another iterative algorithm called the PeerRank al-
gorithm [23] which is inspired by the well-known PageRank
algorithms [13]. On the basis of the assumption that the
score of a grader reflected his/her grading ability. The Peer-
Rank algorithm learned the scores of assignments iteratively
by weighting the feedback of a grader by his/her scores. A
reputation based algorithm was proposed to weight the peer
grades of students by the trust they received [6].

Formulating generative models is another popular approach
for peer assessment. Piech et al. proposed probabilistic mod-
els to estimate the score of each assignment by modeling the
relationship between the observed peer grades of each as-
signment, the true score of each assignment, as well as the
bias and reliability of each grader [15]. The PGs Model in
their work uses a deterministic affine function to model the
relationship between the reliability and the true grade of a
grader, with the assumption that a grader with higher score
tends to be more reliable. Mi and Yeung argued that this
deterministic linear relationship might be too rigid to model
the reliability and the true grade for all the graders [12].
Hence, they extended this model by relaxing this determin-
istic linear relationship by using a probabilistic relationship.
However, all the existing cardinal peer assessment methods
did not model the dependencies of bias among the students.

2.2 Ordinal Peer Assessment

For ordinal peer assessment models, Shah et al. general-
ized the Bradley-Terry model [1] to learn the latent scores
of students based on the partial rankings provided by the
students [21]. Raman et al. used several classical probabilis-



tic ranking models such as the Plackett-Luce model [9], the
Bradley & Terry model [1], and the Mallows model [11] to
learn the full ranking of all the assignments based on the par-
tial rankings of assignments collected from students [16]. To
obtain a more accurate ranking of assignments, a variabil-
ity parameter was introduced into the probabilistic rank-
ing models to estimate the grader reliability. Moreover,
Bayesian techniques were employed to estimate the uncer-
tainty of the predicted ranking [17] and allocate the ranking
tasks among the students [24]. To reduce the sample com-
plexity for the partial rankings, Chan et al. proposed a ban-
dit style algorithm which allocates the ranking tasks among
the students and learns the full ranking of all assignments
in an online manner [2]. To further improve the accuracy
of predicted ranking, Mi and Yeung proposed a mechanism
to combine both cardinal peer assessment and ordinal peer
assessment [12]. However, all the existing ordinal peer as-
sessment methods assumed that students are independent
of each other.

3. PROBLEM DEFINITION

In this section, we first describe the notations and con-
cepts that will be used throughout this paper, then we for-
mally define the problem of peer assessment that we are
going to solve.

We use u to denote an arbitrary student and U to denote
the set of all students. Then, we use v to denote an arbitrary
grader and V to denote the set of all graders. Since the
students in peer assessment also act as graders, U and V'
are actually correspond to the same set of students. We
use n to denote the number of graders or students involved
in the peer assessment, i.e., n = |U| = |V|. After that,
we use v — u to indicate that grader v grades student u’s
assignment. All the notations that we used are summarized
in Table 1. The followings are the definitions of the concepts
that will be used in this paper.

True scores: We assume that each assignment is associ-
ated with a true score. We use s, to denote the true score
of student w’s submission.

Peer grades: Peer grades are the scores given by the
students to their peers’ assignments. We use z,, to denote
the score given by grader v to student u’s submission. Then,
we use Z to denote the set of all peer grades that we received.

Influence matrix: We use W € R™ ™ to denote the
influence matrix. The ¢, j-th entry of the influence matrix,
w;,j, is defined as the influence that grader v; has on the
influenced bias of grader v;. w; ; = 0 if and only if grader v;
does not have any influence on grader v;’s influenced bias.
All entries in W are nonnegative and >  w;; = 1 for
i =1,...,n, i.e., W is row-wise normalized. This influence
matrix can be constructed from the social graph in the social
components of a MOOCs platform, such discussion forums
and private messages. In addition, some MOOC platforms
allow users to link their accounts with social network services
such as Facebook, such social connection information can
also serve as the building blocks for the construction of W.
The details of the construction of W for this paper will be
discussed in Section 5.

Influenced bias: The influenced bias of a grader is de-
fined as the constant inflation or deflation of peer grades
given by that grader. We use b, to denote the influenced
bias of grader v. For examples, suppose s,, = 8, and b, = 2.
Then, the mean of z; = s, + b, =8 + 2 = 10.

Table 1: Notations

Notation Description

\% Set of all students

U Set of all graders

Su The true score for the submission of
student u

Zy The score given by grader v to student u’s
submission

0. The original bias of grader v before
influenced by her friends

by The influenced bias of grader v after
influenced by his/her friends

Ty The reliability of grader v

w The influence matrix

A The adjacency matrix of the social graph

of the graders

The set of graders that is connected to
grader v in the social graph of the graders
(students)

Original bias: We use 0, to denote the original bias of
grader v. We assume that the mean of b, is a linear com-
bination of grader v’s original bias and the original bias of
his/her friends, weighted by the influence matrix W. More
formally, the mean of b, = Zk:kGNc(v) Wy, k0K, where N¢(v)
is the set of neighbors of grader v in the social graph. We as-
sume that only the neighbors of grader v in the social graph
have influence on the bias of grader v. If a grader v did
not receive any social influence, i.e., w, r =0 for all k € V,
then, b, = 6,.

Reliability: The reliability of a grader is defined as the
precision (the reciprocal of the variance) of the peer grades
given by that grader. We use 7, to denote the reliability of
grader v, i.e., T, is the precision of z;;. Reliability measured
how close is on average is the peer grades given by that
grader from the underlying true score of the assignment after
correcting the bias.

Unlike existing works that assume all graders are inde-
pendent of each other, we introduce new probabilistic mod-
els by exploiting graders’ social information. Our goal is to
estimate the true score of each assignment by modeling the
relationship between the observed peer grades, the reliabil-
ity, the original bias, and the influenced bias of graders, and
the true score of assignments. More formally, we define the
problem as follows: Given the peer grades provided by the
graders, Z, and the influence matrix, W. Our goal is to
learn 7y, by, 0y, for all v € V, and s, for all w € U. Table 1
shows all the notations used in our proposed probabilistic
models.

4. PROBABILISTIC MODELS

In this work, we propose three probabilistic models, PG,
PG7, and PGg for peer assessment. We describe the details
of these models in this section.

4.1 The PGs Model

Our PGg Model is an extension to the PGy Model in [15]
by modeling the dependencies of bias among the graders.
The conditional dependence structure between the random
variables in PGg are expressed by the graphical model [7]
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in Figure 1(a). As shown in the figure, the peer grade z,,
is the only observed random variable in the model. s, 7y,
0., and b, are the hidden variables to be estimated. The
prior distribution of these hidden variables are specified by
the hyperparamters, oo, Bo, 10, do0, o, and vo. The distri-
butions of all the random variables for the PG¢ Model are
shown as follows.

7 ~ I(ao, Bo),
Gv ~ N(0, 7-),
bo ~ N (3. kENG () wo, k0, 55 30 );
Su NN(“Ov WO)
zi ~ N (su + by, 7).

We assume that the true score, s, follows a Gaussian dis-
tribution with the mean equals to po and the variance equals
to 1/40. Although different graders may have different orig-
inal bias, we believe that the average original bias of all
graders is 0. Hence, we assume that the original bias 6, fol-
lows a zero-mean Gaussian distribution with a variance 1/nq.
To model the dependency of the bias among the graders, we
assume that the mean of b, follows a Guassian distribution,
with the mean as a linear combination of grader v’s origi-
nal bias and the original bias of his/her friends, weighted by
the influence matrix W. The peer grades follow a Gaussian
distribution with the mean equals to the true score of the
assignment plus the influenced bias of the grader, and the
precision equals to the reliability of the grader. The reliabil-
ity follows a Gamma distribution with the shape parameter
equals to ap and the rate parameter equals to So. Thus, the
mean of the reliability of every grader is ao/Bo. Since 7,
will be plugged into the variance of s,, the scale parameter
of the Gamma distribution also responsible for scaling the
variances of the peer grades.

4.2 The rPG; Model

The proposed PGr Model is an extension of the PGy
Model in [12] by modeling the dependencies of bias among
the graders. The conditional dependence structure between
the random variables is expressed by the graphical model in
Figure 1b. As shown in this figure, PG7 assume that there
is a dependency between the reliability of a grader and the
true score of the assignment submitted by that grader, while
PGg does not make such assumption. The following equa-
tions show the distributions of all the random variables for
the PG7 model.

Ty ~ F(Sm ﬂO)

0y ~ ./\f( , no)
Nk KENG(v) Wy, kO, 450)

Su (Mov 70 )7

Zy ~ N (su +bu, 7 L).

Unlike PG that assumes the reliability of all graders fol-
lows the same gamma distribution, in PGz, the reliability
of a grader follows a gamma distribution with the true score
of his/her submission, s,, as the shape parameter. Thus,
the mean of the reliability of grader v is s,/Bo. Since the
mean of the reliability of a grader increases with her true
scores, it captures the intuition that a student with a higher
score tends to be a more reliable grader. The distributions
of other variables are the same as that in the PGg Model.

4.3 The PGs Model

The proposed PGg Model is an extension of the PGs
Model in [12] by modeling the dependencies of bias among
the graders. PGs also assumes that there is a dependency
between the reliability of a grader and the true score of the
assignment submitted by that grader, thus, the conditional
dependence structure of PGg is the same as that in PGr.
The following equations show the distributions of all the
random variables for the PGg model.

Ty ~ Sy

01} ' Mo

N(sv, 35),

N, 55

by ~ (Ek keNc(u) Wy, kO, ¢0)
(
(

Su ™~ Ho 770

Zu Su + v7 o )

In PGs, the probability distributions of 7, and z, are
different from that in PG7. We assume that the reliability
of grader v follows a Gaussian distribution with s, as the
mean and 1/8p as the variance. Thus, the scale of 7, will
be determined by s,, which is a random variable that we
cannot tune. Since 7, will be plugged into the variance of
z,, in order to scale the variance of z,,, a hyperparameter
A is introduced. Hence, we assume z; follows a Gaussian
distribution with the variance A/7,.

» Dependency




4.4 Model Inference

After we formulate the above probabilistic models for peer
assessment, the next step is to infer the values of the latent
variables including the true score of each student, the re-
liability, the original bias, and the influenced bias of each
grader. These latent variables can be inferred by computing
their posterior distribution given the peer grades,
P({su}tuev,{0v}vev, {bs}tvev, {Tv}vev|Z). However, the la-
tent variables in our proposed models are correlated with
each other. For example, the mean of z; in our models
is Sy + by. To estimate s, given Z, we need to have a
good estimation of the bias of all the graders who graded
submission u. To estimate b, given Z, we need to have a
good estimation of the true scores of assignments graded by
grader v. Thus, it is a chicken-and-egg problem. To tackle
this problem, there are different approximate inference tech-
niques to infer these latent variables. In this work, we use
the Gibbs sampling technique [5] to generate samples of a
latent variable from an approximated posterior distribution.
After we generated a set of samples of a latent variables, e.g.,
st s2. ..., sT we estimate this latent variable by the empir-
ical mean, e.g., §, = % Zthl s!,. For each latent variable,
we run Gibbs sampling for 300 iterations and discard the
first 60 burn-in samples. For the latent variables s, in PG~
and 7, in PGg, there is no closed-form distribution for the
Gibbs sampling, hence, we perform a discrete approximation
to these two latent variables.

Algorithm 1 shows the inference algorithm for our PGsg
Model, where T' denotes the number of iterations and B
denotes the number of burn-in samples. The procedure of
the inference algorithm for PG7 and PGg are the same as
the one for PGs, but with different approximated posterior
distributions for the latent variables.

Algorithm 1 PG Inference(Z,W,T,B,po0,Y0,%0,80,10,%0)

1: Su ™~ N(:U/Oa %)

2: 7y ~ I'(ao, Bo)

3: 0o ~ N(0, ;)

4: by ~ N(Zk:keNg(v) wy kO, %)

5 fort=1—1T do

6: for each true score s,; do

T Sample s according to Eq. (1)

8: Su; < 8

9: for each grader reliability 7,, do
10: Sample 7 according to Eq. (2)
11: To, & T

12: for each grader original bias 6, do
13: Sample 0 according to Eq. (3)
14: 0y, <6

15: for each grader influenced bias b,;, do
16: Sample b according to Eq. (4)
17: by, < b

18: €W ({sutuev, {ro}vev, {fu}vev, {bo}vev)
19: ({8u}uev, {Fo}vev, {0u}vev, {bu}uev) <

20: ﬁ 23:34-1 ¢

21: return ({gu}u€U7{%U}UGV,{éU}UEVa{B'U}UGV)

4.4.1 Approximated Posterior Distributions

The approximated posterior distributions for the latent
variables in PG¢ are shown as follows.

Yoro + 3 g, To(Zu; — bo) 1 )
Yo + Zu:v%ui T ’ o + Zu:v%ui T
(1)

s~ N(

P Tlao+ M ot g 3 (- (b)) ()

UV U

DkikeNg (i) PoOrWk = Wios 3055 Ng (), 50; Whii i)

0 ~ N(
M0+ D kikeNg (i)

! )

Mo + Zk:kGNg(vi)
3)

¢0 Zk:kGNG(vi) w“iakek + Zu:vi—MJ, Tu; (Z’Zl - Su)
¢0 + Zu:ui%u To;

)

b~ N

I

1
¢0 + Zu:viﬁu To;
(4)

The followings are the approximated posterior distribu-
tions for the latent variables in PG7. However, sampling
distribution for s has no closed form. Hence, we use a dis-
crete approximation to approximate this posterior distribu-
tion with intervals of width 0.1.

-1 080 Dy su, To (20, — by
s X G, exp(—R(sii _ oK Z“}—ml (zu, )

)%)

2 Yo + Zv:v—}u,; Tv
T Tt 2 ot o ST (R = (su b))
2 2 UV U '

Zk:keNc(ui) G0 (bkwk,v; — Wk,v, Ej:jeNc(k),j;évi wk,;6;)

0 ~ N (

Mo + Ek:kENc(Ui)

! )

M0+ 2 kikeNg (vp)

d)() Zk:kGNc;(vi) w“iakek + Zu:vi—nj. To; (ZZ’L - Su)
¢0 + Zu:vi—vu To;

)

b~ N(

)

1
(bO + Zu:vi%u To;

The followings are the approximated posterior distribu-
tions for the latent variables in PGgs. However, sampling
distribution for 7 has no closed form. Hence, we use a dis-
crete approximation to approximate this posterior distribu-
tion with intervals of width 0.1.

“oko + Zv:v%ui TTU(Z’Z - bv) 1
Yo + /80 + Zv:v%ui Tv ’ Yo + /BO + Ev:v%ui Tv

s~ N( )
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S. EXPERIMENTS

We conduct experiments to compare the performances of
our proposed probabilistic models with other state-of-the-
art probabilistic models for peer assessment. The empirical
studies are intended to address the following questions:

1. Can we improve the accuracy of existing probabilistic
models by incorporating the social connections among
the graders?

2. How does the number of social connections among the
students affect the performances of our models?

5.1 Real Dataset
5.1.1 Peer Grading Dataset

The real peer grading dataset is collected from a massive
open online course called “Art History: A look into mas-
ters and classics” offered by the Tsinghua University on the
xuetangX Platform. This dataset contains both the peer
grades given by the students as well as the grades given by
the teaching staff.

The dataset consisted of the peer grading results of three
essay questions. The summary statistics of these peer grad-
ing results are presented in Table 2. For each essay ques-
tion, each student was asked to evaluate three submissions
of his/her peers according to the rubrics specified by the
instructor. Some students eventually evaluated more than

)

three submissions while some students evaluated less than
three submissions. The system automatically assigned peer
grading tasks to the students such that the each submis-
sion was graded by a similar number of graders. The gradee
identities were concealed from the graders, and vice versa,
throughout the whole peer grading process. At the end of
the peer assessment process, the system used the median of
the scores given by the graders as the predicted score of a
submission.

Besides the grades given by the students, this dataset also
contains grades given by the teaching staffs. A very lit-
tle proportion of the assignments did not receive any peer
grades, we eliminate such staff grades in our work. As shown
in Table 2, 99% of this dataset are staff-graded submis-
sions. These staff grades are considered as the ground truth
grades for the assignments. One of the advantages of this
peer grading dataset is that it contains a much higher per-
centage of staff-graded submissions than other related peer
grading dataset in MOOCs, e.g., 2.6% in [12], and 0.21% to
0.35% in [15]. Thus, this dataset allows us to evaluate the
quality of most of the predicted grades of assignments.

Next, we give an overview of the influenced bias of the
students in this peer grading dataset. We estimate the in-
fluenced bias of students by their empirical bias. The em-
pirical bias of a student is the average of inflation of grades
given by that grader. For example, the peer grades given by
grader v; are z,%, z,%, and z,,. Then the empirical bias of
grader v; is [(204 — 5u) + (20 — $us) + (205 — 54))/3-

The histograms of the empirical bias of students are shown
in Figure 2. From these histograms, we can see the bias of
most of the students is more negative than -1. Moreover,
a significant amount of their bias is more negative than -
3. Hence, the students in this dataset tend to have tough
grading standards and we cannot ignore the bias of students
when predicting the true score of each assignment from peer
grades.

Table 2: Summary statistics of the essay questions for peer
grading

” Essay 1 Essay 2 Essay 3 ”

Submissions 126 288 141
Staff grades 126 286 516
Peer grades 493 1121 516
Full scores 15 15 15




Table 3: Summary statistics of students’ forum activities

Students in  Students in  Students in
essay 1 essay 2 essay 3
# Threads 11 80 6
# Comments 1704 3233 2078
# Upvotes 75 219 74
# Implicit 12 36 8
social links

5.1.2 Forum Activities Data

To extract the social connections among the students, we
investigate students’ social activities in the discussion fo-
rums of the xuetangX platform. For each essay question, we
show the summary statistics of the forum activities of the
involved students in Table 3. The discussion forums in xue-
tangX allow students to give an upvote to a particular com-
ment or thread. These upvote activities actually express the
preferences of the students. Studies showed that there is a
strong correlation between preference similarities and trust
relationships in a social network [30]. Hence, we assume
that users with similar preferences tend to form a commu-
nity. Based on this assumption, we use the upvote similarity
between the students to infer their social connections, i.e.,
we build the homophily-based implicit social graph [28] for
the students by using their upvote similarity. More specif-
ically, we first represent the upvote activities of each stu-
dent. Secondly, we measure the upvote similarity between
the students. Thirdly, we infer the weights for the social
links between the students.

To represent the upvote activities of each student, we use
a vector, [; € R™, to be the upvote vector of student i. The
j-th entry of [; will be 1 if student ¢ gives at least one upvote
to student j’s threads or comments. Otherwise, the j-th
entry of [; will be 0. For example, there are three students,
v1, v2, and v3. Student 1 only gives an upvote to student
3’s thread, so I; = [0,0,1].

Next, we measure the upvote similarity between two stu-
dents, v; and vj, by the Jaccard similarity coefficient of their
upvote vectors, J(l;,1;). Jaccard similarity coefficient is a
well-known metric to measure the similarity between two
sample sets, with a range from 0 to 1. The higher the Jac-
card similarity coefficient, the more similar the two sample
sets. Then, we assign the value of J(l;,1;) as the weight for
the social link between v; and v; if J(l;,1;) > threshold.
In this work, we set threshold = 0.4. More formally, let
A € R™*™ be the adjacency matrix for the social graph. For
i,j=1,..,n,

A= J(l’ivlj)v if J(l,,lj) > 04
" 0, otherwise.

The fourth row of table 3 shows the number of links in the
homophily-based implicit social graph for the students in
each essay question after excluding all the loops (a link that
connect a student to itself).

After we have extracted the social graph for the students,
we construct the social influence matrix, W, by normalizing
the rows of matrix A, such that 3", Wi; = 1 for i =
1,...,n.

5.2 Evaluation Metrics

We use the root-mean-square error (RMSE) to measure
the deviations of the predicted grades from the ground truth
grades. The RMSE is a widely used metric in cardinal peer
assessment literatures [15, 12]. The formal definition of the
RMSE is in Eq. (5). We use s;, to denote the ground truth
score of student u’s submission and U™ to denote the set of
staff-graded submissions.

RMSE = [ (su — s3)2. (®)

uelU

The lower the RMSE of the predicted grades, the higher the
accuracies of the predicted grades.

5.3 Comparison Methods

In order to demonstrate the advantages of our models, we
compare our models with some baseline methods. Since the
problem we solve in this paper is to predict the true score
of each assignment, we will not compare our models with
ordinal peer assessment models. We consider the following
peer assessment models as baseline methods.

e Median: Simply taking the median of the peer grades
given to an assignment as the predicted grade.

e PGy: The first probabilistic model for peer assess-
ment [15]. Our PGs Model is an extension of this
model.

e PG3: A probabilistic model which assumes that the
reliability of a grader is linearly correlated with the
true grade of a grader [15].

e PGy4: A probabilistic model which assumes a proba-
bilistic relationship between the reliability of a grader
and the true grade of a grader [12]. Our PG7 Model
is an extension of this model.

e PG5: Another probabilistic model which also assumes
a probabilistic relationship between the reliability of a
grader and the true grade of a grader [12]. Our PGjs
Model is an extension of this model.

5.4 Performance on Real Data

Table 4 shows the accuracies for the grades predicted by
different models. The RMSE reported in this table is the
average of RMSE over ten repetitions. STD stands for the
standard deviation of the RMSE. For all the above prob-
abilistic models, we tune the hyperparameters to the ones
which achieved the lowest RMSE on the dataset. Overall,
our PG7 Model is the most accurate model among all the
above methods, while the median baseline is the least accu-
rate method. The PG5 Model is the least accurate proba-
bilistic model in this dataset although it is the more accurate
than PG4 and PG3 in [12]. Thus, the PG5 Model does not
fit this data set well.

Since our PGgs, PG7, and PGs are extensions of PGy,
PG4, and PG5 respectively by incorporating social connec-
tions of graders, we compare these three pairs of models as
follows:

o PGs vs. PG5 : From the 3-rd and 4-th rows of Ta-
ble 4, we can see that the RMSE of PGy is significantly
lower than that of PG5 in essay 1, essay 2, and essay



3. The standard deviation of RMSE of PGs is also sig-
nificantly lower than that of PG5 in all the 3 essays.

o PGg vs. PGy : From the 5-th and 6-th rows of Ta-
ble 4, we can see that the RMSE of PGg is slightly
lower than that of PG: in essay 2 and essay 3. Both
methods achieved the same RMSE of 2.30 in essay 1.
The standard deviations of RMSE of PG¢ and that of
PG, are similar in all the 3 essays.

e PG7 vs. PG4 : From the 7-th and 8-th rows of Ta-
ble 4, we can see that the RMSE of PG~ is slightly
lower than that of PG4 in essay 1, essay 2, and essay
3. The standard deviations of RMSE of PGg and that
of PG, are similar in all the 3 essays.

Even through PG5 does not fit this data set very well, by
extending this model with social connections of graders, we
can significantly improve its accuracy and stability. For PG4
and PG, incorporating social connections of graders can
slightly improve their accuracy. In sum up, by leveraging the
social connections of graders, we can improve the accuracy
of peer assessment.

5.5 Simulated Studies

We use synthetic data to analyze the performances of our
models, PGgs, PG7, and PGg under different numbers of
social connections among the students. First, we simulate
six adjacent matrices, Aj,..., Az among 100 students, with
0, 20, 40, 60, 80, 100 social connections respectively. Similar
to the real data set, we construct the social influence ma-
trices, W1, ..., W{ from these adjacent matrices. Then, for
each of our peer grading models, we follow its probabilistic
assumptions to simulate six different sets of ground truth
grades and peer grades of all students by using six different
social influence matrices.

Figure 3 illustrates the performances of our models on
synthetic datasets under different numbers of social con-
nections. For PG7 and PGg, we can see that their errors
decrease gradually as the number of social connections in-
creases. Thus, the accuracy of our PGrand PGg model in-
creases with the number of social connections. For PG, its
error has some fluctuations but does not show any trends
as the number of social connections increases. Hence, the
accuracy of our PGg model is less sensitive to the number
of social connections compare to PG7 and PGs.

6. CONCLUSION AND DISCUSSION

Table 4: The accuracies for the grades predicted by different
models

Essay 1 Essay 2 Essay 3
RMSE | STD | RMSE | STD | RMSE | STD
Median| 3.14 0.00 3.91 0.00 3.17 0.00
PGs 2.27 0.01 2.35 0.00 2.32 0.01
PG5 3.00 0.05 3.62 0.06 3.01 0.17
PGs 2.46 | 0.01 | 2.47 | 0.01 | 2.25 | 0.01
PG, 2.30 0.00 2.29 0.00 2.06 0.00
PGg 2.30 [ 0.00 | 2.19 | 0.00 | 2.02 | 0.00
PGy 2.28 0.01 2.14 0.00 1.97 0.01
PG~ 2.27 0.01 2.13 0.00 1.96 0.01

Performances of our peer grading models under
different numbers of social connections

14

RMSE (the lower the better)

0 20 40 60 éO 100
Number of social connections among the students

Figure 3: The performances of our peer grading models un-
der different numbers of social connections.

In this paper, we propose new probabilistic models for
peer assessment by incorporating the social influences among
the students, on this basis of the intuition that the bias of
graders will be affected by their social connections. To the
best of our knowledge, this is the first work to leverage the
social information of students to improve the accuracy of
peer assessment. To verify the performances of our mod-
els, we conduct experiments on a new peer grading dataset
which is enhanced by the social information of the students
in the discussion forum of the course. Experimental results
show that our proposed models outperform previous work in
terms of the accuracies of the predicted grades. The implica-
tion of this work is that by leveraging the social information
of the students, we can improve the accuracy of peer assess-
ment.

Our proposed models can be easily extended to model the
dependencies of the reliability among the students. It is also
possible that we can further improve the accuracy of the
predicted grade by modeling the dependencies of the true
scores among the students. However, such models will be
unfair to the good students who often interact with students
with lower grades.

Besides the area of MOOCsSs, our models can also be ap-
plied to the area of crowdsourcing [18, 19]. If a crowdsourced
task requires subjective evaluations from the crowdworkers,
e.g., evaluate the quality of an image. Then, our model can
be easily extended to learn the bias, the reliability of the
crowdworkers, and the true quality of the images.
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