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Temporal BYY Learning for State Space Approach,
Hidden Markov Model, and Blind Source Separation

Lei Xu, Senior Member, IEEE

Abstract—Temporal BYY (TBYY) learning has been presented to the cases of;, ¢, with unknown co-variances, of nonlinear
for modeling signal in a general state space approach, which pro- models and of non-Gaussiap e, [4].
vides not only a unified point of view on Kalman filter, hidden Thesecond lineis calledblind source separation (BSE)3]

Markov model (HMM), independent component analysis (ICA), . - .
and blind source separation (BSS) with extensions, but also fur- which is popular in the recent literature of neural networks and

ther advances on these studies, including a higher order HMM, in-  Signal processing. In general, BSS refers to the problems of re-
dependent HMM for binary BSS, temporal ICA (TICA), and tem-  covering source signal from observatiorx only, i.e., making
poral factor analysis for real BSS without and with noise. Adap- the inverse mapping in “blind.” Though it is generally impos-

tive algonthms are_developed for_lmplementatlon and criteria are sible, it does become possible fer generated from a simple
provided for selecting an appropriate number of states or sources. model

Moreover, theorems are given on the conditions for source separa-
tion by linear and nonlinear TICA. Particularly, it has been shown
that not only non-Gaussian but also Gaussian sources can alsobe 5, — Ay, whereA is a unknown invertible matrix ~ (3)
separated by TICA via exploring temporal dependence. Experi- )
ments are also demonstrated. )

Index Terms—BYY learning, factor analysis, hidden Markov and the components gf are mutually independent and at most

model, independent component analysis (ICA), inverse mapping, one of them is Gaussian. In this cagg; W, recoversyt_ up .
Kalman filtering, source separation, state space, time series. to constant scales and a permutation of components if there is

an W that makegj; by (2) become component-wise indepen-
dent [7], [20]. Thus, it is calleéhdependent component anal-

|. INTRODUCTION ysis (ICA)[13]. Many advance are achieved on ICA and its ex-
N the classic state space model tensions, which can be briefly summarized into three stages. In
the first stages, the learning é# is made with a prefixed es-
v =DBy,_1+e, z=Ay +e (1) timation on the distribution of each component either heuris-
G = Wy, OF y=Wa+G ) tically (e.g., the sigmoid used in [3]) or based on kurtosis es-

timation or density expansion [2], [7]. Several learning algo-

a series of random observatians= {}Z_, is described by (1) rithms forW have been pr(_)posed from different p_erspecj[ives,
through a series of hidden states= {y }Z_,, with stochastic anging from contrast functions [], [7], [12], to maximum like-
disturbances., ¢,. The problem of describing how is gen- 1h0od [10], information-maximization [3], [16], and minimum
erated fromy is calledmodeling and its inverse problem that Mutual information [2]. Usually, these algorithms work well on

recoversy by (2) fromx is calledinverse mapping or state re- the cases that the componentg;péire either all sub-Gaussians
covery or all super-Gaussians. In the second stage, it is realized that

. . the estimation on the distribution of each component should be
Given an observatior only, the above problems are usuall : . .
earned simultaneously together with learningi®nhsuch that

not well defined. However, it may become well defined under ; . :
X . hether a component is super-Gaussian or sub-Gaussian can be
some assumption. In the past decades, studies are made exten-_~ .. ; o
) . ) ; automatically detected during learning in order to work on any
sively on the model equations (1) and (2) with various exten-

. . . ) ; cqrnbination of super-Gaussian or sub-Gaussian components of
sions, which can be summarized basically along three lines © : . .
developments. 1. Such an idea has been implemented through adaptively es-

T . . timating either the distribution of each component by a learned
Thefirst line is classical in the literature of control theory arametric mixture [27], [29], [30] or the kurtosis of each com-
and signal processing [11]. Giveth and B known, andz,, ¢; P ' '

are mutually uncorrelated Gaussian white noises with knover?nem [17]. In the third stage, extensions have been made to-

co-variances, the task of recoverifigcan be adaptively imple- ward the cases that 1) the dimension pis larger thark instead

. : . f A being invertible [27], [29] and 2) some specific nonlinear
mented by Kalman filter [4]. Various extensions are also ma(g?/stemrt — G(y,) instead of the linear model equation (3) [19],

[26]. A more detailed review on the advances of ICA, as well
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statistical properties of, but also to ge#V to recoverg,. For ward pathwayy — x by pa,,,. Such a pair of Ying-Yang
Gaussiang; ande;, when samples are i.i.d., the task reducenodels is calledtemporal Bayesian Ying-Yang (TBYY) learning
into the classical factor analysis in the literature of statistics [1dystem

Extensions to non-Gaussiagsbut Gaussiar, are attempted  The task of specifying all the aspectsyof;, | ., pas, , P, |, 5
under the name of ICA [6], [29]. However, being different fronp,,, is calledlearningin a broad sense.

the case:; = 0[20], [7], in a noisy case, the fact that making The input of observation to the system is functionecbhy .
i be independent on its components can no longer ensure @ieen a realizatiox = {z;}7_,, pas, is usually specified by a
conclusion thafj; recoversy; up to only constant scales and anonparametric method based ®nin this paper, it is given by
permutation of its components. Strictly speaking, the name IGA1).

is no longer appropriate for a BSS problem on a noisy model. InA twofold role is taken by, , which is understood from
[26], this BSS problem is studied under the namdeyiendence

reductionwith not only new results on ICA for the cases of
unknown source number and nonlinear mage:= G(,), but pu(y) = /pMy LY [X)pa, (x) dx
also two architectures for BSS on the noisy model.
Thethird line is the study on hidden Markov model (HMM) pu(x) = /pMm L& Y)pam, (v) dy. (5)

in the literature of speech processing [18]. In a classical HMM,

we deal with the discrete model On one hand, it is the source model tlxais generated via the

Ying model. On the other hand, it is a target model matched by

ze=1....d, y=1...k pu(y) that represents via the Yang model. A certain structure
py =P =jlu—1 =19, pajy =p(me =7|w =J). can be designed far;, according to the nature of problem and
apriori knowledge. First, we choose the representation form for
Its relation to (1) can be observed from the fact that (1) can B& Statey.. It can be discrete, e.g., a numbgr=1,..., % or
equivalently described by(e;) = p(y: | By,—1) andp(c;) = a k-bit binary code. It can also be /adimension real vector.

pla¢ | A). In HMM studies,p,, p, |, are unknown and to be Then, we specify a_st_ructure in a parametric density fofon
solved from observations, which is ablind modelingoroblem P31, With a sew,, of finite number unknown parameters, where
solved usually by the Baum algorithm for maximum likelihood SPEcific value of,, represents a specific density in the family
estimation [18]. of all the densities thgt share this given structure.

Bayesian Ying-Yang (BYY) learning system and theory is Moreover, we design the structures for each of two com-
proposed as a unified statistical learning theory which is firstRPNentspas, .. pu,,- First, we exclude those structures
proposed in 1995 [31] and rather systematically developé‘ﬂth the relationship betwees and y broken, i.e., either
in past five years. Some recent reviews are referred to [2 v, 1, (X1Y) = pu, (%) Orpu, (V%) = pu,  (3)
[24], [26], and [28]. As a further development of Bayesiar] "€ We con_S|der two types of structures. One is described
Ying-Yang (BYY) learning, temporal BYY (TBYY) learning by a parametr_m_densny with a set of finite number unknown
system and theory is presented in Section Il as a gendP@f@meters, similar to the aboyg;,, e.9., we have parameter

state space model. In Section Iil, the connections of TBY§E!S 0y = and 6.1, for pas, ., pu,,,. The other is called
to Kalman filter and HMM are given with new eXtensionsstructure-freeWhlch means no any structural constraints such

In Section IV, the condition for BSS by linear and nonlineaatras, for eacha € {x|y,y |} is free to take any element
temporal ICA is studied. Three methods are proposed for BE§ Pe. Where P, |, and P, |, denote the family of all the
without and with noise. Moreover, criteria are provided foflénsities in the formp(x | y) andp(y | x), respectively.
selecting the number of states or sources. Experiments aré COmbination of structuresfany, ., par, , P, |, Specifies

given in Section V. We conclude in Section V1. a system architecture. There are three kinds of architectures,
featured by the structures pfwy e DM,
II. TBYY L EARNING » backward architecture or shortly B-architectusghich

i consists of a parametric density,, , for directly im-
A. TBYY Learning System plementing the backward pathway, and a structure-free
We consider a general probabilistic state space model that p, , with no structure for directly implementing the

describes the relation betwegny by the joint density(x,y) forward pathway;
in two Bayesian representations « forward architecture or F-architecturgvhich consists of
a parametric densityyy, , for directly implementing the
Py (X Y) = Dpu, . (v | %)par, (%) forward pathway and a structure-fregy, | ;

) « bi-directional architecture or Bl-architectureshere both
Pwm,,.» Pm, |, @re parametric densities for directly imple-
menting the bi-directional pathways.

P (%,y) = par, |, (XY, (3)-

On one handpy,, is called Yang model, representing the ob-

servation space or called Yang spacephy. and the pathway 1A discrete distribution is also described as a density, g(g.) = qé(y —

i 1)+ (1 — ¢)8(y) describes Bernoulli distribution for a binagy= 0 ory = 1,
x — y by pa, 12 1S called Yang or forward pathway. On thewhereé(y) =0 fory # 0, wheny = 0 it becomesi(y) = limy, o h~2.

other hand, we have the Ying modgel;, that represents the in- - 2 giscrete distribution is automatically understand as a parametric density
visible state space or Ying space py;, and the Ying or back- since it is always specified by a finite number of parameters.
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The case that both,,, \.) PM,|, are structure-free is useless In this case, after ignoring the terjnpy, (x) In pay, (x) dx,

because both pathways cannot be implemented. which is irrelevant t@®, &, from (4) and (7) we have
Given all the structures designed, there remain two tasks. One
is to specify all the unknown parametés= {6, ,,6,,60. |}, H(O,k) = —[KL(©,k)+ DI(©, k)]

which is callecparameter learningThe other is to decide that

companies the representationy@f which is calledstate space =
complexity selectionr shortlymodel selectionsince thisk is

an indicator of the complexity of the state space or the represen# L(©, k) =
tation model.

vy Inpa, dx dy

o, (X)KL(x) dx

DI(©,k) = [ pm, (x)DI(x)dx

B. TBYY Learning Theory
We use “Ying-Yang harmony” as the fundamental principle. K L(x) = P, , (¥ %)

Namely, we decid@, k) such that the Ying modgl,, and the pm, (X Y)PMm, (Y)

Yang modep,,, to be bestharmony in a sense thatwe minimize i,y — _ / ) 1n %) d 8

both the mismatch between the two models and the diversifica- ) pag, . (3 [x) pa, (3 ) dy ®)

tion of the resulted Ying-Yang system _ _ o _ _
Mathematically, we use a functionai(}) to measure the In implementation, we maximizéf (M) stepwisely by either

degree of harmony between;, andpyy,. It further consists Learning procedure br procedure Il Readers are referred to

of a measureD f(M) for the mismatching between the two[21] for the procedure Il. The procedure | consists of two parts

models and a measuf@l (A1) for the diversification of the re- as follows.

sulted Ying-Yang system, such thBt /) is maximized when » Parameter learnindpy

Df(M) andDI(M) are both minimized.

Generally, the mismatching between two densitiescan be O* = argmin KL(O,k), for each giverk. 9)
measured by the so-callgddivergence ©

pu,,, (¥ |x)In

S S

» Model selectiorby

Y VR COA _
Ditw) = [ s (5) don i) =0 B = axgmax H (k)
de(u) = ar IH%LX
5. > 00n[0,00) (6) H(k):—[KE(@*,/C)+DI(@*7/€)]- (10)

which was first studied by Csiszar in 1967; a nice introduction

can be found in [8]. It includes Kullback divergence as a speci@l racyrsive Implementation

case wherf(z) = —Ilnx ) ) )
We consider thak is causal, i.e.g; only depends on those
p(z) pastz,, 7 < t but not on any future:,, 7 > ¢. Given a realiza-
KL(p,q) = /p(x) In o) dz. (7) tionx = {z}L_,, we have
As shown in [21], we have the following. El
Definition 1: H(M) = —[Df(M) + DI(M)]. Df(M) is par (%) = [ [ par. (o [ 30)
the f-divergence betweep,,, andp,s,. The system diversi- =1 T
fication DI(M) is defined as the negation of tifedivergence X1 = [Tro1, 00 7]
between a system densjty; and a standard density, denoted o, (@0 | X)) = 6(wy — 2y), atx,_; =%x,_1  (11)
as—Df(par,us), whereu, stands for the most diversified den-
sity on the same support . wherex, means empty, and hege,, (z; | x;_,) is only par-

This DI(M) is justified since the more the system density ifally defined to avoid any over-assumption.
close to theu,, the more diversified the system density is, and Puttingpys, by (11) into (8), recursively from = 1to 7" we
the larger the negation of théDivergence is. get

As shown in [21], eithepy;, Or pas, could be used agy;.

Also, different choices are available for choosingaccording

to different types of the support ;. Moreover, the symmetry K L(©, k) = /pMy Ly [x)In
Df(p,q) = Df(q,p) is usually not satisfied. Hence, we have

several specific forms for the definition &f (A1). DI(©,k) = — /p]wy‘w(y |%)lnpy,,, (y|R)dy. (12)

This paper focuses on a typical situation defined by the fol-
lowing.

Definition 2: The Kullback divergence equation (7) is use
asDf(p, q) in Definition 1, with (a)ps;, chosen agy; and (b)
us = uypy, in @ correspondence gfy, = pus, . par, . Where P, (W 1%, ye-1) = puy L (0| T, Rem1, Vi)

u, 1S the uniform density on the same suppsytof py;, . P, (@ | Y xe—1) = pu, (@ [y, Ke—1,70-1)  (13)

pum, . (¥ |%)
., (X|Y)Pm, (¥)

gVe further impose the causal assumption
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wherey,_1 = [y, %—1, .. -,y1]* with yo being empty. Then,

we get

KIL(©,k) =) KL(®)
t=1

KL,(©) =KL - KLY - KL®

KLgl) - /pMy\z(Yt—l |it—1)KL§1)(yt—1)dyt—1
KL§2) - /pMy\z(Yt—l |it—1)KL§2) (Y1) dyia

Kng) - /pl\ly\z(Yt—l |>_<t—1)KL§3)(yt—1)dyt—1
(14

KLV (y1o1) = / pu,,, (U | %o, Xye—1)

X Inpy, e (e | @4, Xy1—1) dys
KL (yi1) = /pl\ly‘w(yt | T4, Xys—1)

x Inpy, (Tt | ye, Xyr—1) dy
Kng)(thl) = /p]\ly‘w(yt | Zt,Xyt-1)

X Inppr, (ye | ye—1) due
-1

buM, ., (Ve-1|%xe1) = Hp]\ly‘w(ytf‘r | Tp—ry XY t—1-7)

7=1

Xyi—1 = {Ke—1,Yt—1}.

ForaB-architecture, the structure-freg, is decided by min-
imizing K L(©, k). From (12), we get

(v]%) = pu,, , (X|Y)pum, (¥)
Pty V1= P (x)

KL(©,k) = —Inpu(x)

par(x) = / pa, (x| V), (¥) dy. (15)

2135

consider [ p(u)T(u) du by Taylor expansion of () around
the meani = [ up(v) du

~
~

T(w) = T(@) + (v — @)Y G(@) + er (v — 0)T H(@)(u — )
|0, the first-order expansion only
°r = 0.5, up to the second-order expansion
whereG(u), H(u) are the gradient and HessianBfu), re-
spectively. Sincef p(u)(u — @) du = 0, we get

/ p(W)T(u) du ~ T(0) + er TSH(@)]  (18)

whereX: is the covariance matrix gf(x) and TfC] is the trace
of matrix C.

Arrangingy:_; in a vector and regarding it asand regarding
P, . (¥i-1|%e—1) asp(w), in help of (18), from (14) and (17),
we ges

KLi(©) =Y {KLi(31-1)

+or T[S ($-0) Hicr (§3-1)] }
KLt(ytfl) = KL;I)(thl) - KL§2)(ytfl)

- Kng) (Yt—l)
T

- Z {Hi(ge-1)+er T[S Hu(3:-1)]}

t=1

Hy(yio1) = KL (yeo1) + KL (y,-1)

H(k)

(19)

whereH 1, Hy are the Hessians df L, (y:—1), Hi(y:—1) at
vi—1,and¥; ;| is the covariance matrix oy, . (Vi1 | Xi—1)
with respect tay; ;.

Moreover,y,;_; is obtained recursively at ea¢h> 2 by

Gr—1= /pMy‘m (Y2 | Ze—2)yr-1(yt—2) dyr—2

In this case, (9) becomes the maximum likelihood (ML) estimaf:—1(y:—2) = /yt—1p/wy (=1 | 1, Xyr—2) dys -1, OF

tion of the densityp s, (x).

For a F-architecture, the structure-fieg,  , is also decided
by minimizing K L(©, k) in (14), resulting inpas, |, = &(z —
7)) andKI® = —Iné(z, — 7,) which is irrelevant tod, k.
Thus, we have

KL,(0)=KL" - KL®. (16)

By noticing thatDI(©,k) = — Ethl KLgl), we can also sim-
ilarly get the recursive form fof (k) by

H(k) = —[KL(®, k) + DI(O, k)]

=Y (Kp? + K1),

t=1

17

D. Approximate Implementation
Except some simple cases, the integrals gyer, are usu-

U1 = Yt—1(Fe—2) + ¢, Tr [Ef,QHym(}A’t—ﬂ] (20)

with ¢, = 0 andc, = 0.5 for the first and second-order approx-
imation, respectivelyH, |, are the Hessians @f_,(y,—2) at
¥+—2. Furthermorex? _, are also obtained similarly by

Y= /pJ\ly‘w(Yt72 |%e—2)X_ 1 (yi—2) dy:—2

X _(yi—2) = /(yt—l — Ge—1) (Y1 — 1)

X PM, (Y1 | Te—1,Xye—2)dys—1. (21)

Lettingo? ; ando} ;(y: 2) denote théi, j)th element oty _
andx? ,(y:—2), respectively, we have approximately

2
ni "

07 j(Vi-2) + o T[S, Hij(91-2)]

3Wheny, is binary or discrete, we can still regard that it is real vpit\hy o in

(22)

[}

atype ofs-density. Thatis, we can always use (18) as long as a Taylor expansion

ally difficult or expensive in implementation. To simplify it, weis legal for the part’(w).
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with ¢, = 0 andc, = 0.5 for the first- and second-order ap-For the case of real vectar, we consider a mixture ofn
proximation, respectivelyH;; is the Hessian ozfrz ;(yt—2) at  Gaussian regressions

yt72' m
For a B-architecture, when we considegr = 0, the min- pe(u|v) = Zps(bi |w)@ (% 9Dy + ¢ E(i)) (28)
imization of K L:(y;—1) in (19) with respect to each free =1

pu, . (Ve | ¢, XY 1) Will result in whereG(u, 1, ¥) denotes a Gaussian of mgaand covariance

KLy(©,k) = —lnpy (T | X§4-1) Y.opshi|w),w =¢v+c,is givgn by a softmax_ structure as in
. _ R (25) and usually called the gating net [24], which weights each
XYi-1 = {Xt-1, Y11}, Gaussian regression according to the current input and reduces
(U | e XY 1) into a constanty; > 0 whenw = ;. Also,b; = [by, .. ..bw|T

M, Ee |y XY e 1)pa, (Ve | Fe-1) with its sth element being 1 and all the others being 0. Typical

= ICAESD : (23) examples for the structure equation (28) is the mixture-of-expert
models and the extended normalized RBF net [24].

E. Markovian Convention and Parameterization F. Gradient Based Algorithm
We call the numberg of samples in a setz,_y = Under a fixedt, we can implement (9) recursively froim= 1
{Z¢—1,...,2¢_q} the order of the set, or we say the sefo T by updating® in a gradient based technique to reduce

has an ordey. In previous discussions, the notationsxgf ;, eachKL,(®,k%). Observing (14) and (19), though we should
y:—1 are in their most general case of ordet= ¢t — 1. How- considerk L,(©) as a whole for updatingyy, ,, we only need
ever, the flnlte order Markovian convention has been W'debbnsiderKL§2) for updatingpys, |, and KL§3) for updating
a_ld_opted, .e., what happens at the purnemalates to only pu, respectively. Therefore, at eactwe can implement the
finite number of past samples. Thus, in the rest of the paper, ¥owing two steps.

take a convention that;_, y:_1 always have finite orderg,,

gy, With eitherg, = ¢, or ¢, # g,. Moreover, each of,, g,
may have different values as it locates after the conditioning

Step 1) (a) For the B-architecture, get; ,, by (15) or

P, |, (e | e, X31-1) by (23),
(b) For the Bl-architecture and F-architecture, up-

bar “” in pay P Pm, - 1d .
L EMy o0 BMy 0 PM,, . _ dated?sV = 0% — AVoa KL, (O);
The finite érder con\y/entlon also facilitates to descpibe e ylx ylz o t((g) )
pu,,,» Pu, in parameter structures. These structures share @tep 2) Updatéje™ = 05 + AV e K Ly, and except for
common feature that each is a density efdimensional vector the F-architecture, also update
1 conditioning on ad-dimensional vectop. In the sequel, we new __ pgold (2)
introduce some examples. wly = Oaly ¥ AVeon KLy (29)

For a binaryu with each component; taking either 0 or \\here) > 0 is a stepsize, an, means taking gradient with
1, we cqn3|der the structure of the so-called generalized “n‘?’@Epect tch. This algorithm is given in a unified form that ap-
regression [15] plies to both (14) and ((11)9), with eac(hQ)of the three ggchitectures.
WY — (1) = [ £ T When (19) is usedi{ L, (§¢—1), KLy (1), KL;™ (Fe-1)
Blul{v}) =700 =/ 0n).... )] are used in place of the abosel.\”, K1, KL¥  with g, _,
v=>0vte given by (20). We can make several different levels of approxi-
f(r) is usually a monotonic function (24) mation by choosing each of:, c,, ande, to 0 or 1.

Specificall ider t h struct One is th Specifically, for the structures (27) and (28), the implemen-
pecimealy, we consider two such structures. ©ne 1S e sQion of (29) often encounters the costs and gradients given in
called Softmaxstructure [15]

Tables | and Il.

ps(u|v) = E wi f (1) E () IIl. I DENTIFIABLE MODEL AND SOURCE RECOVERY
=1 =1 ™
, A. ldentifiable Model
e.g.f(r)y=¢" (25) o _
Definition 3: Given & and the structures gfy, , (x|¥),

for the case of decisive binary codgi.e., pum, (y) with parameter$ = {6, ,,6,}, a modelp,;(x) in
" (5) is said to be identifiable if each specific valuedadiniquely
each component; is eitheroor 1, and > u; =1. specifies a density gfy(x).

i1 Given apy,, (x), if itis generated from an identifiable model

. _ . (26) with both% and the structures gfy;, » (x]y), P, (y) known,
The other one is the independent Bernoulli structure the constrainp,;(x) = pas, (x) will lead us to a unique solu-

n tion of & which recovers the original densitiesof;, , (x|y),
pulu|v) = H F) (1= fm)t™ pu, (y) that generatg,,, (x). Moreover, it also uniquely spec-

ey ifies par, . by (15). Further putting it into (5), we get

0 < f(r) < 1is asigmoid function
eg. f(r)=1/(1+e ). (27) /PMW (¥ [%)par, (x) dx = pu(y) = pag, (y)- (30)
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TABLE |
BINARY -STATE BASED COSTS AND GRADIENTS

Some Binary-State Based Costs
Ly = — [pp(ulp) Inpp(ulv)du = = 570, en(f (), f(1:)),
Hy = [pp(ulp) Inpp(ulp)du = 370 en(F(pi), £(ui)),
ea(pg) =plng+ (1-p)In(l—gq), Dy =dg[f(p:) = f*(ms)),
Lgo = — [p(ulp) InG(z, pou + p, Te)du = 0.5{In|Se| + Tr{E(eeT + oDy od)],
v==0vtec, p=vz+te, p=puwtc,e=z— (pof(p)+p),
Related Gradient Directions
h=[hy, o haT, hi= () (584 - 2R, f(r) = 40
VoLo = hvT, Vo Ly = h, Vy(Hs + Lp) = g27,
Ve Ho+Ly) =g, g=1g1,---, 94", gi = f'(p:)[In lf(f’&)‘.) —In 1£(fu(',/),-)]’
Vs Loy = 71 = E7 ee” + oDy} } 27,
81 = dg[f/ ()T e + woll = 2f ()]}, VyLgo = 8127, Ve L =41,
VeoLgo = @3 L7 {poDy — efT (1)}, b2 = —=E7'e, VyLg = dow”, Ve Loy = &,

)

Vg, i are the i-th elements of v, p, T is a vector with all the elements being 1, dg[ri]

is a diagonal matrix with its i-th element ;, and co = nln 27 was ignored in Lg.

TABLE 1l knowledge such that the structures pjf@‘ , Py, can be
GAUSSIAN-STATE BASED COSTS AND GRADIENTS designed appropriately ¢

Some Gaussian-State Based Costs
Hy = [G(u, (1), %) In Glu, f(), Sc)du = ~0.5(1n | + n),
Ly=—[Gu, f(1), Z¢) In Gu, v, e )du = 0.5{Tr[Z.Z]?]

B. Kalman Filter, Extensions, and Model Identification

The simplest case of identifiable model is that, (x) is from
a model withpys,  ,, pa, specified already. The well known

+1n[Ze |+ (f(p) = v)TESH(f(w) - v)} Kalman filter is such an example.
Log = —[G(u, f(1), Z¢) In G(z, pou + p, Te)du = We can implement (29) based on the gradient directions
0.5{Tr[S; 0% o8] + In |Se| + eTT7 Le}, givslg iR/TabIe I, which leads to the specific algorithm given in
Related Gradient Directions aWhen.only the first-order serial relationship is considered as
Vs (Hg+ L+ Lgg) = 0.5(A7 + g £ 0o — B71), in (1), from (15) we get
VlLg + Lgg) = dg[f' (n) {AT (f(1) — v) — g3 £7 e} 27, - -
Veely + Log) = dyl )HAT (1) = v) = o =51e), pagy (e 70) = Pt S| 90D, 0 | )
V.Lg = 0.5{Z7" — B8 + (f(u) — v)(F(w) —»)T]ET1, ()
VeLg = -7 (f(p) —v)T, Ve, Lg= -3 (f(p) —v), pym(Ze) = /pMr (@l ye)pm, (ve) dye
Vr.Lgg = 0.5{Z71 = B poX¢pd +ee’]E71}, 82 = %7, B
Volgg = 6wl Ve Lgg =085, ViyoLgg = PL S poZe — efT (1)), P, (yt |$t71) - /pMy (yt |yt71)
4, v, e are given in Tab. 1, and constants are ignored in Hy, Ly, Ly, XPM, ., (yt—l | -ft—l) dys_1. (31)

Putting them on (1), whent, B are known and, ¢; in (1)

In this case, we say thleW recovers the source in dis- are from Gaussians of zero means and knawn and %,
tribution. Thus, we have the following. respectively, we havena,, (v |vi—1) = Gy, Byi—1,2.,),

Theorem 1: Given ap,;, (x) obtained from observations, apr‘y(@ ) = G(xt;Ayt,Eet). In a comparison with
necessary condition for recovering the original source in dist(5.8.8) and (5.8.9) in [4], we find that the first equation in (31)
bution is that the observations comes from an identifiable modbkecomes exactly the Kalman filter.

This theorem indicates three issues to be considered folWe can extend the Kalman filter to nonlinear models and non-
source recovery. First, we should only consider those structu@aussian noises by letting,, , (v | Z+,%:—1) in the structure
of pa, | ,.pm, such that itspy(x) in (5) is identifiable for of (28) with6, |, learned by Step 1 in (29). Details are in [22].
somek*® > 0. Second, we should select an appropriatein Also, we can consider in (1) with., and.., or some part of
help of the model selection (10). Also, we should understantl B unknown. We recover these unknown by (29). The task is
the nature of the problem to be solved and best use a pricailed system identification in literature of control theory. The
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TABLE Il of (25) with « as ¥, and v given by (24) with z,, Xy,
THE UPDATING EQUATIONS FORmine K L,(8) IN TFA as v for PM, . and S’t—l as v for P, - Similarly, we let
- 7 P, , (%t v, Xyr—1) to have (a) the structure of (25) for
Teoet = Beo = MAZL + o fATA - B0)), 2= Adje - oofATer, z: = 1,...,d, (b) the structure of (27) for a binary vectoy
Kep1 = Ke = Aax{, Hepr= He = Xyl cen = e = Az, and (c) the structure of (28) for a real vectgr
Acer1 = (1= A, + Miag[Se s + 6] ), Erpr = By + ey, We use (29) for learning in the help of the approximation by
ettt = Cep  Ae, 0%, = (1= No2, + MTr[A: ¢ AT] + |le:))], (19) and (20), and use (10) for selectingThough this higher

Aesr = At — N[ArSes — e07), Bosr = B+ Aee¥Ty, covtn = con + Aer, order HMM learning does not exactly perform the ML learning,
the implementation complexity will not rapidly increase with
the orders oky,_;. The details are referred to [22].

where diag[A] takes the diagonal part of A.

TABLE IV IV. INDEPENDENTMODEL AND SOURCE SEPARATION

AN INDEPENDENTHIGHER ORDER HMM A LGORITHM .
A. Independent Model and Dependent Reduction

Step 1: update K, H, c¢ by gradient descent with the gradient The vector representatiop = [yt(l), ces Yy )] is much pow-
given by —([Vy(Hs + Ls) + VL) for updating K, H and by erful than the simplest form in the HMM equation (4). However,
it makes the model complexity increase rapidly with

One solution is to impose the independence assumption on
Step 2: update E by gradient descent with the gradient ~VyLy,  the components af, = [ygl) ?Jt(k)] ie
ey ,i.e.,

—[Ve (Hy+ Lp) + Ve Lgy] for updating c;

and update c. by gradient descent with the gradient —V,_L,.

k
Then update 62, = (1— Ao, + A [Tr[AAy, AT + |lec]|?], pa,(y) = HpMy (y<j)) , SO
Att1 = Ar — A[AeAs, — e;9F), and update B, ¢, as in Tab.3. 5=l

pum, (Yt | Y1) H P, J) ‘ Y(J) (33)
task s closely related to find a suitable numbeif states, which

can be made by (10). From (14), (17), and (31), we have ( ) _
wherey )y’ denotes thg-th row of y, y;_1, respectively.

In this case, we cafhys (x) by (5)independent modeTogether

- ZPM(“_”) with (33), the constrainpys (x) = par, (x) will make it more
likely to find a unique specification ofas, , (x|y), par, (¥)

_ _ for recovering the source in distribution.
- Z /pMy o et [Z-1)paa, (U [ 21 1) We can also let the Yang model baged(y) by (5) to match

! pu, (y) by (33), which means thaty;, , maps observations

into their representations with dependence among components

which can be recursively computed during the implementatiéfduced. That is, we get the extensiordependence reduction

of the Kalman filter. [26] to temporal models. Particularly, we get the extension of

ICA to temporal models when

xInpa, (e | T pe—1) dyr—1 dup (32)

C. HMM, State Selection, and Higher Order HMM

k

The HMM equation (4) is another simplest identifiable pu(y) = HpM (y(j)). (34)

model, WheI’EpMI‘y,pMy are unknown but usually can be j=1

uniquely specified becaugg has a simple representation.  \ye cal| ittemporal ICA or shortly TICAThe TICA includes the
It f°J|°WS from (4) that pa,(v:|9:-1) = Py, conventional ICA as a special case that each sgfiesonsists

P, (%t Yt) = payy- From (15) and (31), the minimization ¢ ; 4. samples.

of KL(©,k) with respect topy,,,,pu, leads to the ML 14 got TICA, it is necessary to impose the assumption
learning on the HMM, which can be implemented either

recursively by (29) or optimally in a batch way by the Baum W
algorithm [18]. pm, 1 (Y %) HPM (y X)
We give some new results. First, we can selgloy (32) after
parameter learning, where the integrals become summations be- Py (e | T2 X1, 50-1)
cause discrete densities. k Wl - W
Second, from (29) we can get an approximate but adaptive = HPMW (ytj ‘ xtvxt—17YtJ—1) . (35)
learning algorithm for estimating parameters in the HMM equa- J=1
tion (4). Details are referred to [25]. A particular example is thaty,, , is a delta density. More-

Third, though the HMM equation (4) can be extendegyer, we also consider thag,, (x )|s generated from the source

to include a higher order serial relation, the |mplementlnﬁM (y) via a delta densityy, , too, that is, we have
complexity of the Baum algorithm will grow rapidly. Here, o

we consider a variant model for higher order HMM. We let pum,, (Y |x) =6y — f(x))
P, , (Ut | T, Xyr—1) @andpas, (y+ | ¥+—1) to have the structure pu,,, (x|y) = 6(x—g(y)) (36)
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wheref(-) andg(-) are general notations for deterministic mapinto a big vectorvec[y], we have thapy,(vec[y]) is Gaussian
pings fromx — y andy — x, respectively, and with the causalwith a nondiagonal covariance matrix, from which we know
assumption equation (13) they are recursively implemented llyat p/(vec[y]) is invariant only for a permutation among
the elements ofrec[y]. Writing vec[y] back we find that a
ye = (24, Xy1-1,0y12); 2t = 9y, Xy-1,014). (37) permutation is allowed only among the rowsyofin order to
keep the serial order for differert Also, there are always
In these cases, we can set up a deep connection between TUANown factors due to the forfi[}_, pa (¥). Thus, we
and BSS by the following theorems. have agaimd = dg[b;]11. O
Theorem 2: Givenx = g¢(y), whenf o g(y) = f(g(y)) is From Theorems 2 & 3, we have the following conclusions.
invertible and the resultegh, (y) is not Gaussian, the mapping Conclusion 1: If the observation is generated from a source

vy = f(x) that satisfies (34) leads us to via a unknown nonlinear systegly), according to Theorem
2, the TICA mappingy = f(x) will result in (38) which has
NV de-coupled the “cross talks” between channels of the source but
_ T (1) T (k) p
fogly)=1I [hl (y ) SRR (y ﬂ failed in preserving the waveforms of the source. In this case, no

h;(-)is afunction ony”) and matterp,, is Gaussian or nop,(y) is non-Gaussian. Further-
Il is a permutation matrix (38) More, if we know the nonlinear function form gfy) but with
a set of unknown parameters, and if we are able to design the

Moreover, whenf(-), ¢(-) are both linear, we have Simp|yfunction form of f(x) with a setf,, |, of unknown parameters

h; (y9) = bjy(j) + ¢;, whereb;, ¢; are constants. such that there are specificationsigf . that turnsf o g(y) into

Proof: From (5) we getpy (x) = pyu(x) = an invertible constant matrix while there is no specification that
[6(x — g(¥)pum,(y)dy and pjw(}’) = [éy leadsfog(y) to the form of (38) with nonlined;(-), then it fol-
F(x))par, (x) dx s [8(y — f o g(¥)pur (') dy". lows from Theorems 2 and 3 that the TICA mapping- f(x)

Moreover, if f o g is invertible, withi/ = f o g(y') we Can recover the waveforms of either any non-Gaussian sources
getpM(y), = [8(y — U)par,((f o )~ U DU) L dd = O those Gaussian sources with samples being not i.i.d.
pa (f o)~ '3)|D(y)| ! whyereD(y) is the Jacobian matrix ~ Conclusion 2: Given that the observation is generated from

of f o g(y) with respect toy. Moreover, when (33) is realized,  SOUrce via a unknown linear systeify) and we also use a
we haVeH§=1 pu(y9) = ID(y)I’lpMy(f o g(y)), which linear mappingf (x) with e}setﬁym of gnknown .parameters to
means thaf)(y) should also be factorable with respeciytd’ recover the source. In th's cagay (y) is Gaus_5|_an _only when
and thusf o g(y) = A[RT(y1), ... hT (y®)|7 with A being e SOUIC@y, is Gaussian. If there are specificationspf.,
a k x k constant matrix. It further follows thatt must be a that urnsf o g(y) into an invertible matrix, it follows from
permutation matrixII since py;(y) is non-Gaussian. When Theorems 2 and 3 that the .TICA mapping = .f(x) can
(), g(-) are both linearD(y) should be a constant and thu ecover the vyaveforms of _elther any non.—Gauss!a.m sources or
hi ()Y = by + ;. 0 hose Gaussian sources with samples being not i.i.d.

' Theorem 3- Given < — o(y), when f o g(y) = f(a(y)) The above conclusions can be regarded as further develop-

is invertible and the resultegh,(y) is Gaussian, the mappinggnaesr:;5 (;)ff_t_hg g;ﬁ“?gscqgciﬁfn: gg.giﬁ.;ﬁ;isitﬁ?]em taht'eon
v = f(x) that satisfies (34) leads us to either fa} g(y) = 1.d. pies vi invert ! Y quat

dg[bj]édg[djfl/Q]y + ¢ when the resultegr consists of i.i.d. (3). The conclusion 1 is also a further development on the non-

samples with each samplehaving the variance matritg[d; ], linear ICA condition for BSS_ from a specific post-nonlinear
e structure [19] to general nonlinear structures.

or (b) f o g(y) = dg[b;]lly + ¢ when the samples ¢f are not . o .

i.i.d.. whered is an orthogonal matrixl is a permutation ma For the cases of non i.i.d. samples via linear or nonlinear

U Y . P time-delayed systems, it is not necessary to request that the

trix, c is a constant vector, arig # 0 is a constant. Moreover,

N . S T system is invertible as long as the system is “information pre-
gﬂ;‘]g]genotes a diagonal matrix with ij¢h diagonal element served” such thaf o g(y) = f(g(y)) is invertible, e.g., for the
)

) . : observations from (3), the condition for TICA performs BSS
Proof: Only when pj,, is Gaussian andf o g(y) )
. LMy . . can be relaxed to the cases thais a full rankd x &k, d > k& ma-
is the form Ay + ¢ with A being ak x k matrix, the

resulted (v) becomes Gaussian. When the sam |etI'SiX. Moreover, we can find that Gaussian sources of non i.i.d.
vy p—— P Samples via (3) are still separable by TICA. Even interestingly,
of y are iid., we havepy(y) = Il_rpm(v) and

A ) Th ‘ we have the following.
pu(ye) = 1o pu(y)- Foreacht, par(y:) is invariant for  conclusion 3: Gaussian sources of i.i.d. samples via a linear
atransformig[bj]édg[d;m]yt + ¢, where? is an orthogonal time delay systenr; = > *_, A,.y;_, are also separable by
matrix andec is constant. Because the samples are i.i.d., tH@CA.
dg[b;]® andc are same for all the values of thus we have  Since the resulted,;(y) via this delay system and a linear
A= dg[bj]édg[dj_m]. When the samples of are indepen- f will be a Gaussian that is not i.i.d. in serial samples. We can
dent but not from an identical distribution, though,(y:) understand this point more clearly by equivalently rewriting the
is still invariant for an orthogonal transform, the orthogonalelay system inte; = A,y? in the same form as (3), with, =
matrix ® generally varies wittt, except the special case thafAo, ..., A,]. Now, the enlarged soureg = [/ ..., v |”
¢ = II is a permutation matrix. Finally, when the samples no longer i.i.d. because bogi andy®_, consist ofy; in dif-
of y are serially correlated, by stacking all the columnsyof ferent locations.
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B. Temporal ICA for Real BSS: Without and with Noise whereX > 0 is stepsize. Alsoeéj) can be updated by the EM
In the rest of this paper, the notatign is understood as a algorithm-like adaptive versions proposed in [25]. Particularly,

vector that is obtained by stacking up each of past sample végv:) becomes linear for Gaussian soueg, (y: | y:—1)-
tOrSyy, ¥r—1, - - -, 4r—p, and the notatios, is understood sim- e can extend this study to the case= Ay, + By;-1 +

ilarly. The dimensions ok, andy. can be either the same or¢ + ¢ With Gaussian noise;, that is,

different.

We considerpy, (4 | y:—1) in (33) to be an independent

density in a general case. We let each, (yt(j) |y§{)1) given

by pe(u|v) in (28), withw = 4 andv = y), and all
the parameters denoted by a s@é’[). Moreover, we denote
P, (e 1¥i-1) = Py | yi-1,6,) with 6, = {65},

We consider a deterministic F-architecture

yr = f(Xt,¥1-1,0y12), €.0.

vt = Kx¢ + Hy,—1 +c¢. (39)
Thus,pas, |, (e | Re, ¥i-1) = (v — f(Re, ¥i—-1,0y)2)). Inthis
case, we can easily ggts, | (¥io1 [ &e—1) by (14) and put it
into (16), resulting in
KLY =6y — f(&e,71-1,0,)2)
KL =Inp(f(%0y1-1,0y12) [ y1-1.6,)  (40)
where the past samples are recursively obtained by (39).

From the fact thad(u— F'(v,v)) = limy, _0(1/6V4,), where
6V, is the differential volume of the manifold = F(v,)
atv, we havesV,, = ¢|DpDL|926V,, Dp = OF (v,4)/ovT,
whereéV,, is the differential volume in the space@fand both
¢, 8V, are irrelevant to parameter and thus can be ignored.
Letu =y, & = %, andv = [u?, 7], also letF (v, ) to con-
sist of (39) plus the identity mapping from_; to y,_ itself.
After some derivations we can gébr D%| = |Ds D3|, Dy =
O (Xe,¥i—1,0y).)/0xF and getK LY = —0.51n|D;DY|
after ignoring terms irrelevant to parametigy .. Putting it into
(40), from (16) we summarize as follows.

We implement TICA to recovay, by (39) fromz, recursively
from¢ = 1to 7". At eacht, we update the parametets, ., 6,
by maximizing

—KLy(6,),0,) = 0.5In|D;D7}|
+ hlp(f(ita Yi—1, ey | ac) | Yi—1, ey)
Df = af(itv Y1, ey | x)/ai?
~KL(K,H,0,)=05n|KK”| +Inp(K%, + Hy; 1
+ ¢ |ye-1,6y). (41)
Specifically, K, H, 8, can be adaptively updated by
K1 = K + M+ ¢(y) (K% T K,
Hepr = Ho+ Ap(0)yi 15 et = Cert + Ap(u)

omp (v |yi-1.65) )

69, =69 4\ -
Yy Yy aef(ig
otp (s |yi1.60) )
Plye) = )
Jy,
‘ Nyt
Olnp (yt(k) ‘ Yi—1, et(ky))
™ (42)
Jyy

g, (@ Yy 1) = G (e, 0,0214)
et = @ — (Ayy + Byi—1 + o). (43)

In this case, from (14) we get again the salﬁégl), KL§3) as
in (40). Moreover, we geKL?) = InG(ey,0,021,). That is,
from (14) we now updaté = {K, H,0,, A, B,c;,c.,02} by
maximizing

—KL,(0)=—-KL,(K,H,8,)

+InG (xt, Ay + Byi_1 + ce, ag) (44)

with y» = KX, + Hy:—1 + ¢¢. In this case, we recovey by
considering both TICA and ML modeling af; by (43). Corre-
sponding to (42), we gel; by (39) and

9= 9w) + o i ATe,
Kip1 = Ky + M1+ g(Kx) 7K,
gt =02, pyr) + Aley
K=K +A [Uf,tf +gt(Ktit)T] Ky
Hyyy = Hi+ Agryl 1,
App1 = Ay + dewy!

or

Cet+1 = €1 + AG
Bii1 =D+ )\CthT—l
Ce,t41l = Cet + A&y

03,t+1 =(1- )‘)Uz,t + )‘d_IHGtHQ (45)

with 6, updated by (42) still.
Together with the parameter learning, from (17) we also get

H(k) = é {0.5 <d1n ol )

+ Inp(KX: + Hyi—1 + ¢ | ye—1, 9y):| (46)

_ lee?

2
ae,t

in a recursive way for model selection by (10).

C. Temporal Factor Analysis for Real BSS

Via the § density, the deterministic F-architecture equation
(39) avoids the integrals oveg, y;_1, without using the ap-
proximation given in Section II-D.

Here, we extend density to Gaussians. We still consider (43)
but with

v, (W [ X Y1) = Gy, Kxe + Hyr 1 + ¢, 3¢)
o, (e | yi—1) = Gy, Eyi—1 + ¢, Az) 47)

whereA, is diagonal. Wher¥, H, 2. are free or equivalently
pum,,, is free, from (47) and (15) we can get an extension of
factor analysis [1] to time series and thus we cateinporal
factor analysis (TFA)We can also regard it as a hidden in-
dependent AR factor model (HAR) because the observations
are obtained via a probabilistic time delay system , from
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k un-correlated auto-regressive (AR) time series as factors déyat is, we havey,_; recursively obtained by (20) arYdLgl),
scribed by, . Inthis case, (9) becomes ML learingen (x) K L®, KL are given byH,, L;, L, in Table I. After ig-

modeled bypy, |, andpay, - noring constants, we get the following cost to be minimized:
Moreover, we are able to get a detailed implementing algo-
rithm for (29), WithKLgl), KL§2), KL§3) obtained by analyt- k f (ﬁ(j))
ically solving the integrals in (14). We leave the details else- K,(6) = Z f (Ut(J)) ln —t
where. i1 f (yt’(’))
Here, we consider its implementation in the first-order ap- )
proximation by (19) and (20) witey = ¢, = ¢, = 0. That ) 1-f (yt )
is, we havey,_; recursively obtained by the linear regression + (1 —f (yt )) In 1 o)
in (39) andK LY KL® KL{® given by H,, L,,, L, in il (yt )
Table Il. After ignoring constants, we get the following cost to +0.50 7 H{Tr[AA AT + |lee]|?} + 0.5 dIn o2
be minimized . A;=dg [f (gt(g)) (1 _f (yt@))ﬂ (50)
2KLy(60) = In “ =7 + o A(THASAT] + [lea?) R .
12| with 44, 9; , 2+ given by (48). The minimization of the above last
+Tr [ECAgl] +elATte, term alone can be regarded as an extension of the least square re-

construction based nonlinear PCA firstly proposed in [32] where
an adaptive algorithm is proposed and the separation property by
sigmoid nonlinearity is firstly discovered, which has been later
wherec, is given by (43) which represents the reconstructiopPPlied to ICA and BSS with success [14]. _
error to the observation, amdis the difference betweenpriori VW& ¢an also implement (29) by a stochastic sampling algo-
state estimatg;” anda posterioristate estimatg;. rithm as given in [23]. _

Moreover, based on the gradient directions given in Table 11, Moreover, we do model selection by
we can get a detailed algorithm in Table Ill, by using either
directly gradient descent or its modification obtained by H(k) =
multiplying a positive definite matrix (e.9A-Va, LgyA. and
A.VyL,) to the gradient descent direction.

From (17) we also get the model selection

£l H(f) =
—H(k) = [KL(6")+05In S]], or

t=1

T
—H(k) =05 {kT +> [
t=1

Et:gt_gt_a yt_:Eyt—l +c.
i =Kxy +Hyy 1 +c¢ (48)

[Hf(f) - 0509_712 {TI’ [AfAfyfA?] + ||Cf||2}

i

o

S5dln af}t]
[ (3 g ()
@)l () o

[Hy(f) — 0.5dIno? ]

-

)
Il
—

+

N

Aa,t

+dlno? ] } (49)

]~

t=1

where d, k is the dimension ofz;, 1w, respectively. e
The approximation comes from roughly regarding that Wheno?, = 37, {Tr[AAg AT] + [lec|?} = n. (51)
(1/7T) 2;:1 T H{AZ AT + eelY] = Tr[1,] = n and
(1/17) 3, TrAZ; diag[Sc s + el || = Trli] = k.
V. EXPERIMENTS

D. Independent Higher Order HMM for Binary BSS We only show some experiments on using the temporal ICA

We consider the cases that the state is a binary vecigorithm (42), shortly denoted as TICA, for solving the real
y[v", ...,y P17, Still, we consider (43) but now both BSS problems. To illustrate the advantages of taking temporal
M, (Yt | Xes¥e-1), P, (ye | ye—1) are given bypg(u|v) in  relation in consideration, the experiments are made in com-
(27) withw = y; as well as» = §, for pys, |, andv = g, for  parison with the nontemporal counterpart of (42), called the
pu,, respectively. This case can be regarded as a variantl@drned parametric mixture based ICA [27], shortly denoted as
higher order HMM for time series modeling with independeritPM-ICA, which is equivalent to a degenerated case of (42)
binary codes as states. The recovery of these binary codes fioith # = 0,¢; = 0.

Z; can be regarded as separatintndependent binary sources Two data sets have been tested. The Data-Set-1 is
from the observation;. generated according to the model equation (1) with (a)
Sincey, is binary, the integrals in (14) ovet, y;—1 become B = diag[0.8, —0.7,0.9] ande; being i.i.d. from a Gaussian
summations. We are able to get a detailed implementing algeith zero mean and variance 0.04; (b) is obtained via
rithm for (29),withKLgl),KL?),KLﬁ?’) obtained without the the mixing matrix A with the noisee, being Gaussian of
approximation given in Section II-D. We leave the details elseero mean and variance.01/;5. The Data-Set-2 is gener-
where. ated from i.i.d Gaussian sourceg with zero mean and
Here, we still consider the first-order approximation by (19ovariancediag[0.04,0.0625,0.25] by a time-delay system
and (20) withey = ¢, = ¢, = 0, for fast implementation. z, = Ay, + By,—1 + e; with ¢, being Gaussian of zero mean
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Fig. 1. Comparison of TICA and LPM-ICA on the Data-Set-1. (a) Changes of the average SNR agtie® with the solid line for TICA and the dotted line
for LPM-ICA. (b) Segment of each of the three sources. (¢c) Recovered source segments by TICA. Specifically, the first row recovers the firsttrensieodnd
row recovers the third row in (b) up to a negative sigh, and the third row recover the second row in (b), also up to a negative-sig(d) Recovered source
segments by LPM-ICA, the first, second, and third rows recover the first, second, and third rows in (b), respectively. For the second row, tlzechangésof
negative sign-1.

and varianc®.0113, where for both the data sets, we arbitrarily To evaluate the results, we need a measure for the error

set between an original source and its recovered counterpart. The
1.6016 0.1890 —0.1712 measure should be invariant to scaling and permutation. The

A= | 01748 —23698 —0.7649 permutation issue is simply handled by manually pairing an

03020 —0.6645 0.1454 original source and its recovered counterpart. To handle the

scaling issue, we normalize theth original source and its
recovered counterpart into the ranjgel, 1] and calculate the
corresponding mean square erlddBE ;. Then, we use the av-
erage signal-to-noise rattiNR = (SNR; +SNR, +SNR;3)/3
The Data-Set-1 is designed for the BSS problems on a noiy & measure for the source recovering performance such that
instantaneous mixing model with sources being not i.i.d. btite larger the SNR is, the better the performance is, where
having serial dependence. The Data-Set-2 is designed for #¥R; = 10log,,(Var;/MSE;) with Var; being the variance
BSS problems on a convolution mixing model with i.i.d. sourcef the j-th normalized original source. Sind&u; is irrelevant
samples which can even be i.i.d. Gaussians. to source recovering, we can further ignore it and simply use
The learning isreal time i.e., it is made at eachas each SNR; = —10log;, MSE;.
sample comes, and each sample is used only once without anin Fig. 1, the results on the Data-Set-1 demonstrate that TICA
repeated or periodical sampling. outperforms LPM-ICA considerably, which can be observed

1.2041 0.2742 0.8284
B=| -06920 1.1862 0.2091 | . (52)
—0.7020 0.6810 0.2944
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Fig. 2. Comparison of TICA and LPM-ICA on the Data-Set-2. (a) and (b) Same items as in Fig. 1. (c) and (d) Recovered source segments by TICA and LPM-ICA,
respectively, and the first, second, and third rows recover the first, second, and third d rows in (b), respectively. Moreover, in (c) the secomdrmtieesecond
row in (b) with a change of siga-1.

from either the obtained SNR ratios or the recovered waveforBSS, but also a general guideline for various variants and fur-
by ignoring the reversals due to a negative signThus, itisre- ther developments. Particularly, algorithms are developed for
ally useful to take into consideration the serial relations amosglving both real and binary BSS problems with temporal de-
the sources. pendence and observation noise in consideration, and criteria

In Fig. 2, ignoring the reversals due to a negative signrwe are provided for selecting an appropriate number of sources.
can observe that the results on the Data-Set-2 demonstrate kiateover, theorems are given on the conditions for source sep-
on a convolution mixing model TICA can still work well evenaration by linear and nonlinear TICA, and it is shown that not
on sources that are i.i.d. Gaussians, as predicted by conclusioty non-Gaussian but also Gaussian sources can also be sepa-
3 in Section IV-A. In contrast, it is well known that any i.i.d.rated by TICA when temporal dependence is explored. Some
Gaussians via an instantaneous mixing model are not separabigeriments have demonstrated that the TICA algorithm ob-
[20]. Moreover, we also notice that LPM-ICA performs poorlytained from this framework outperform considerably an existing
since it takes no consideration on the contribution of the tinkwunterpart algorithm.
delay partBy;_1.
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