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Abstract

Chest X-ray (CXR) datasets hosted on Kaggle, though useful from a data science
competition standpoint, have limited utility in clinical use because of their narrow
focus on diagnosing one specific disease. In real-world clinical use, multiple
diseases need to be considered since they can co-exist in the same patient. In
this work, we demonstrate how federated learning (FL) can be used to make
these toy CXR datasets from Kaggle clinically useful. Specifically, we train a
single FL classification model (‘global‘) using two separate CXR datasets – one
annotated for presence of pneumonia and the other for presence of pneumothorax
(two common and life-threatening conditions) – capable of diagnosing both. We
compare the performance of the global FL model with models trained separately
on both datasets (‘baseline‘) for two different model architectures. On a standard,
naive 3-layer CNN architecture, the global FL model achieved AUROC of 0.84
and 0.81 for pneumonia and pneumothorax, respectively, compared to 0.85 and
0.82, respectively, for both baseline models (p>0.05). Similarly, on a pretrained
DenseNet121 architecture, the global FL model achieved AUROC of 0.88 and
0.91 for pneumonia and pneumothorax, respectively, compared to 0.89 and 0.91,
respectively, for both baseline models (p>0.05). Our results suggest that FL can be
used to create global ‘meta‘ models to make toy datasets from Kaggle clinically
useful, a step forward towards bridging the gap from bench to bedside.

1 Introduction

Chest X-Ray (CXR) is the most commonly ordered medical imaging study globally and is critical
for screening many life threatening conditions (e.g., pneumonia). Accordingly, many large-scale
public CXR datasets have been released through curation of [8, 2, 3, 5]. These, in turn, have resulted
in numerous data science competitions hosted on platforms like Kaggle (e.g., RSNA pneumonia
detection challenge [7]), resulting in expert-level performance for disease diagnoses.

Although useful from a data science competition standpoint, these Kaggle-hosted CXR datasets have
limited clinical utility because of their narrow focus on one single diagnostic task. For example, the
two Kaggle CXR competitions hosted by RSNA and SIIM have focused on diagnosis of a single
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disease, like pneumonia and pneumothorax [9]. Although impressive results have resulted from these
competitions, their utility is limited given the dozens of diagnoses that could present in real-world
clinical practice. Therefore, a method to harmonize these toy datasets to train a clinically-useful
model could revolutionize how small, narrowly-focused datasets can be leveraged in aggregate for
development of clinically-relevant deep learning models.

We propose CheXViz, a federated learning (FL) framework for training a single model on spatially
distributed datasets with different disease annotations into a ‘global‘ meta-deep learning model.
Briefly, FL is a machine learning technique that approaches the problem from a multi-domain and
multi-task perspective. By using a decentralized and distributed approach, consisting of a central
server and nodes, a global ‘meta‘ model can be trained to generalize distributed tasks with non-
iid labels. During each training step (‘FL round‘), every node trains a local model. Then, the
weights across all nodes are aggregated by the central server and redistributed back to the nodes.
In medical imaging, FL has enabled training of large-scale ‘global‘ deep learning models using
datasets spread across multiple institutions without sharing sensitive patient data. In this preliminary
work, we demonstrate the utility of CheXViz for training a single model to diagnose pneumonia and
pneumothorax using two toy datasets from Kaggle for these two respective diseases. Put another way,
we demonstrate how toy datasets from Kaggle can be made clinically useful using FL.

Figure 1: Illustration of the CheXViz framework

2 Methods

2.1 CheXViz

We developed CheXViz using a multi-task FL setup. The CheXViz model is initialized as a deep
neural network consisting of two distinct blocks - a representation block and a task block. The
CheXViz model is distributed across all the participating nodes to train their tasks. During training,
only the weights corresponding to the representation block are aggregated and redistributed by the
central server back to the nodes, thereby preserving task-related information for each node in their
task block. Figure 1 illustrates the CheXViz framework.

2.2 Experimental Setup

We evaluated the CheXViz framework for the task of training a generalized global model that can
classify cases of pneumonia and pneumothorax using distributed and non-iid CXR datasets from
the RSNA Pneumonia Detection and the SIIM-ACR Pneumothorax Segmentation competitions on
Kaggle. Our experiments involved two different deep network architectures: A naive convolutional
neural network (CNN) consisting of 3 convolutional layers (‘standard‘ model) and a pre-trained
DenseNet121 architecture using transfer learning (TL) [1]. We implemented Federated Averaging
(FedAvg) for model weight aggregation as described in [4].
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The standard baseline models for pneumonia and pneumothorax classification were trained for 300
epochs using a learning rate scheduler with an initial learning rate of 1e-3. During FL, we trained
the standard global model for 300 FL rounds where for each round, models were locally trained
for 1 epoch before aggregation. The DenseNet121 model was initialized with pre-trained ImageNet
weights (‘base model‘) and a new classification head was trained for 30 epochs with a learning rate of
1e-3 while the rest of the base model weights were frozen and then fine tuned with a slower learning
rate of 1e-5 to prevent overfitting. For the baseline models, the models were fine tuned for 150 epochs.
For FL, we utilized FedAvg during the fine tuning step of TL. The global model was fine tuned for
150 FL rounds with 1 epoch before aggregation with a learning rate of 1e-5. All the models were
trained and evaluated on a Google Cloud VM with four NVIDIA T4 GPUs.

We computed sensitivity, specificity, area under precision-recall (AUPR) curve, and the area under
receiver operating characteristic (AUROC) curve for each model. The AUROC values between the
FL global model and the task’s baseline model were compared using bootstrapping and a paired t-test.
Statistical significance was defined as p < 0.05.

3 Results

Figure 2: ROC curves obtained from baseline and CheXViz models evaluated across both the datasets.

The CheXViz framework trained ‘meta‘ models demonstrated excellent performance compared to the
baseline models for the diagnostic classification of pneumonia and pneumothorax abnormalities, as
shown in Figure 2. For pneumonia classification with the standard model architecture, the baseline
and FL models achieved a validation AUROC of 0.85 and 0.84 respectively. We observed a similar
trend with the DenseNet121 architecture, where the baseline and FL models achieved a validation
AUROC of 0.89 and 0.88 respectively. For pneumothorax classification with the standard model
architecture, the baseline and FL models achieved a validation AUROC of 0.82 and 0.81 respectively.
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Again, a similar result was achieved with the DenseNet121 architecture, where the baseline and FL
models both achieved a validation AUROC of 0.91. The results are detailed in Appendix Table 1.

We further visualized the Grad-CAM outputs for evaluating the explainability and generalizability
of the models [6]. Our preliminary analysis suggests that the heatmaps from CheXViz models
demonstrate higher and focused activations within the lungs, compared to the baseline models as
shown in Appendix Figure 3. For future work, we intend to outline a methodology to quantify the
generalizability of models for CXR classification using Grad-CAM heatmaps.

4 Discussion

Although Kaggle CXR datasets and data science competitions have made an indelible impact on data
science and AI for healthcare, they are still a far cry from being clinically useful datasets. This is
understandable, given the challenges in curating expert-level annotations for diseases, and ostensibly
why these Kaggle-hosted competitions have focused largely on single diseases[7, 9]. Nevertheless,
there is a gap between these toy datasets and clinical utility. Put another way, it is unclear how
to use these datasets to train clinically-useful models capable of detecting multiple diseases. Our
findings demonstrate that our FL framework (CheXViz) can be used to create global ‘meta‘ models to
make toy datasets from Kaggle clinically useful, a large step forward towards bridging the gap from
bench to bedside. Although preliminary in nature and focusing on only two datasets, our framework
and results are extensible to any number of datasets and disease labels, as well as tasks beyond
classification (e.g., segmentation and object detection). It is our hope that our work can be a first step
towards moving Kaggle CXR datasets from competition to collaboration and transform these toy
datasets into clinically useful models.
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Societal Impact

Our work has a potential positive societal impact by taking an important step towards translational
research. Our work can be a first step towards moving Kaggle CXR datasets from competition to
collaboration and transform these toy datasets into clinically useful models. However, the use of FL
can potentially lead to privacy and security risks, making the system vulnerable to client and server
attacks, thereby leading to potentially negative societal impacts. We are actively working to address
these vulnerabilities in FL systems.

A Appendix

Table 1: Model Metrics

Task Model Loss Sensitivity Specificity AUPR AUROC p-value
Pneumonia Standard 0.38 82.57 71.97 0.63 0.85 -

Standard w/ FL 0.39 78.01 74.41 0.61 0.84 0.10

DenseNet121 0.34 84.90 76.76 0.71 0.89 -
DenseNet121 w/ FL 0.35 80.08 79.79 0.70 0.88 0.19

Pneumothorax Standard 0.41 74.13 75.89 0.54 0.82 -
Standard w/ FL 0.42 80.22 69.87 0.52 0.81 0.71

DenseNet121 0.31 91.30 76.31 0.73 0.91 -
DenseNet121 w/ FL 0.31 84.57 83.10 0.73 0.91 0.76

(a) Pneumonia (b) Pneumothorax

Figure 3: Grad-CAM Visualization of True Positives

5


	Introduction
	Methods
	CheXViz
	Experimental Setup

	Results
	Discussion
	Appendix

