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Temporal BYY Learning for State Space Approach,
Hidden Markov Model, and Blind Source Separation

Lei Xu, Senior Member, IEEE

Abstract—Temporal BYY (TBYY) learning has been presented
for modeling signal in a general state space approach, which pro-
vides not only a unified point of view on Kalman filter, hidden
Markov model (HMM), independent component analysis (ICA),
and blind source separation (BSS) with extensions, but also fur-
ther advances on these studies, including a higher order HMM, in-
dependent HMM for binary BSS, temporal ICA (TICA), and tem-
poral factor analysis for real BSS without and with noise. Adap-
tive algorithms are developed for implementation and criteria are
provided for selecting an appropriate number of states or sources.
Moreover, theorems are given on the conditions for source separa-
tion by linear and nonlinear TICA. Particularly, it has been shown
that not only non-Gaussian but also Gaussian sources can also be
separated by TICA via exploring temporal dependence. Experi-
ments are also demonstrated.

Index Terms—BYY learning, factor analysis, hidden Markov
model, independent component analysis (ICA), inverse mapping,
Kalman filtering, source separation, state space, time series.

I. INTRODUCTION

I N the classic state space model

(1)

or (2)

a series of random observations is described by (1)
through a series of hidden states , with stochastic
disturbances . The problem of describing how is gen-
erated from is calledmodeling, and its inverse problem that
recovers by (2) from is calledinverse mapping or state re-
covery.

Given an observation only, the above problems are usually
not well defined. However, it may become well defined under
some assumption. In the past decades, studies are made exten-
sively on the model equations (1) and (2) with various exten-
sions, which can be summarized basically along three lines of
developments.

The first line is classical in the literature of control theory
and signal processing [11]. Given and known, and
are mutually uncorrelated Gaussian white noises with known
co-variances, the task of recoveringcan be adaptively imple-
mented by Kalman filter [4]. Various extensions are also made
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to the cases of with unknown co-variances, of nonlinear
models and of non-Gaussian [4].

Thesecond lineis calledblind source separation (BSS)[13],
which is popular in the recent literature of neural networks and
signal processing. In general, BSS refers to the problems of re-
covering source signal from observation only, i.e., making
the inverse mapping in “blind.” Though it is generally impos-
sible, it does become possible for generated from a simple
model

where is a unknown invertible matrix (3)

and the components of are mutually independent and at most
one of them is Gaussian. In this case, recovers up
to constant scales and a permutation of components if there is
an that makes by (2) become component-wise indepen-
dent [7], [20]. Thus, it is calledindependent component anal-
ysis (ICA)[13]. Many advance are achieved on ICA and its ex-
tensions, which can be briefly summarized into three stages. In
the first stages, the learning on is made with a prefixed es-
timation on the distribution of each component either heuris-
tically (e.g., the sigmoid used in [3]) or based on kurtosis es-
timation or density expansion [2], [7]. Several learning algo-
rithms for have been proposed from different perspectives,
ranging from contrast functions [5], [7], [12], to maximum like-
lihood [10], information-maximization [3], [16], and minimum
mutual information [2]. Usually, these algorithms work well on
the cases that the components ofare either all sub-Gaussians
or all super-Gaussians. In the second stage, it is realized that
the estimation on the distribution of each component should be
learned simultaneously together with learning onsuch that
whether a component is super-Gaussian or sub-Gaussian can be
automatically detected during learning in order to work on any
combination of super-Gaussian or sub-Gaussian components of

. Such an idea has been implemented through adaptively es-
timating either the distribution of each component by a learned
parametric mixture [27], [29], [30] or the kurtosis of each com-
ponent [17]. In the third stage, extensions have been made to-
ward the cases that 1) the dimension ofis larger than instead
of being invertible [27], [29] and 2) some specific nonlinear
system instead of the linear model equation (3) [19],
[26]. A more detailed review on the advances of ICA, as well
as the relations of ICA tofactorial learning and Helmholtz ma-
chine, nonlinear Hebbian learning, nonlinear PCA and LMSER
self-organization, are referred to in [26].

Studies have also been made on noisy model
with unknown but still the independence assumption on the
components of . Here, we need not only to solve and the
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statistical properties of but also to get to recover . For
Gaussians and , when samples are i.i.d., the task reduces
into the classical factor analysis in the literature of statistics [1].
Extensions to non-Gaussiansbut Gaussian are attempted
under the name of ICA [6], [29]. However, being different from
the case [20], [7], in a noisy case, the fact that making

be independent on its components can no longer ensure the
conclusion that recovers up to only constant scales and a
permutation of its components. Strictly speaking, the name ICA
is no longer appropriate for a BSS problem on a noisy model. In
[26], this BSS problem is studied under the name ofdependence
reductionwith not only new results on ICA for the cases of
unknown source number and nonlinear model , but
also two architectures for BSS on the noisy model.

Thethird line is the study on hidden Markov model (HMM)
in the literature of speech processing [18]. In a classical HMM,
we deal with the discrete model

Its relation to (1) can be observed from the fact that (1) can be
equivalently described by and

. In HMM studies, are unknown and to be
solved from observations, which is ablind modelingproblem
solved usually by the Baum algorithm for maximum likelihood
estimation [18].

Bayesian Ying-Yang (BYY) learning system and theory is
proposed as a unified statistical learning theory which is firstly
proposed in 1995 [31] and rather systematically developed
in past five years. Some recent reviews are referred to [21],
[24], [26], and [28]. As a further development of Bayesian
Ying-Yang (BYY) learning, temporal BYY (TBYY) learning
system and theory is presented in Section II as a general
state space model. In Section III, the connections of TBYY
to Kalman filter and HMM are given with new extensions.
In Section IV, the condition for BSS by linear and nonlinear
temporal ICA is studied. Three methods are proposed for BSS
without and with noise. Moreover, criteria are provided for
selecting the number of states or sources. Experiments are
given in Section V. We conclude in Section VI.

II. TBYY L EARNING

A. TBYY Learning System

We consider a general probabilistic state space model that
describes the relation between by the joint density
in two Bayesian representations

(4)

On one hand, is called Yang model, representing the ob-
servation space or called Yang space by and the pathway

by is called Yang or forward pathway. On the
other hand, we have the Ying model that represents the in-
visible state space or Ying space by and the Ying or back-

ward pathway by . Such a pair of Ying-Yang
models1 is calledtemporal Bayesian Ying-Yang (TBYY) learning
system.

The task of specifying all the aspects of
is calledlearning in a broad sense.

The input of observation to the system is functioned by .
Given a realization is usually specified by a
nonparametric method based on. In this paper, it is given by
(11).

A twofold role is taken by , which is understood from

(5)

On one hand, it is the source model thatis generated via the
Ying model. On the other hand, it is a target model matched by

that represents via the Yang model. A certain structure
can be designed for according to the nature of problem and
a priori knowledge. First, we choose the representation form for
the state . It can be discrete, e.g., a number or
a -bit binary code. It can also be a-dimension real vector.
Then, we specify a structure in a parametric density form2 for

with a set of finite number unknown parameters, where
a specific value of represents a specific density in the family
of all the densities that share this given structure.

Moreover, we design the structures for each of two com-
ponents . First, we exclude those structures
with the relationship between and broken, i.e., either

or .
Then, we consider two types of structures. One is described
by a parametric density with a set of finite number unknown
parameters, similar to the above , e.g., we have parameter
sets and for . The other is called
structure-free, which means no any structural constraints such
that for each is free to take any element
of , where and denote the family of all the
densities in the form and , respectively.

A combination of structures for specifies
a system architecture. There are three kinds of architectures,
featured by the structures of

• backward architecture or shortly B-architecturewhich
consists of a parametric density for directly im-
plementing the backward pathway, and a structure-free

with no structure for directly implementing the
forward pathway;

• forward architecture or F-architecturewhich consists of
a parametric density for directly implementing the
forward pathway and a structure-free ;

• bi-directional architecture or BI-architecturewhere both
are parametric densities for directly imple-

menting the bi-directional pathways.

1A discrete distribution is also described as a density, e.g.,p(y) = q�(y �
1)+ (1� q)�(y) describes Bernoulli distribution for a binaryy = 0 or y = 1,
where�(y) = 0 for y 6= 0, wheny = 0 it becomes�(y) = lim h .

2A discrete distribution is automatically understand as a parametric density
since it is always specified by a finite number of parameters.
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The case that both are structure-free is useless
because both pathways cannot be implemented.

Given all the structures designed, there remain two tasks. One
is to specify all the unknown parameters ,
which is calledparameter learning. The other is to decidethat
companies the representation of, which is calledstate space
complexity selectionor shortlymodel selection, since this is
an indicator of the complexity of the state space or the represen-
tation model.

B. TBYY Learning Theory

We use “Ying-Yang harmony” as the fundamental principle.
Namely, we decide such that the Ying model and the
Yang model to be best harmony in a sense that we minimize
both the mismatch between the two models and the diversifica-
tion of the resulted Ying-Yang system.

Mathematically, we use a functional to measure the
degree of harmony between and . It further consists
of a measure for the mismatching between the two
models and a measure for the diversification of the re-
sulted Ying-Yang system, such that is maximized when

and are both minimized.
Generally, the mismatching between two densitiescan be

measured by the so-called-divergence

on (6)

which was first studied by Csiszar in 1967; a nice introduction
can be found in [8]. It includes Kullback divergence as a special
case when

(7)

As shown in [21], we have the following.
Definition 1: . is

the -divergence between and . The system diversi-
fication is defined as the negation of the-divergence
between a system density and a standard density, denoted
as , where stands for the most diversified den-
sity on the same support of .

This is justified since the more the system density is
close to the , the more diversified the system density is, and
the larger the negation of the-Divergence is.

As shown in [21], either or could be used as .
Also, different choices are available for choosingaccording
to different types of the support of . Moreover, the symmetry

is usually not satisfied. Hence, we have
several specific forms for the definition of .

This paper focuses on a typical situation defined by the fol-
lowing.

Definition 2: The Kullback divergence equation (7) is used
as in Definition 1, with (a) chosen as and (b)

in a correspondence of , where
is the uniform density on the same supportof .

In this case, after ignoring the term ,
which is irrelevant to , from (4) and (7) we have

(8)

In implementation, we maximize stepwisely by either
Learning procedure Ior procedure II. Readers are referred to
[21] for the procedure II. The procedure I consists of two parts
as follows.

• Parameter learningby

for each given (9)

• Model selectionby

(10)

C. Recursive Implementation

We consider that is causal, i.e., only depends on those
past but not on any future . Given a realiza-
tion , we have

at (11)

where means empty, and here is only par-
tially defined to avoid any over-assumption.

Putting by (11) into (8), recursively from to we
get

(12)

We further impose the causal assumption

(13)
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where with being empty. Then,
we get

(14)

For a B-architecture, the structure-free is decided by min-
imizing . From (12), we get

(15)

In this case, (9) becomes the maximum likelihood (ML) estima-
tion of the density .

For a F-architecture, the structure-free is also decided
by minimizing in (14), resulting in

and which is irrelevant to .
Thus, we have

(16)

By noticing that , we can also sim-
ilarly get the recursive form for by

(17)

D. Approximate Implementation

Except some simple cases, the integrals over are usu-
ally difficult or expensive in implementation. To simplify it, we

consider by Taylor expansion of around
the mean

the first-order expansion only
up to the second-order expansion

where are the gradient and Hessian of , re-
spectively. Since , we get

Tr (18)

where is the covariance matrix of and Tr is the trace
of matrix .

Arranging in a vector and regarding it asand regarding
as , in help of (18), from (14) and (17),

we get3

Tr

Tr

(19)

where are the Hessians of at
, and is the covariance matrix of

with respect to .
Moreover, is obtained recursively at each by

or

Tr (20)

with and for the first and second-order approx-
imation, respectively. are the Hessians of at

. Furthermore, are also obtained similarly by

(21)

Letting and denote the th element of
and , respectively, we have approximately

Tr (22)

3Wheny is binary or discrete, we can still regard that it is real withp in
a type of�-density. That is, we can always use (18) as long as a Taylor expansion
is legal for the partT (u).
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with and for the first- and second-order ap-
proximation, respectively. is the Hessian of at

.
For a B-architecture, when we consider , the min-

imization of in (19) with respect to each free
will result in

(23)

E. Markovian Convention and Parameterization

We call the number of samples in a set
the order of the set, or we say the set

has an order . In previous discussions, the notations of
are in their most general case of order . How-

ever, the finite order Markovian convention has been widely
adopted, i.e., what happens at the currentrelates to only a
finite number of past samples. Thus, in the rest of the paper, we
take a convention that always have finite orders

, with either or . Moreover, each of
may have different values as it locates after the conditioning
bar “ ” in .

The finite order convention also facilitates to describe
in parameter structures. These structures share a

common feature that each is a density of a-dimensional vector
conditioning on a -dimensional vector . In the sequel, we

introduce some examples.
For a binary with each component taking either 0 or

1, we consider the structure of the so-called generalized linear
regression [15]

is usually a monotonic function (24)

Specifically, we consider two such structures. One is the so
calledSoftmaxstructure [15]

e.g., (25)

for the case of decisive binary code, i.e.,

each component is either or and

(26)
The other one is the independent Bernoulli structure

is a sigmoid function

e.g. (27)

For the case of real vector, we consider a mixture of
Gaussian regressions

(28)

where denotes a Gaussian of meanand covariance
. is given by a softmax structure as in

(25) and usually called the gating net [24], which weights each
Gaussian regression according to the current input and reduces
into a constant when . Also,
with its th element being 1 and all the others being 0. Typical
examples for the structure equation (28) is the mixture-of-expert
models and the extended normalized RBF net [24].

F. Gradient Based Algorithm

Under a fixed , we can implement (9) recursively from
to by updating in a gradient based technique to reduce
each . Observing (14) and (19), though we should
consider as a whole for updating , we only need

consider for updating and for updating
, respectively. Therefore, at eachwe can implement the

following two steps.

Step 1) (a) For the B-architecture, get by (15) or
by (23),

(b) For the BI-architecture and F-architecture, up-
date ;

Step 2) Update , and except for
the F-architecture, also update

(29)

where is a stepsize, and means taking gradient with
respect to . This algorithm is given in a unified form that ap-
plies to both (14) and (19), with each of the three architectures.
When (19) is used,
are used in place of the above , with
given by (20). We can make several different levels of approxi-
mation by choosing each of and to 0 or 1.

Specifically, for the structures (27) and (28), the implemen-
tation of (29) often encounters the costs and gradients given in
Tables I and II.

III. I DENTIFIABLE MODEL AND SOURCERECOVERY

A. Identifiable Model

Definition 3: Given and the structures of
with parameters , a model in

(5) is said to be identifiable if each specific value ofuniquely
specifies a density of .

Given a , if it is generated from an identifiable model
with both and the structures of known,
the constraint will lead us to a unique solu-
tion of which recovers the original densities of

that generate . Moreover, it also uniquely spec-
ifies by (15). Further putting it into (5), we get

(30)
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TABLE I
BINARY-STATE BASED COSTS ANDGRADIENTS

TABLE II
GAUSSIAN-STATE BASED COSTS ANDGRADIENTS

In this case, we say that recovers the source in dis-
tribution. Thus, we have the following.

Theorem 1: Given a obtained from observations, a
necessary condition for recovering the original source in distri-
bution is that the observations comes from an identifiable model.

This theorem indicates three issues to be considered for
source recovery. First, we should only consider those structures
of such that its in (5) is identifiable for
some . Second, we should select an appropriate, in
help of the model selection (10). Also, we should understand
the nature of the problem to be solved and best use a priori

knowledge such that the structures of can be
designed appropriately.

B. Kalman Filter, Extensions, and Model Identification

The simplest case of identifiable model is that is from
a model with specified already. The well known
Kalman filter is such an example.

We can implement (29) based on the gradient directions
given in Table I, which leads to the specific algorithm given in
Table IV.

When only the first-order serial relationship is considered as
in (1), from (15) we get

(31)

Putting them on (1), when are known and in (1)
are from Gaussians of zero means and known and ,
respectively, we have

. In a comparison with
(5.8.8) and (5.8.9) in [4], we find that the first equation in (31)
becomes exactly the Kalman filter.

We can extend the Kalman filter to nonlinear models and non-
Gaussian noises by letting in the structure
of (28) with learned by Step 1 in (29). Details are in [22].

Also, we can consider in (1) with and or some part of
unknown. We recover these unknown by (29). The task is

called system identification in literature of control theory. The
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TABLE III
THE UPDATING EQUATIONS FORmin KL (�) IN TFA

TABLE IV
AN INDEPENDENTHIGHER ORDER HMM A LGORITHM

task is closely related to find a suitable numberof states, which
can be made by (10). From (14), (17), and (31), we have

(32)

which can be recursively computed during the implementation
of the Kalman filter.

C. HMM, State Selection, and Higher Order HMM

The HMM equation (4) is another simplest identifiable
model, where are unknown but usually can be
uniquely specified because has a simple representation.

It follows from (4) that
. From (15) and (31), the minimization

of with respect to leads to the ML
learning on the HMM, which can be implemented either
recursively by (29) or optimally in a batch way by the Baum
algorithm [18].

We give some new results. First, we can selectby (32) after
parameter learning, where the integrals become summations be-
cause discrete densities.

Second, from (29) we can get an approximate but adaptive
learning algorithm for estimating parameters in the HMM equa-
tion (4). Details are referred to [25].

Third, though the HMM equation (4) can be extended
to include a higher order serial relation, the implementing
complexity of the Baum algorithm will grow rapidly. Here,
we consider a variant model for higher order HMM. We let

and to have the structure

of (25) with as and given by (24) with
as for and as for . Similarly, we let

to have (a) the structure of (25) for
, (b) the structure of (27) for a binary vector

and (c) the structure of (28) for a real vector.
We use (29) for learning in the help of the approximation by

(19) and (20), and use (10) for selecting. Though this higher
order HMM learning does not exactly perform the ML learning,
the implementation complexity will not rapidly increase with
the orders of . The details are referred to [22].

IV. I NDEPENDENTMODEL AND SOURCESEPARATION

A. Independent Model and Dependent Reduction

The vector representation is much pow-
erful than the simplest form in the HMM equation (4). However,
it makes the model complexity increase rapidly with.

One solution is to impose the independence assumption on
the components of , i.e.,

so

(33)

where denotes the-th row of , respectively.
In this case, we call by (5) independent model. Together
with (33), the constraint will make it more
likely to find a unique specification of
for recovering the source in distribution.

We can also let the Yang model based by (5) to match
by (33), which means that maps observations

into their representations with dependence among components
reduced. That is, we get the extension ofdependence reduction
[26] to temporal models. Particularly, we get the extension of
ICA to temporal models when

(34)

We call it temporal ICA or shortly TICA. The TICA includes the
conventional ICA as a special case that each seriesconsists
of i.i.d. samples.

To get TICA, it is necessary to impose the assumption

(35)

A particular example is that is a delta density. More-
over, we also consider that is generated from the source

via a delta density too, that is, we have

(36)
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where and are general notations for deterministic map-
pings from and , respectively, and with the causal
assumption equation (13) they are recursively implemented by

(37)

In these cases, we can set up a deep connection between TICA
and BSS by the following theorems.

Theorem 2: Given , when is
invertible and the resulted is not Gaussian, the mapping

that satisfies (34) leads us to

is a function on and

is a permutation matrix (38)

Moreover, when are both linear, we have simply
, where are constants.

Proof: From (5) we get
and

.
Moreover, if is invertible, with we
get

, where is the Jacobian matrix
of with respect to . Moreover, when (33) is realized,
we have , which
means that should also be factorable with respect to
and thus with being
a constant matrix. It further follows that must be a
permutation matrix since is non-Gaussian. When

are both linear, should be a constant and thus
.

Theorem 3: Given , when
is invertible and the resulted is Gaussian, the mapping

that satisfies (34) leads us to either (a)
when the resulted consists of i.i.d.

samples with each samplehaving the variance matrix ,
or (b) when the samples of are not
i.i.d., where is an orthogonal matrix, is a permutation ma-
trix, is a constant vector, and is a constant. Moreover,

denotes a diagonal matrix with itsth diagonal element
being .

Proof: Only when is Gaussian and
is the form with being a matrix, the
resulted becomes Gaussian. When the samples
of are i.i.d., we have and

. For each is invariant for

a transform , where is an orthogonal
matrix and is constant. Because the samples are i.i.d., the

and are same for all the values of, thus we have
. When the samples of are indepen-

dent but not from an identical distribution, though
is still invariant for an orthogonal transform, the orthogonal
matrix generally varies with , except the special case that

is a permutation matrix. Finally, when the samples
of are serially correlated, by stacking all the columns of

into a big vector , we have that is Gaussian
with a nondiagonal covariance matrix, from which we know
that is invariant only for a permutation among
the elements of . Writing back we find that a
permutation is allowed only among the rows ofin order to
keep the serial order for different. Also, there are always
unknown factors due to the form . Thus, we
have again .

From Theorems 2 & 3, we have the following conclusions.
Conclusion 1: If the observation is generated from a source

via a unknown nonlinear system , according to Theorem
2, the TICA mapping will result in (38) which has
de-coupled the “cross talks” between channels of the source but
failed in preserving the waveforms of the source. In this case, no
matter is Gaussian or not, is non-Gaussian. Further-
more, if we know the nonlinear function form of but with
a set of unknown parameters, and if we are able to design the
function form of with a set of unknown parameters
such that there are specifications of that turns into
an invertible constant matrix while there is no specification that
leads to the form of (38) with nonlinear , then it fol-
lows from Theorems 2 and 3 that the TICA mapping
can recover the waveforms of either any non-Gaussian sources
or those Gaussian sources with samples being not i.i.d.

Conclusion 2: Given that the observation is generated from
a source via a unknown linear system and we also use a
linear mapping with a set of unknown parameters to
recover the source. In this case, is Gaussian only when
the source is Gaussian. If there are specifications of
that turns into an invertible matrix, it follows from
Theorems 2 and 3 that the TICA mapping by can
recover the waveforms of either any non-Gaussian sources or
those Gaussian sources with samples being not i.i.d.

The above conclusions can be regarded as further develop-
ments of the existing conditions on ICA for BSS [20] in the
cases of i.i.d. samples via the invertible linear system equation
(3). The conclusion 1 is also a further development on the non-
linear ICA condition for BSS from a specific post-nonlinear
structure [19] to general nonlinear structures.

For the cases of non i.i.d. samples via linear or nonlinear
time-delayed systems, it is not necessary to request that the
system is invertible as long as the system is “information pre-
served” such that is invertible, e.g., for the
observations from (3), the condition for TICA performs BSS
can be relaxed to the cases thatis a full rank ma-
trix. Moreover, we can find that Gaussian sources of non i.i.d.
samples via (3) are still separable by TICA. Even interestingly,
we have the following.

Conclusion 3: Gaussian sources of i.i.d. samples via a linear
time delay system are also separable by
TICA.

Since the resulted via this delay system and a linear
will be a Gaussian that is not i.i.d. in serial samples. We can

understand this point more clearly by equivalently rewriting the
delay system into in the same form as (3), with

. Now, the enlarged source
is no longer i.i.d. because both and consist of in dif-
ferent locations.
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B. Temporal ICA for Real BSS: Without and with Noise

In the rest of this paper, the notation is understood as a
vector that is obtained by stacking up each of past sample vec-
tors , and the notation is understood sim-
ilarly. The dimensions of and can be either the same or
different.

We consider in (33) to be an independent
density in a general case. We let each given
by in (28), with and and all

the parameters denoted by a set . Moreover, we denote
with .

We consider a deterministic F-architecture

e.g.

(39)

Thus, . In this
case, we can easily get by (14) and put it
into (16), resulting in

(40)

where the past samples are recursively obtained by (39).
From the fact that , where

is the differential volume of the manifold
at , we have ,
where is the differential volume in the space of, and both

are irrelevant to parameter and thus can be ignored.
Let and , also let to con-
sist of (39) plus the identity mapping from to itself.
After some derivations we can get

and get
after ignoring terms irrelevant to parameter . Putting it into
(40), from (16) we summarize as follows.

We implement TICA to recover by (39) from recursively
from to . At each , we update the parameters
by maximizing

(41)

Specifically, can be adaptively updated by

(42)

where is stepsize. Also, can be updated by the EM
algorithm-like adaptive versions proposed in [25]. Particularly,

becomes linear for Gaussian source .
We can extend this study to the case

with Gaussian noise , that is,

(43)

In this case, from (14) we get again the same as
in (40). Moreover, we get . That is,
from (14) we now update by
maximizing

(44)

with . In this case, we recover by
considering both TICA and ML modeling of by (43). Corre-
sponding to (42), we get by (39) and

or

(45)

with updated by (42) still.
Together with the parameter learning, from (17) we also get

(46)

in a recursive way for model selection by (10).

C. Temporal Factor Analysis for Real BSS

Via the density, the deterministic F-architecture equation
(39) avoids the integrals over , without using the ap-
proximation given in Section II-D.

Here, we extend density to Gaussians. We still consider (43)
but with

(47)

where is diagonal. When are free or equivalently
is free, from (47) and (15) we can get an extension of

factor analysis [1] to time series and thus we call ittemporal
factor analysis (TFA). We can also regard it as a hidden in-
dependent AR factor model (HAR) because the observations
are obtained via a probabilistic time delay system from
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un-correlated auto-regressive (AR) time series as factors de-
scribed by . In this case, (9) becomes ML learning on
modeled by and .

Moreover, we are able to get a detailed implementing algo-
rithm for (29), with obtained by analyt-
ically solving the integrals in (14). We leave the details else-
where.

Here, we consider its implementation in the first-order ap-
proximation by (19) and (20) with . That
is, we have recursively obtained by the linear regression
in (39) and given by in
Table II. After ignoring constants, we get the following cost to
be minimized

Tr

Tr

(48)

where is given by (43) which represents the reconstruction
error to the observation, andis the difference betweena priori
state estimate anda posterioristate estimate .

Moreover, based on the gradient directions given in Table II,
we can get a detailed algorithm in Table III, by using either
directly gradient descent or its modification obtained by
multiplying a positive definite matrix (e.g., and

) to the gradient descent direction.
From (17) we also get the model selection

or

(49)

where is the dimension of , respectively.
The approximation comes from roughly regarding that

Tr Tr and
Tr Tr .

D. Independent Higher Order HMM for Binary BSS

We consider the cases that the state is a binary vector
. Still, we consider (43) but now both

are given by in
(27) with as well as for and for

, respectively. This case can be regarded as a variant of
higher order HMM for time series modeling with independent
binary codes as states. The recovery of these binary codes from

can be regarded as separatingindependent binary sources
from the observation .

Since is binary, the integrals in (14) over become
summations. We are able to get a detailed implementing algo-
rithm for (29), with obtained without the
approximation given in Section II-D. We leave the details else-
where.

Here, we still consider the first-order approximation by (19)
and (20) with , for fast implementation.

That is, we have recursively obtained by (20) and
are given by in Table I. After ig-

noring constants, we get the following cost to be minimized:

Tr

(50)

with given by (48). The minimization of the above last
term alone can be regarded as an extension of the least square re-
construction based nonlinear PCA firstly proposed in [32] where
an adaptive algorithm is proposed and the separation property by
sigmoid nonlinearity is firstly discovered, which has been later
applied to ICA and BSS with success [14].

We can also implement (29) by a stochastic sampling algo-
rithm as given in [23].

Moreover, we do model selection by

Tr

or

when Tr (51)

V. EXPERIMENTS

We only show some experiments on using the temporal ICA
algorithm (42), shortly denoted as TICA, for solving the real
BSS problems. To illustrate the advantages of taking temporal
relation in consideration, the experiments are made in com-
parison with the nontemporal counterpart of (42), called the
learned parametric mixture based ICA [27], shortly denoted as
LPM-ICA, which is equivalent to a degenerated case of (42)
with .

Two data sets have been tested. The Data-Set-1 is
generated according to the model equation (1) with (a)

and being i.i.d. from a Gaussian
with zero mean and variance 0.04; (b) is obtained via
the mixing matrix with the noise being Gaussian of
zero mean and variance . The Data-Set-2 is gener-
ated from i.i.d Gaussian sources with zero mean and
covariance by a time-delay system

with being Gaussian of zero mean
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(a) (b)

(c) (d)

Fig. 1. Comparison of TICA and LPM-ICA on the Data-Set-1. (a) Changes of the average SNR as timet goes, with the solid line for TICA and the dotted line
for LPM-ICA. (b) Segment of each of the three sources. (c) Recovered source segments by TICA. Specifically, the first row recovers the first row in (b),the second
row recovers the third row in (b) up to a negative sign�1, and the third row recover the second row in (b), also up to a negative sign�1. (d) Recovered source
segments by LPM-ICA, the first, second, and third rows recover the first, second, and third rows in (b), respectively. For the second row, there is alsoa change of
negative sign�1.

and variance , where for both the data sets, we arbitrarily
set

(52)

The Data-Set-1 is designed for the BSS problems on a noisy
instantaneous mixing model with sources being not i.i.d. but
having serial dependence. The Data-Set-2 is designed for the
BSS problems on a convolution mixing model with i.i.d. source
samples which can even be i.i.d. Gaussians.

The learning isreal time, i.e., it is made at each as each
sample comes, and each sample is used only once without any
repeated or periodical sampling.

To evaluate the results, we need a measure for the error
between an original source and its recovered counterpart. The
measure should be invariant to scaling and permutation. The
permutation issue is simply handled by manually pairing an
original source and its recovered counterpart. To handle the
scaling issue, we normalize the-th original source and its
recovered counterpart into the range and calculate the
corresponding mean square error . Then, we use the av-
erage signal-to-noise ratio
as a measure for the source recovering performance such that
the larger the SNR is, the better the performance is, where

with being the variance
of the -th normalized original source. Since is irrelevant
to source recovering, we can further ignore it and simply use

.

In Fig. 1, the results on the Data-Set-1 demonstrate that TICA
outperforms LPM-ICA considerably, which can be observed
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(a) (b)

(c) (d)

Fig. 2. Comparison of TICA and LPM-ICA on the Data-Set-2. (a) and (b) Same items as in Fig. 1. (c) and (d) Recovered source segments by TICA and LPM-ICA,
respectively, and the first, second, and third rows recover the first, second, and third d rows in (b), respectively. Moreover, in (c) the second row recovers the second
row in (b) with a change of sign�1.

from either the obtained SNR ratios or the recovered waveforms
by ignoring the reversals due to a negative sign. Thus, it is re-
ally useful to take into consideration the serial relations among
the sources.

In Fig. 2, ignoring the reversals due to a negative signwe
can observe that the results on the Data-Set-2 demonstrate that
on a convolution mixing model TICA can still work well even
on sources that are i.i.d. Gaussians, as predicted by conclusion
3 in Section IV-A. In contrast, it is well known that any i.i.d.
Gaussians via an instantaneous mixing model are not separable
[20]. Moreover, we also notice that LPM-ICA performs poorly
since it takes no consideration on the contribution of the time
delay part .

VI. CONCLUSION

TBYY learning is a new general state space approach for
modeling signal, which provides a new perspective not only for
a unified understanding on Kalman filtering, HMM, ICA and

BSS, but also a general guideline for various variants and fur-
ther developments. Particularly, algorithms are developed for
solving both real and binary BSS problems with temporal de-
pendence and observation noise in consideration, and criteria
are provided for selecting an appropriate number of sources.
Moreover, theorems are given on the conditions for source sep-
aration by linear and nonlinear TICA, and it is shown that not
only non-Gaussian but also Gaussian sources can also be sepa-
rated by TICA when temporal dependence is explored. Some
experiments have demonstrated that the TICA algorithm ob-
tained from this framework outperform considerably an existing
counterpart algorithm.
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