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Abstract

The learned parametric mixture method is presented for a canonical cost function based ICA
model on linear mixture, with several new findings. First, its adaptive algorithm is further
refined into a simple concise form. Second, the separation ability of this method is shown to be
qualitatively superior to its original model with prefixed nonlinearity. Third, a heuristic way is
suggested for selecting the number of densities in a learned parametric mixture. Finally,
experiments have been conducted to show the success of this method on the sources that can
either be sub-Gaussian or super-Gaussian, as well as a combination of both the types. ( 1998
Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider the classic instantaneous linear mixture ICA problem. That is, we have
x from k independent sources s"[s(1), 2, s(k)]T via a linear mixing n]k matrix
A with

x"As, A"[a
i,j

], i"1, 2, n, j"1, 2, k; n5k, Es"0. (1)

The objective is to find a so-called de-mixing matrix ¼ to get

y"¼x"¼As"»s, »"¼A, y"[y(1), 2, y(k)]T, (2)
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such that either y"s or y recovers s only up to constant unknown scales and any
permutation of indices.

This problem has been studied in the literature by many researchers for many years
with a number of results [8,4,12,13]. Here, we only concentrate on one stream that
relates to the minimization of the following cost:

J(¼)"!lnD¼D!
k
+
j/1
P p(x) ln p

j
(wT

j
xDm

j
) dx, ¼"[w

1
, 2, w

k
]T, (3)

for solving the problem when A and ¼ are k]k invertible matrices, where p(y(j)Dm
j
) is

a parametric estimation of the marginal density of y(j). This minimization can be
simply implemented by the gradient approach, but the following natural gradient
algorithm proposed by Arrari et al. [1] has a better convergence property:

¼/%8"¼0-$#g(I#/(y)yT)¼, /(y)"[/
1
(y(1)), 2, /

k
(y(k))]T,

/
j
(r)"

d ln p
j
(rDm

j
)

dr
. (4)

This cost Eq. (3) was previously obtained using the name of maximum likelihood
(ML) approach [9,15] and later repeatedly revised by the approaches of informa-
tion-maximization (INFORMAX) [11,2], minimum mutual information (MMI) [1],
and Bayesian Kullback Ying—Yang learning [20]. For convenience, in this paper we
use the name of the J(¼) cost based ICA to denote all these studies, because we
concentrate only on the issue of how its performance is affected by the form of p

j
(rDm

j
).

The current paper was initiated at [23] during a visit of the first author to the RIKEN
Lab of the third author, for a short period in April 1996, during which all the authors of
[1,4] happened to be there. There were some discussions between the third author of [1]
and the first author of the present paper, as well as the authors of [3,4]. The discussions
clarified the relationship between INFORMAX and MMI.2 Also, the present first author
was attracted to the cost Eq. (3) and came to the proposal [23], with two basic ideas
which were regarded as new at that time.

First, in the studies of both [1,2] as well as in those previous efforts related to the
cost Eq. (3), the function form of p(y(j) D m

j
) or, equivalently, the nonlinearity of /

j
(r), is

prefixed during the learning on ¼. However, with a fixed p(y(j) D m
j
), Eq. (4) works only

when all the sources are either sub-Gaussian or super-Gaussian. Motivated by this
fact, a basic idea in [23] suggests that p(y(j) D m

j
) should be learned together with the

learning on ¼, and the learning on p(y(j) D m
j
) can be done by learning the parameters

in a finite mixture of logistic distributions or Gaussian densities.3 Second, the success

2Which have been further well explored from different perspectives and also in a more broad sense by
[24,3,20]. An even earlier result was made in [11].

3 In fact, this idea was also motivated by a previous study. In 1995, the present first author had also
suggested an idea of using a mixture of logistic distributions as a flexibly adjustable density for image
histogram equalization, which was implemented with success in a joint conference paper with his colleague
using the name of entropy maximization [10]. Moreover, the success of using a mixture of logistic
distributions for modeling the marginal density had also been reported in 1996 by [14] using the name of
maximum likelihood density estimation.
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of [2] on super-Gaussian sources by simply using the conventional sigmoid function
indicates that an accurate learning of p(y(j) D m

j
) seems unnecessary. Motivated by this

fact, it is suggested in [23] to learn p(y(j) D m
j
) such that they loosely match the source

densities. That is, instead of attempting to estimate marginal densities of y or source
densities of s as accurately as possible, we can get p

j
( . D m

j
) among a general family of

g
j
(r) with 0(g

j
(r)(R, :=

~=
g
j
(r)dr(R plus some mild constraints [20]. To know

how loosely matching this g
j
(r) should be, we need to study how the separation ability

of Eq. (4) is affected by using different types of g
j
(r) in place of a marginal density

estimate on p(y(j) D m
j
).

The first idea was later implemented by mixtures of logistic distributions,
with success on the sources that could either be sub-Gaussian or super-Gaussian
as well as a combination of both the types [22]. Moreover, this work has been
further extended to the cases of the full row rank non-invertible ¼ in Section 5 of
[18] with an EM-like new adaptive algorithm proposed that was based on using
Gaussian mixtures for p(y(j) D m

j
). Some results that relate to the second ideas

have also been obtained with the help of theoretical and experimental analyses
[21,6]. Since these previous results are distributed in various conference papers, in this
paper we elaborate on this method in a more systematic way, to include the latest
findings.

Though there are several good algorithms in literature [4,24,13] for the problem
Eqs. (1) and (2), we believe that this paper is still of some value to the literature on the
J(¼) cost based ICA. First, it records some results developed from a different but
ignored perspective. Second, the adaptive algorithm obtained from this perspective is
actually very simple and easy to implement. Third, it applies to cases where the
kurtosis of the original sources does not exist or is zero as it is not based on kurtosis
estimation.

2. Learned parametric mixture based ICA method

2.1. The basic idea and implementing algorithm

The basic idea first given in [23], suggests that ¼ can be obtained by

minMW,p(y)|PN J(¼, p( y)), J(¼, p(y))"!lnD¼D!P p(x) ln p(y) dx,

p(y)"
k
<
j/1

p(wT
j
xDm

j
), (5)

where P is a parametric family, parameterized by Mm
j
N of independent

densities p(y)"<k
j/1

p(y(j)Dm
j
). min

W
J(¼) with J(¼) given by Eq. (3) is a constrained

special case where min
W,4.5.p(y)/pL (y)

J(¼, p(y)) with pL (y) prefixed through p(y(j) D m
j
)

or /
j
(r).
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A simple and powerful representation for P is to let p(y(j) D m
j
) to be modeled by

a parametric mixture [23,22]:

p(y(j)Dm
j
)"

nj
+
i/1

a(j)
i

q(y(j)Dm
i>j

),

(6)

15a(j)
i
'0,

nj
+
i/1

a(j)
i
"1, m

j
"Ma(j)

i
, m

ij
Nnj
i/1

,

where n
j
is a given number of densities in the mixture, and q(y(j) D m

ij
) is a parametric

density with its function form prespecified, e.g., it can be a Gaussian density or logistic
distribution by

q(y(j)Dm
ij
)"G(y(j), a(j)

i
, b(j)

i
), m

ij
"Mb(j)

i
, a(j)

i
N,

(7)

q(y(j)Dm
ij
)"

Ls(y(j), m
ij
)

Ly(j)
, s(y(j), m

i
j)"

1

1#exp(!b( j )
i

(y(j )!a( j )
i

))
,

where G(r, m, p2) denotes a Gaussian with mean m and variance p2.
By putting Eq. (6) into Eq. (5), we have [23,22]:

min
MW,mN

J(¼,m), J(¼,m)"!lnD¼D!
k
+
j/1
P p(x) ln C

nj
+
i/1

a(j)
i

q(wT
j
xDm

ij
)D dx,

m"Mm
j
Nk
j/1

. (8)

Interestingly, we can also directly get Eq. (8) as a special case of the so-called Bayesian
Kullback Ying—Yang dependence reduction through its forward architecture [19].

In implementation, minMW,mN J(¼, m) can be made by gradient approach through
alternatively fixing one of ¼, m and updating the other to reduce J(¼, m). This
alternative minimization procedure will guarantee convergence to a local minimum of
J(¼, m). Moreover, it can be implemented in an on-line way via stochastic gradient
approach, as follows:

Step 1: For each x, fix m and update ¼ to reduce !lnD¼D!
+k

j/1
ln+nj

i/1
a(j)
i

q(wT
j
x D m

ij
) by Eq. (4).

Step 2: Then fix ¼ and update m"m0-$#g*m with *m being the gradient descent
direction of !+k

j/1
ln+nj

i/1
a(j)
i

q(wT
j
xDm

ij
). For example, the detailed form of *m in the

case of logistic distribution is given below:

a(j)
i
"

exp(c(j)
i

)

+nj
k/1

exp(c(i)
k
)
, y(j)"wT

j
x, h(j)

i
"

a(j)
i

q(y(j)Dm
i,j

)

+nj
r/1

a(r)
i

q(y(r)Dm
ir
)
,

u(j)
i
"b(j)

i
(y(j)!a(j)

i
), t(j)

i
"

1!exp(!u(j)
i

)

1#exp(!u(j)
i

)
,

*c(j)
i
"+nj

k/1
h(j)
k

(d
kj
!a(j)

i
), *b(j)

i
"h(j)

i A
1

b(j)
i

!y(j)t(j)
i B, *a(j)

i
"h(j)

i
b(j)
i

t(j)
i

, (9)

where d
ij

is the Kronecker delta function.
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In cases where the Gussian mixtures are used, the detailed form of *m can be
obtained in a similar way. Moreover, we can also get an EM-like adaptive algorithm,
as given in [18].

In the following subsections, we discuss some major issues in relation to the
performance of this learned parametric mixture based ICA method.

2.2. Directly workable for non-invertible linear mixture

As shown first in [18], all the discussions and the algorithm in Section 2.1 are
applicable to a full row rank non-invertible ¼ for the case Eq. (1) with A being n]k,
n'k. In [18], this problem is considered as a degenerated case of p2P0 in a noisy
mixture x"As#e

x
, with e

x
obtained from a Gaussian G(e

x
, 0, p2I

n
). The so-called

Bayesian Kullback Ying—Yang (BKYY) learning [16,17] is used for ICA with its Ying
space being <k

j/1
p(y(j)Dm

j
), its Ying passage being G(x, As, p2I

n
) (i.e., x"As#e

x
)

and Yang passage being G(s, ¼x, R). Also, it is assumed that ¼A"I or
A"¼~"¼T(¼¼T)~1, from which we have R"¼¼Tp2I

k
.

When p2
x
P0, as shown in [18], the BKYY learning in this special case is equivalent

to the minimization of the following cost function:

J(¼,m)"!0.5 lnD¼¼TD!
k
+
j/1

p(x) ln p(wT
j
xDm

j
) dx, (10)

which is different from J(¼, m ) of Eq. (8) only in the sense that lnD¼D is replaced by 0.5
lnD¼¼TD. When ¼ is invertible, the two become the same. In other words, Eq. (10) is
an extension of Eq. (8), that is applicable to the full row rank non-invertible ¼.

The minimization of J(¼, m) in Eq. (10) can be accomplished by either the gradient
descent or the natural gradient descent updating:

¼/%8"¼0-$#g *¼, *¼"G
(¼¼T)~1¼#/(y)xT gradient,

(I#/(y)yT)¼ natural gradient,
(11)

where /(y) is the same as in Eq. (4). Interestingly, the equation formed by the natural
gradient actually remains unchanged as that in Eq. (4). Therefore, all the discussions
and the algorithm in Section 2.1 apply to the cases of full row rank non-invertible
¼ in exactly the same way as invertible ¼.

The detailed derivation of Eq. (10) from BKYY learning was first given in Section
5 of [18], where its Eqs. (19) and (20) were exactly the same as the above Eq. (10) and
the gradient equation in Eq. (11), respectively. Subsequently, Eq. (10) was also given
in [7] though neither the derivation nor the reference to [18].

2.3. Improved separation performance

The problem of whether the algorithm in Section 2.1 can perform separation is
equivalent to asking whether all the local minima of minMW, mN J(¼, m) are separation
solutions. If yes, the problem can be solved by using any converged solution of the
algorithm. Moreover, if only a part of the local minimums of minMW, mN J(¼, m) are
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separation solutions, the algorithm works if it is initialized at a nearby region of one
such local minimum. However, if it is initialized randomly, the algorithm still works
only with a probability that depends on the area of attraction of each local minimum
and the ratio of the local minima which are separation solutions to non-separation
solutions. In addition, if we also have additional information to check whether
a converged solution by the algorithm is a separation solution or not, we can
continuously run the algorithm until a separation solution is finally obtained, i.e., the
source separation can be achieved in probability one at least theoretically. In practice,
we encounter computational complexity, which depends on the area of attraction of
each local minimum and the ratio of the local minimums which are separation
solutions to non-separation solutions. It can be impractical if the computational
complexity is too high.

As long as P includes the original source density p
0
(y) (e.g., for Eq. (6) we can let

n
j

to be large enough), minMW, p(y)|PN J(¼, p(y)) will have at least one separation
solution with p

0
(y) and its corresponding separation ¼

0
. However, for its constrained

special case minMW, 4.5. p(y)/pL (y)N
J(¼, p(y)), the local minimums may not include this

¼
0

and the number of its local minimums may increase because of the imposed
constraint p(y)"pL (y). On the other hand, by relaxing such a constraint, minMW, p(y)|PN

J(¼, p(y)) not only includes one separation solution but may also reduce the number
of local minimums of minMW, 4.5. p(y)/pL (y)N

J(¼, p(y)), which qualitatively explains why
the learned parametric mixture based ICA method can improve the success in
separation.

2.4. Selecting the number of densities in a mixture

The larger the number n
j
is, the larger the family P is, and the better the chance of

achieving success in separation. This may not be necessary because this will also
increase the computing cost. Moreover, it is still possible for a fixed pL (y)Op

0
(y),

minMWN J(¼, pL (y)) to result in a separation solution ¼. The success of [2] on the
super-Gaussian sources by simply using the conventional sigmoid function is a typical
example. Thus, to find out the necessary n

+
in a finite mixture, the second idea in [23]

on “loosely matching” needs to be considered.
To do so, we need to analyze the condition on a prefixed pL (y) such that all or at least

a part of local minimums of minMWN J(¼, pL (y)) are separation solutions. This task is
not easy. In the following, we briefly summarize some related progresses:

(1) In [15], a fixed /
j
(y(j))"!(y(j))3 is used with success for experiments on

uniform sources, which are sub-Gaussian. In [6], experiments have also shown Eq. (4)
to work for cases where all the sources are uniform or gamma (both are sub-
Gaussian), but to fail for sources of human speech signals (it is super-Gaussian).
Moreover, for the special cases of two channels (i.e., k"2), a systematic study has
been made with /

j
(y(j))"c

j
(y(j))3, c

i
(0 in Eq. (4). It is proved that sub-Gaussian

sources can be separated because all the stable converging points are shown to be
separation solutions. However, super-Gaussian source cannot be separated. In [21],
for the two source cases with /

1
(y(1))"c

11
y(1) and /

2
(y(2))"c

23
(y(2))3 with c

11
(0

and c
23

(0 in Eq. (4), it has been proved that Eq. (4) works sucessfully when one
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source is sub-Gaussian and the other is super-Gaussian, or when one source is
Gaussian and the other is non-Gaussian. Moreover, it has also been shown experi-
mentally that Eq. (4) works for super-Gaussians but fails to separate sub-Gaussian
sources when s

j
(r) is the conventional sigmoid as used in [11,2].

(2) When the prefixed p
j
(y(j)) is super-Gaussian, i.e., its standardized kurtosis

is positive, Eq. (4) is experimentally shown to work well for the sources of
super-Gaussian, but fails for sources of sub-Gaussian. For example, in [2] the fixed
sigmoid p

j
(y(j))"ds(y(j))/dy(j), s (r)"1/(1#e~r) is used, which corresponds to a posit-

ive kurtosis 1.2 as shown in the second column of Table 1. It is reported in [2] that
Eq. (4) works for human speech signals with highly peaked density (i.e.,
super-Gaussian signals). However, the experiments given in [21] have shown
that it fails at sub-Gaussian sources (e.g., uniform density or gamma density). Stating
another example, when we use the fixed nonlinearity as shown in the first column of
Table 1 with a positive standardized kurtosis 1.2216, the experiment in [5] has shown
that Eq. (4) works for the sources of super-Gaussian, but fails for sources of sub-
Gaussian.

(3) When the prefixed p
j
(y(j)) is sub-Gaussian, i.e., if its kurtosis is negative, Eq. (4)

works for sources of sub-Gaussian, but fails for sources of super-Gaussian. When we
use the fixed nonlinearity as shown in the third column of Table 1 with its kurtosis
!0.8118, experiments have shown that Eq. (4) works for the cases where all the
sources are uniform or gamma (both are sub-Gaussian), but fails for sources of speech
signals (which is super-Gaussian) [21]. Particularly, for the case k"2, it has been
mathematically proven that it works for cases where all the sources are sub-Gaussian,
but may fail for sources of super-Gaussian in [6]. For another example, as shown in

Table 1
Properties and separation capabilities of several non-linearities

(1) g
i
(y(j))"

exp(!3
4
(y(j))4@3)

2(3/4)1@4c(3@4)
Super-Gaussian

(2) g
i
(y(j))"

exp(!y(j))

(1#exp(!y(j)))2
Super-Gaussian

(3) g
i
(y(j))"

1

J2n
exp(!(y(j)2/2)) Gaussian

(4) g
i
(y(j))"

J2

c(1/4)
exp(!(y(j)4/4)) Super-Gaussian

g
i
(y(j)) /

j
(y(j))

Kurtosis
k4

(k2)2
!3

Case (1)
!3Jy(j) 1.2216

Case (2) 1!2logsig
+
(y(j)) 1.2

Case (3) !y(j) 0

Case (4) !(y(j))3 !0.8118
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[6], the prefixed p
j
(y(j)) obtained by truncated Gram-Charlier series in [1] also has

a negative standardized kurtosis, and experiments have shown that it indeed works
for cases where all the sources are sub-Gaussian, but fails at least for some super-
Gaussian sources.

The above results hint that whether the sources can be separated relates to whether
there is a loose matching between the kurtosis of sources and the used p

j
(y(j)), which is

consistent to the findings in the well-studied stream of those kurtosis estimation based
ICA.

Therefore, the heuristic for selecting n
j
is to consider such a loose match. Roughly,

we can expect a simple mixture with n
j
"2 to be generally workable since by changing

its parameters we can change the kurtosis of p
j
(y(j)) from positive to negative to match

the values of the kurtosis of a source, by quite a large range. However, we remark that
even in this simple case, the learned parametric mixture method is different from those
kurtosis estimation based ICA, since it considers not only kurtosis but also the
configuration, and thus it may still work even in a case where the kurtosis of the
original sources does not exist or is zero.

3. Experimental examples

We have three sources. The first is an artificially generated bimodal symmetric
b(0.5,0.5) distributed i.i.d. source, the second is an artificially generated uniform
(!0.5, 0.5) distributed i.i.d. source, the third one is a permuted speech signal. The
mixing matrix used is:

A"C
1 0.6 0.3

0.8 1 0.3

0.4 0.9 1 D . (12)

For this example, the experiments in [22,21] demonstrated that the use of p
j
(y(j)) as

a fixed sigmoid as in [2] works well for the permuted speech signal, but fails for the
bi-modal beta distribution b(0.5, 0.5) in [!0.5, 0.5] and the uniform distribution in
[!1, 1]; while the use of p

j
(y(j)) as a fixed sigmoid as in [1] works well for the

bi-modal beta distribution b(0.5, 0.5) in [!0.5, 0.5] and the uniform distribution in
[-1, 1], but fails for the permuted speech signal.

Shown in Fig. 1 are the results of the algorithm given in Section 2.1. The settings
are such that n

j
"5, all c(j)

i
and a(j)

i
are initialized as 1

5
and 0, respectively, as well as

b(1)
i

, 2, b(5)
i

are initialized in the interval [10~0.3, 101.2]. The results obtained demon-
strate that the algorithm can approximate sources ‘quite well’ and perform separation
successfully. By comparing rows 1 and 2, we can observe that the basic configurations
of p

j
(y(j)) and the sources are basically well matched. Row 3 gives a comparison

between the corresponding s
j
(y(j))":y(j)

~=
p
j
(r) dr and the fixed s

j
(r)"1/(1#e~r) in

order to observe the difference between the learned mixture approach and the fixed
sigmoid approach used in [2]. Row 4 gives the histograms of z(j)"s

j
(y(j)), which
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Fig. 1. Results of the experiment by the learned parametric mixture algorithm with a mixture of five
densities. Row 1: histograms of s(j). Row 2 and 3: g

j
(y(j)) and s

j
(y(j))":y(j)

~=
g
j
(r) dr, respectively. (— learned

mixture of densities, — ) — initial, - - s
j
(r)"logsig(r) for comparison.) Row 4: histograms of z(j)"s

j
(y(j)).

shows how far z(j) is from the uniform density, from which we can again see a good
match between p

j
(y(j)) and source densities.

The results in Fig. 2 are obtained in a simplified case with n
j
"2, a"0.5, b(j)

i
"1.

After the learning has stabilized, a brief display of » and a is

»"C
10.2583 0.0205 !0.1169

!0.0085 5.0408 !0.0813

!0.0132 !0.0095 9.3977D, a"C
!3.3378 3.3657

!2.4460 2.4672

0.0241 0.0241D . (13)

From this », we see that three channels have again been successfully separated with
signal/noise ratio being around 1000. In Fig. 2, the histograms of the sources in row
1 are quite different from the resultant p

j
(y(j)) in row 2. This point can also be observed

from row 4, where the histograms are obviously different from the uniform density.
However, we can observe that the configurations (and thus kurtosis also) have a loose
match between the first row and the second row. Moreover, we can observe from the
second row and the third row how the configurations are different from the one
specified by the fixed s

j
(r)"1/(1#e~r).
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Fig. 2. Results of the experiment by the learned parametric mixture algorithm with a mixture of two
densities. Row 1: histograms of s(j). Row 2 and 3: g

j
(y(j)) and s

j
(y(j))" :y(j)

~=
g
j
(r) dr, respectively. (— learned

mixture of densities, — ) —, initial, - - s
j
(r)"logsig(r) for comparison.) Row 4: histograms of z(j)"s

j
(y(j)).

4. Conclusion

The learned parametric mixture method for ICA on linear mixture has been further
elaborated, with a much simplified form in its adaptive algorithm along with new
insights. It is shown to be qualitatively superior to its original model with prefixed
nonlinearity. Also, a heuristic way is suggested for selecting the number of densities.
Experiments have demonstrated the success of this method on sources of either
sub-Gaussian or super-Gaussian as well as their combinations.
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