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After introducing the fundamentals of BYY system and harmony learning, which has been devel-
oped in past several years as a unified statistical framework for parameter learning, regularization and
model selection, we systematically discuss this BYY harmony learning on systems with discrete inner-
representations. First, we shown that one special case leads to unsupervised learning on Gaussian
mixture. We show how harmony learning not only leads us to the EM algorithm for maximum like-
lihood (ML) learning and the corresponding extended KMEAN algorithms for Mahalanobis clustering
with criteria for selecting the number of Gaussians or clusters, but also provides us two new regular-
ization techniques and a unified scheme that includes the previous rival penalized competitive learning
(RPCL) as well as its various variants and extensions that performs model selection automatically during
parameter learning. Moreover, as a by-product, we also get a new approach for determining a set of
‘supporting vectors’ for Parzen window density estimation. Second, we shown that other special cases
lead to three typical supervised learning models with several new results. On three layer net, we get (i)
a new regularized ML learning, (ii) a new criterion for selecting the number of hidden units, and (iii)
a family of EM-like algorithms that combines harmony learning with new techniques of regularization.
On the original and alternative models of mixture-of-expert (ME) as well as radial basis function (RBF)
nets, we get not only a new type of criteria for selecting the number of experts or basis functions but also
a new type of the EM-like algorithms that combines regularization techniques and RPCL learning for
parameter learning with either least complexity nature on the original ME model or automated model
selection on the alternative ME model and RBF nets. Moreover, all the results for the alternative ME
model are also applied to other two popular nonparametric statistical approaches, namely kernel regres-
sion and supporting vector machine. Particularly, not only we get an easily implemented approach for
determining the smoothing parameter in kernel regression, but also we get an alternative approach for
deciding the set of supporting vectors in supporting vector machine.

1. Introduction

1.1. Bayesian Ying-Yang learning

Bayesian Ying-Yang (BYY) learning was proposed
as a unified statistical learning framework firstly in
1995 85 and systematically developed in past years.
The obtained results can be summarized from both
the perspective of general learning framework and

the perspective of specific learning paradigms. From
the first perspective, BYY learning consists of a gen-
eral BYY system and a fundamental harmony learn-
ing principle as a unified guide for developing two
new regularization techniques, a new type of criteria
for model selection, and a new family of algorithms
that perform parameter learning with least complex-
ity nature or even automated model selection. These
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issues will be briefly introduced in Sec.2. The details
are referred to some recent reviews 68:6%70,71

From the second perspective, BYY learning
with specific structure designs forms three major
paradigms. First, the BYY unsupervised learning
provides new results on several existing major unsu-
pervised learning tasks, including clustering, gaus-
sian mixture density estimation, principal compo-
nent analysis (PCA), independent component analy-
sis (ICA), independent factor analyses, LMSER self-
organization, and Helmholtz machine learning, etc.
The details of these results are distributed in several
papers "9:80.76.75,77 and preliminary reviews can be
found in two conference papers 727!, Readers are
further referred to an up-coming systematic review
68 Second, the BYY supervised learning provides
not only new understanding on three major super-
vised learning models, namely three layer forward
net with back-propagation learning 57, mixture ex-
pert (ME) model 33 and its alternative model 8¢
as well as normalized radial basis function (RBF)
nets and its extensions "%, but also new adaptive
learning algorithms and new criteria for deciding
the number of hidden units, of experts and of ba-
sis functions. The details are distributed in the pa-
pers 773,74 Third, the temporal BYY learning 5°
acts as a general state space approach for modeling
data that has temporal relationship among samples,
which provides not only a unified point of view on
Kalman filter, Hidden Markov model (HMM), ICA
and blind source separation (BSS) with extensions,
but also several new results such as higher order
HMM, independent HMM for binary BSS, temporal
ICA and temporal factor analysis for noisy real BSS,
with adaptive algorithms for implementation and cri-
teria for selecting the number of states or sources 5°.

This paper provides systematic review and a
number of new advances on a major class of BYY sys-
tems. This class is featured by using discrete inner-
representations. Specifically, we consider four typical
examples, including Gaussian mixture for unsuper-
vised learning and three major supervised learning
models, namely, three layer net, the original and al-
ternative ME model, and RBF nets.

1.2. Clustering and gaussian mizture

A major unsupervised learning task is clustering
8,64,48,21,15,81 p vector quantization 4350 that uses
a number of vectors to represent a data set such that

each vector locates at each cluster center. Such a
task is equivalently tackled under the name of com-
petitive learning in the literature of neural networks
61,26,19,1 The existing algorithms for clustering can
be grouped in two types. One is usually called in-
cremental /hierarchical /dynamic clustering or learn-
ing 211931,26 The key point is incrementally adding
one cluster center once a newly coming sample is re-
garded to be far beyond a threshold of a pre-specified
distance measure. This type is easy to implement
and the number of clusters is decided dynamically.
However, the results highly depend on the initializa-
tion and the specific way that the clusters grows up.
Thus, this type usually produces unsatisfactory re-
sults on complicated data that is non-homogeneous
in center locations and cluster configurations. The
other type of clustering algorithms considers all the
possible cluster centers in parallel via minimizing a
cost or maximizing a criterion. A typical example
is the KMEAN algorithm 21'1% that minimizes the
mean square error. However, the complexity of find-
ing the global minimum grows exponentially with the
number of clusters, and thus the problem is usually
tackled by a heuristic algorithm such as KMEAN,
which usually produces a solution at local minimum
that may also be a bad solution especially when the
algorithm starts at a bad initialization.
Alternatively, the clustering problem is solved by
competitive learning (CL) which has also two types
that share the above discussed features correspond-
ingly. A typical example that performs incremental
clustering is the ART learning 2. A typical example
that performs clustering in parallel is the classic CL
61 With a bad initialization, similar to KMEAN,
one serious problem of the classic CL is the so called
“dead unit” problem. That is, only one or few center
vectors (or so called units) are finally located among
samples of data, while other units locate far away
from data and thus are ‘dead’. This problem is solved
by introducing the so called ‘conscience’ mechanism
21,19,1 e.g., by the so called frequency sensitive CL
(FSCL) 1. Also, another critical problem is encoun-
tered by clustering in parallel via using KMEAN or
CL. That is, it works well only when a correct num-
ber k of clusters or units are pre-given. If we do not
know this number and set k inappropriately, we can
get a very poor clustering performance 8°. One pos-
sible solution to the problem is to choose a best k*
by a selection criterion. Many heuristic criteria have



been proposed in the statistic literature 22:47:48,64,60,

However, this way suffers a large computational cost
since we need to make clustering at a number of dif-
ferent value of k, even though such a process can be
organized in a more efficient way, e.g., embedding the
checking of the value of a selection measure as was
done during clustering by the ISODATA algorithm
3

First proposed in 1992 8, the so called rival pe-
nalized CL (RPCL) solves this problem with the
correct number k* determined automatically during
learning for the initial k& large enough, in the sense
that extra units are driven far away from data due to
appropriately penalized learning on the rival. Simi-
lar to KMEAN and FSCL, the original RPCL works
well on spherical clusters with each cluster sharing a
same or similar portion of samples. Later, it has been
extended to cover the cases of any elliptic shapes and
in any portion of samples 848376, Moreover, RPCL
has also been adopted to various applications, includ-
ing information retrieval in image databases3%:35:37)
plant diagnosis?3, nonlinear prediction model and
hidden Markov model*®2, clustering, vector quan-
tization, object classification in 3-D images, scene
segmentation in 2D&3D image as well as multidi-
mensional data 7401444 Also, following the initial
suggestion®® for training RBF net, a number of au-
thors have used or recommended RPCL algorithm
for the training of various RBF nets®®°9°1,63,11,38,7
However, there still remains a key problem to be
solved for RPCL. That is, RPCL is proposed heuris-
tically without a theory to justify it yet. Especially,
a theory is needed to appropriately control the learn-
ing rate on the winner and the de-learning rate on
the rival, instead of being given by some empirical
range.

Proposed heuristically as early as in the 60’s 2!
and later re-interpreted under the incomplete data
theory 20, Gaussian mixture with the EM algorithm
provides a good general solution for clustering in par-
alle]l 20:58:946 " Not, only has the EM algorithm sev-
eral advantages that considerably improve the prob-
lems of initialization and local minimum 22, but also
each gaussian in general can describe each cluster
by a gaussian density in any elliptic shape and in
any portion of samples 8°. However, as in KMEAN
and FSCL, it still needs that the correct number &
of gaussians is pre-given. After ML learning by the
EM algorithm, as suggested in a previous paper 3!

)
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we may get some gaussians that own a very little
portion of samples for a given k large enough, and
we may discard those gaussians. However, such a
way works occasionally only. In a previous paper 8°,
not only the relation of BYY learning to ML learning
is set up, with the hard-cut EM algorithm obtained
as extensions of KMEAN for clustering on clusters
in any elliptic shape and in any portion of samples,
but also a new class of criteria is obtained from the
harmony learning principle for selecting a correct k.
In Sec.3 of this paper, it is further shown that BYY
harmony learning provides a general framework that
combines the hard-cut EM algorithm, two new reg-
ularization techniques and an automatic mechanism
that decides the number of gaussians during learning.
Moreover, not only the RPCL learning®® is shown to
be regarded as a special case of the framework with
a theoretical guide for appropriately controlling the
learning rate on the winner and the de-learning rate
on the rival, but also the framework is shown to pro-
vide various RPCL variants and extensions. Further-
more, as a by-product, we also get a new approach for
determining a set of ‘supporting vectors’ for Parzen
window density estimation.

1.3. Three typical supervised learning models

Supervised learning tasks can be summarized by the
key job that implements a desired input-output map-
ping, based on a given set of input-output sample
pairs. The most popular example is probably three
layer net with learning by back-propagation 57. One
criticism of this model is that it is a black-box with
its hidden units difficult to be observed and under-
stood. Alternatively, the radial basis function (RBF)
net is suggested for solving the problems, with the
feature that the entire input-output mapping is co-
operatively implemented by many local input-output
mapping. The existing RBF nets can be classified
into two types. One is non-normalized RBF nets,
which have a clear interpretation by Tikhonov-type
regularization theory 66:33:10:24.52 The other is the
normalized RBF nets 4%51:32 which have a close re-
lation to the kernel regression method 16:17:18,25,54
in the literature of nonparametric statistics . The
parameter learning on RBF nets is made usually in
two sequential steps. The first step decides the cen-
ters of basis functions usually via certain clustering
algorithm, and the second step determines the pa-
rameters of the output layers by ML or least square
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learning. Such a two-step algorithm actually pro-
vides a suboptimal solution.

The third typical model is the mixture-of-expert
(ME) models 303334 which implements the entire
input-output mapping by a number of local experts
that combined via a probabilistic controlling of a so
called gating net, with each individual expert being
a three layer net alone. The EM algorithms can be
used to separate the learning of experts and the gat-
ing nets. Then, each of them can be further learned
by back-propagation. Later, an alternative gating
model is proposed such that the entire learning can
be made in the sense of ML by the EM algorithm in
the case that each expert is described by a gaussian
with a linear regression 86:5%7% Moreover, the hard-
cut EM algorithm and adaptive EM algorithm have
been proposed for fast learning of both the original
and alternative ME models in help of the so called
coordinated competition 74,

For supervised learning models trained on a train-
ing set of finite number of samples, regularization
and model selection are two major issues for improv-
ing their generalization ability. The key point is the
number of hidden units, or equivalently the number
of individual experts or basis functions. Among the
above three typical models, the generalization per-
formance of three layer net is prone to the number
of hidden units. Therefore, many existing studies
on regularization and model selection focus on three
layer net. On one hand, several theories and many
heuristic techniques for regularization have been pro-
posed to force the free parameters in networks with
constraints such that it is effectively equivalent to a
reduced number of hidden units. Typical systematic
theories for this purpose include Tikhonov-type reg-
ularization theory 66245 Bayesian theory*!:*? and
MDL theory®%:¢0, which are actually closely related
to each other. On the other hand, model selection
explicitly selects a structure with the best number
of hidden units, in help of enumerating a number
of structures with different number of hidden units.
Typical model selection theories include Bayesian
theory 4142 MDL5%:6%28 VC dimension based gen-
eralization theory®?, cross validation®®62 and AIC 2
as well as its extensions AICB, CAIC, SIC %2,

Though the generalization performance of the
original and alternative ME models as well as RBF
nets is less sensitive to the number of experts or basis
functions, the above regularization and model selec-

tion theories are also applicable and helpful. One
main weak point of these existing systematic theo-
ries that each of them is usually very expensive in
computational costs. Thus, several techniques and
heuristics are usually combined under the guidance
of the theories. The currently popular vector sup-
port machine (SVM) is a typical example that can
be regarded as a nice combination of kernel approach,
sample editing technique!®, and VC dimension based
generalization theoryS”.

In Sec.4 of this paper, the harmony learning is
shown to act as a general framework for learning
on all the above three typical models with new re-
sults on regularization and model selection. Specif-
ically, supervised BYY harmony learning is intro-
duced via the so called Yang-dominated system and
Ying-dominated system. In Sec.4.2, a new regular-
ized ML learning is obtained on three layer nets, a
new criterion is given for selecting the number of hid-
den units, and a family of EM-like algorithms that
combines harmony learning with two new techniques
of regularization obtained. Moreover, in Sec.4.3 and
Sec.4.4, the previous results "* on the original and
alternative ME models as well as RBF nets are fur-
ther extended in help of the two regularization tech-
niques and a unified RPCL framework with either
least complexity nature on the original ME model
or automated model selection on the alternative ME
model and RBF nets. Furthermore, all the results for
the alternative ME model are also applied to not only
get an easily implemented approach for determining
the smoothing parameter in kernel regression kernel
regression and supporting vector machines, but also
provide an alternative approach for deciding the set
of supporting vectors in the popular supporting vec-
tor machines for better generalization. Finally, we
conclude in Sec.5.

2. BYY System and Harmony Learning

2.1. Best harmony learning principle

In general, specifying a density g(u) involves three
issues. The first issue is a given structure. A typical

example is the finite mixture 20:58:46 a5 follows:
p) = Tijcp(ulf), e >0, Tiai =1,
eg., (1) p(ult:)= G((1u|mi,2?),
(i) p(ulfs) = [Tj2,p(u]6;5) 1)

which is a summation structure that consists of com-



ponents. Each component is either (a) a basic com-
ponent, in the sense that its density function form is
given and there remains only a set of unknown pa-
rameters, e.g., the one given by example (i) in eq.(1),
or (b) a compound structure that consists of a num-
ber of components via either a summation again or a
product as shown by example (ii) in eq.(1). The task
of structure design is to specify the function forms of
basic components and the structure that these basic
components are organized. The second issue is the
set k that describes the scale of a given structure,
e.g., k = {k,d,}. The task of specifying the scale is
called model selection in the sense that a collection
of different scales corresponds a collection of specific
models that share a same structure but in different
scales, and thus selecting a specific scale is equivalent
to selecting a model. The third issue is a collection 6
of unknown parameters. The task of specifying this ¢
is called parameter estimation or parameter learning.

In a conventional sense, learning is a process that
specifies a density g(u) = g(u|6,k) from a given data
set U = {u;}}L,, via specifying 0,k under a given
structure design. Without extra priori constraints,
learning from U is equivalent to learn from its em-
pirical density p(u) = po(u) 1718

po(w) = Ynadlu—w),

_ Jlimgy4o01/v(du), u=0,

s = {4 2w
where v(.) is a given measure on u. Particularly, for
the Lebesque measure, v(du) is the volume of du,
i.e., v(du) = h% for a small enough h > 0. We have

m L (3)

dlul—)O v(du)’

0, (0) =

8,(0) = lim

lim -5 in the Lebesque measure.
_) u

In a broad sense, we consider learning not only in
this case but also in the cases that there are two
p(u), 9(u) in known structures but each of them hav-
ing some unknown parts, e.g., in either scale or pa-
rameter or both. The task of learning is to specify
all the unknowns from the known parts of both the
densities. Our fundamental learning principle is to
make p(u), g(u) be best harmony in a twofold sense:

e The difference between the resulting p(u), g(u)
should be minimized.

e The resulting p(u), g(u) should be of the least
complexity.
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Mathematically, we use a functional to measure
the degree of harmony between p(u) and g(u). When
both p(u), g(u) are discrete densities in the form

g(u) =3 a0 (u—w), =1, w €U, (4

such a measure is simply given as follows:

H(pllg) = 2ospeInge. (5)

When p = g we have H(p||p) which is the nega-
tive entropy of p. Interestingly, the maximization
of H(pl|lg) will not only push p, g towards to p; = ¢:
but also push p(u) towards to the simplest form

p(u) = 6(u — u;), with 7 = arg max gz, (6)

or equivalently p, = 1, and p; = 0 for other ¢, which
is of the least complexity from the statistical perspec-
tive. Thus, the maximization of the functional in-
deed implements the above harmony purpose math-
ematically.

To extend eq.(5) to cover the cases that g(u) is a
continuous density, given a set # = {u;} of sampling
points {g(u:)}, we let g; given by

gt = g(ut)/zg> g = Ztg(ut)’ (7)

from which we always have ), g; = 1. For a dis-
crete density, we have zg = 6,(0) when g(u) =
> 9¢0u(u — uz) with 3~ g; = 1. For a continuous
density g(u), when U has a large enough size N with
samples densely covering the entire space of u such
that we can approximately regard that g(u;) is equal
to the value of the corresponding histogram density
of a hyper-cubic bin of volume v, = h%: that contains
the point u;, where h > 0 is a very small constant
and dy is the dimension of u. Then, we have

Sg(ug)hde m 1, or zg =Y, g(us) & 1/h%,
Also 1/h% — §,(0) as N = 0o, h = 0. (8)

Putting eq.(7) into eq.(5), we have

H(pllg) = 3 ;peIng(us) — Inzg. (9)

In other words, we can use eq.(9) in place of eq.(5)
for implementing the best harmony learning.

We can also approximate a continuous p(u) in
a similar way and get Y ,(p(ut)/zp) In g(u;). Then,
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similar to eq.(8) we have Y,p(u¢)h% Ing(us) ~
Jp(v) In g(u)v(du), which is actually also true when
p(u) is a discrete density. Thus, a general form of
the harmony measure is given as follows:

H(pllg) = [p(v)Ing(u)v(du) - Inz, (10)

where zg is given in eq.(7).
Therefore, we implement the harmony learning
by

I?’ix H(0,k), H(6,k) = H(pllg), (11)

where 6 consist of all the unknown parameters, and
k consist of unknown parts of scales in p(u), g(u).

2.2. Mazimum likelihood learning
and two new regularizations

The harmony learning eq.(11) brings new results
both in the above conventional sense via eq.(2) and
in a broad sense via the comprehensive BYY learn-
ing framework. The latter will be the major focus
of this paper. Now, we start at the former to under-
stand the relation between the Maximum Likelihood
(ML) learning and the harmony learning eq.(11).

Given p(u) by eq.(2) and given g(u|f) with its
structure and scale fixed, what we need to do is pa-
rameter learning for determining #. Putting these
p(u) and g(u|6) into eq.(10), in the case of eq.(8) by
approximately regarding z, &~ 1/h% — §,(0), we
have that maxg H (p||g) becomes equivalent to

moaxL(0), L(6) = % 3", Ing(us]6), (12)

which is exactly the conventional Mazimum Likeli-
hood (ML) learning on g(ulf).

While using z4 in eq.(7) without the approxima-
tion in eq.(8), we have that maxy H(p||g) becomes

max Lp(6), Lr(6) = L(6) —In[329(u:|6)],  (13)

which consists of the ML learning plus a regulariza-
tion that prevents g(u|f) to over-fit a finite size data
set U. This point can be better observed by compar-
ing the gradients:

VoL(6) = Gd(3),,= 4

29

N

VGLR(e) = Gd(’)’t)l'yg:#—g(utw)a
Gd(y) = 2217 Ve Ing(we|0),
(u0) = g(ue|0)/3 . 9(r|0). (14)

It follows from V¢Lg(#) that a de-learning is intro-
duced to ML learning for each sample in proportional
to the current fitting of the model to the sample.

An alternative regularization method can also be
obtained via the approximation z4 & 1/h% in eq.(8),
with p(u) not given by eq.(2) but by the Parzen win-
dow estimate:

p(u) = poz(u), poz(u) = # S1e, Glulur, a*1). (15)

As 02 = 0, G(ulug,0214) = 6(u — uz), and pya(u)
returns to po(u). Generally, py2(u) is a smoothed
modification of pg(u) by using a gaussian kernel
G(u|0,0%I4) with mean 0 and covariance 021, to blur
out each impulse at u;.

We have™ h = /27 and thus it follows that
maxg H(p||g) becomes equivalent to

Iglachs(B,az), Ls(0,0%) = 0.5d, In o+
&3, [G(ulug, 0*I) In g(u]6)du, (16)

which regularizes the ML learning by smoothing
each likelihood In g(u:|8) in the near-neighbor of wu;.
This new regularization method is referred as data
smoothing. Also, we have™®

0% = Ndu/ 5, TrlH,(ur10)], Hy(ul6) is
the Hessian of In g(u|f) with respect to u, (17)

which is closely related to the Tikhonov-type regu-
larization theory 66245, We can directly put eq.(17)
into eq.(16) such that we need only to update 6 to
maximize Lg(6, 02(6)).

Moreover, we can also consider to estimate both
6,0% in implementation of eq.(16) by iterating the
following two steps:

Step 1: fix 6, get o2 by eq.(17), (18)

dLs (0,0
or get o_new — 0'0ld+770 S( i )’

Step 2: meaxztfG(u|ut,0'2[)lng(u|0)du,

where 79 > 0 is a small stepsize. We can further
solve Step 2 in one of two ways. One is turning it
into ML learning by Monte Carlo sampling. That is,
we approximately solve it by

Step 1: getaset {ug}f;’l,ué =u+e, (19)

g+ is a sample from G(u|0,0214) ,
Step 2: moa,xL'(G), L'(6) = 3+ >, Ing(ut|6).



The second way is to turn the problem eq.(16) into

max(L(0) + LS TolH, w0}, (20)
0 N &t gt ’

where Hg(u;|6) is the same as in eq.(17). Eq.(20) is
obtained in help of the Taylor expansion of In g(u|f)
with respect to u around E(u) up to the 2nd order,
as later shown in eq.(27).

Given p(u) by eq.(2) and given g(u|f) with its
structure as in eq.(1), the dimension d,, of u is known
but there is an unknown scale k. In this case,
the model selection part in eq.(11) is made in the
sense of maximum likelihood via eq.(12), eq.(13),
and eq.(16), that is, by maxyx L(f) as previously
suggested®! or by its new variants maxp x Lr(6) and
maxg o2 x Ls (6, 0?), corresponding to eq.(16). More-
over, when k is large enough and for g(u|f) given in
eq.(1) there is no constraint that prevents a; to be-
come zeros, the model selection can be implied au-
tomatically during parameter learning that pushes
some of o to be zeros, as previously suggested®!.

However, since p(u) is fixed by eq.(2) and thus
there is no force of type eq.(6) that imposes the least
complexity. Thus, this is not a best way of using
the harmony learning eq.(11) for model selection.
In contrast, as to be shown in the sequel, the har-
mony learning on the following Bayesian Ying-Yang
(BYY) system can take the advantage of eq.(6) in
performing model selection.

2.3. Bayesian Ying Yang system

We consider u = (z,y) with 2 € X observable and
y € Y invisible as shown in Fig.1. Given a set of
observable samples x = {z;}{_; from X, we can get
a density pys, either empirically via po(z) by eq(2)
or in a Parzen window estimate p,2(x) eq(15) under
the smoothing parameter o2. :

On one hand, we can interpret that each z; is
generated from an invisible inner representation y;
via a backward density PM,,- At this moment, we
simply ignore the notation £ in Fig.1, which will be
explained after eq.(23). The mapping from Y to X
by pa,,, can be understood from two perspectives.
One is sample-to-sample mapping y; — z; in three
choices as given in Fig.1. The other is a generative
model

pm(z) = [pm,,, (z|y)pm, (y)v(dy) (21)

that maps an inner density pas,(y) in a structure
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that is designed according to the nature of tasks en-
countered.

Representation Space Y
Symbols, Integers, Binary Codes
Reals
Puwl®
Py (Y% &)
Encoding Decoding

Recognition
Representation

Generating
Reconstruction

Py (XIY: &)

Input Pattern Space X

P, 0

Encoding

Stochastic: randomly pick y by Ppmy x (¥ |x, & )
maximum posteriori: y = argmaxy Py |x (v | X, & )
regression: E[y|Puyx,&]

Decoding

Stochastic: randomly pick x by Py, (X]y, &)
maximum posteriori: x = argmax Py |y (x |y, E )
regression: E[x| Py |y, &]

Fig. 1. BYY Learning System

On the other hand, we can interpret that each
z; is represented by being mapped into an invisi-
ble inner representation y; via a forward path PM,.-
Again, the mapping from X to Y by pa,,, can be un-
derstood similarly from either the sample-to-sample
mapping &; — y; in three choices as shown in Fig.1
or a representative model

pm(Y) = [pm,,. (ylz)pa, (z)v(dz) (22)

that matches the inner density par,(y) in a specific
structure.

The above two perspectives reflect the two
types of Bayesian decomposition of the joint den-
sity p(zly)p(y) = p(z,y) = p(z)p(ylz) on X x
Y. Without any constraints, the two decomposi-
tions should be theoretically identical. However,
in our above considerations, the four components
PM, ., PM., PM,,,, PM, are subject to certain struc-
tural constraints, and thus we usually have two dif-
ferent but complementary Bayesian representations:

M, (18, ylg) = PMy|, (ylz) €)pr (2?'6),
pm (2, Yl€) = par,,, (2ly, E)pa, (¥l€), (23)



50 L. Xu

where the notation £ stands for a set of variables
that take into consideration the effects of the envi-
ronment or context. In the case of context-free or
environment- irrelevant, i.e., z,y are irrelevant to &,
we can simply discard £. As discussed in the orig-
inal paper®®, the formalization eq.(23) compliments
to the famous eastern ancient Ying-Yang philosophy,
with par, called Yang model that represents the ob-
servation space (or called Yang space) by pa, and
the forward pathway (or so called Yang pathway) by
PM,,,, and with pp, called Ying model that repre-
sents the invisible state space (or Ying space) by M,
and the Ying (or backward) pathway by pM,,,- Such
a pair of Ying-Yang models is then called Bayesian
Ying-Yang (BYY) system.

The task of BYY learning consists of specifying
all the aspects of PM,,,;PM., PM,,,, PM,, from a
given data set x = {z;}{_,. There is no unknown on
P, given by eq(2). More generally, ppr, may also
be given as in eq(15) with the unknown smoothing
parameter 02, which can be studied in a way similar
to eqs.(16)&(17)&(18).

What remains to be specified are pa,,,, PM,,,,
pm,- First, we need to design a combination of
structures for DMy, PMy, PM,, and such a combi-
nation is referred as a system architecture, which
is further featured by the pairing of structures of
PM,,,,PM,,,- Specifically, each of py,,,,pm,,, can
be either structure-free or parametric. The former
means no structural constraint. E.g., we say p(u|v)
is structural free in the sense that p(u|v) can be any
function that satisfies [ p(ulv) = 1,p(ulv) > 0. The
latter is given by a parametric model. As shown
later, a structure-free density is actually specified via
learning in terms of other parametric structures. The
architecture with both par, ., pu,,, being structure-
free is meaningless since they are no longer able to
be specified via learning. Therefore, there remain the
following three combinations for a meaningful archi-
tecture:

e Backward architecture (B-architecture):

PM,,, Is structure-free and ppr, |, is parametric.

o Forward architecture (F-architecture):
PM,,, 1s structure-free and pu,, 1s parametric.

o Bi-directional architecture(BI-architecture)
Both pwm,,,pm,,, are parametric.

After introducing the fundamentals of BYY har-
mony learning in the following subsection, in Secs.3
& 4 we will focus on the typical examples of the B-

architecture and Bl-architecture. Examples of the
F-architecture are referred to another paper 8.

2.4. BYY harmony learning

We first consider the cases that z is real with pps,
given by eq.(2) or eq.(15) and each representation y
is discrete, e.g., either y = 1, -, k (as often encoun-
tered in classification, clustering, decision and other
pattern recognition tasks) or y = [y), - .-, y(*)] with
each y¥) being binary and taking 0 and 1 as encoun-
tered in an encoding job. In the cases, py,,,pm,
are discrete densities in the weighted sum of

PM,,,,(y]z;f) = ZgPMyh(y'xv&)a(y - g))
P, (UlE) = 225 P, (ul€)o(y — 9), (24)

where § is a specific value that y takes. The sum is
made over such specific values, Py, denotes a prob-
ability and Py, denotes a conditional probability.

Given an environment £, we can make the har-
mony learning eq.(11) on a BYY system directly in
help of eq.(10) with p(u) = pam,,9(v) = pum, in one
of the above three architectures, which results in

H(@,k|§) = H(lellng) = %Zi\;lHt - hlzz,
Ht = ZyPMyh: (ylmtyg) lanIw(xtly) &)
+Z:yPMy|z(ylxt’€) In PMy (yl&),

1

) Choice (a),
=14 T pm(@il), Choice (b),
h;d”,hz =+/27|0,|, Choice (c);

pm(zl€) = X, pm,, (z]y, §) Pr, (yl€).  (25)

where § consists of all the unknown parameters, in-
cluding a free density as a set of infinite number
of parameters in a B-architecture or F-architecture.
Moreover, z, comes from zg given by eq.(7). Since
Py, is a discrete density, similar to what dis-
cussed after eq.(7), we get zg = z;0,(0). Specif-
ically, we have three choice for z,. It can be
given in ae way similar to z; in either eq.(7) or
eq.(8), resulting in Choice (b) and Choice (c) in
eq.(25), respectively. We can also approximately
ignore the effect of z4 by simply letting 2z, = 1,
resulting in Choice (a) in eq.(25). Furthermore,
we have —Inzg = —Inz; — Indy(0), and from
eq.(24) we have [ pu, (ylze,€)Inpar, (ylé)dy =
>y Pmy . (ylze, §) In Par, (y|€) + Indy(0) such that
Indy(0) is cancelled in the above H;. In addition,
we also have™ h = v/2x|o| in a way similar to the
discussion on eq.(16).



When the environment £ is either constant or ir-
relevant to our consideration z, y, we can directly im-
plement the harmony learning eq.(11) with H (8, k|¢)
given in eq.(25). When £ is a stochastic according to
a distribution p(¢), H(8,k|¢) in eq.(25) also changes
randomly with £. In this case, we consider

H(0,k) = [p(€)H (0, k|§)v(d¢), (26)

where we encounter ther problem of the integral over
&, which can be tackled in two ways:

(a) In some cases, p(§) can be estimated by eq.(2)
from a set of samples of €. In this case, the integral
becomes a sum naturally.

(b) Instead of knowing the entire density p(¢), it
is usually easier to get its statistics £ = E(¢), ¢ =
E[(€—€)(€—¢€)T]. In the cases, we consider the Tay-
lor expansion of H (8, k|€) with respect to & around
€ = E(€) up to the 2nd order and approximately get

H(6,k) = H(0,k|é) + crTr[SeHe],
He = 20RO, (27)

o = 0, the lst order approximation,
T=10.5, the 2nd order approximation.

Though this paper focuses on the cases that y is
discrete, for completeness we remark that all the dis-
cussions are extendable to the general cases that y is
real and z is either real or binary. The key is to get
a set of samples {y,} for each z; via par,,. Then,
similar to eq.(25), we can have

H(6,k|¢) = % ZiV:IHt —Inz,, (28)

H; = Z:TPMWB (yr,t|$t,§) lanzw(mtlyT,t)
+> oMy, (Yrelze, €) Inpar, (yr £ 1€);
6:(0)dy(0) discrete par,,, & pm,,
zg = { 0y(0)zz, real par,, & discrete par,,
Zzy, real py,,, & pu, .

Moreover, corresponding to z; given by eq.(7),
2z, Zzy have one of the following choices:

(@) zg =125y =1, (29)

() 2z by (b)in eq.(25), zpy = h;%h; %,

(¢) 2 by (a)in eq.(25), 2y = Y ore P (2:),
Bm(ze) = 30, paa,, (Telyr e, ) paa, (yr,e[€)-

2.5. Parameter learning and model selection

We consider the details of the harmony learning
eq.(11) with H(6,k[¢) in eq.(25) under a constant
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environment &, which will be extended to a stochas-
tic environment £ in Sec.4.

e Least complexity and automated model se-
lection In the BYY system eq.(23), p(u) = par,
consists of not only ppr, that is basically fixed by
eq.(2) or eq.(15) but also Par,,, that is usually free or
partially free to be specified. In this case, the force
of the type eq.(6) will take effect during the har-
mony learning eq.(11), which directly pushes Py,
to a least complexity form. E.g., when par,,, is free,
maximizing H (6, k) with respect to pas,, results in

Pryy, = I(ylee) = I(y = Ymyt), (30)
Ym,t = arg m;ixP(yl:ct), or

Ym,: = arg m;X[pM,,,,(:ctIy, &) Pur, (yl6)],
where we use the notation

1, foru=c,
fu=c)= { 0, otherwise, (31)

for a function that takes 1 for u at a specific value ¢
but takes 0 for all u # c.

Actually, the process of arg maxy[p,,,(2:|y,§)
Par,(yl€)] in eq.(30) implements a competition co-
ordinately based on both par,,, that represents the
fitting of the component to z; and Py, that repre-
sents the preference of the component. Such a type
of competition is called coordinate competition ™ or
posteriori competition because I(y|z:) in eq.(30) is
actually a winner-take-all (WTA) version of the pos-
teriori probability

_ pm,, ()Y, €) Pa, (yl€)
Plle) = = i)

(32)

In turn, the shrinking of py,, in a least com-
plexity will indirectly push pa, , and Py, to the
least complexity via the force that lets g(u) to match
p(u). Therefore, given £ we can set the scales in k
large enough and implements the harmony learning

eq.(11), i.e.,
max H(6), H(6) = H(6,k|), (33)

which determines § with an automatic searching on a
structure of the least complexity. This nature can be
understood by considering H(6) = H(8,k|¢) given
by eq.(25) with z; = 1 in its choice (a) and Py

ylz



52 L. Xu

given by eq.(30). In this case, eq.(33) becomes max-
imizing "N | H, with

Ht =In pM,ly(fl’t lym,t; 6)
+1In Par,, (ym,¢1€)- (34)

That is, the harmony learning consists of the ML
learning on pys,,, and the ML learning on Py, sep-
arately under the best harmony inner representation
Ym,:- The latter will push Pas, (ym :€) towards its
least complexity form I(y — Ym,), which, according
to the feature of Py, (y|€), results in one of the fol-
lowing two types of behaviors:

(a) Parameter learning with automated model
selection It happens when Py, (yl€) = Par,(y)
is irrelevant to £ and there is no extra constraint
on Pu,(y). In this case, pushing Py, towards
I(y — ym,;) for each z; will push Py, to be as
close as possible to I(y — §) at a specific value g
that is independent of . When y = 1,---,k with
a large k, it means that Py, (y) may become zero
for some value of y, which is equivalent to reduc-
ing k to kK — 1 over even smaller number. When
y = [y, -+, y*)], it means that Py, (y) may be-
come Py, (y) = Pu,(y™)I(y¥) — §9)), which is
equivalent to removing the j-th dimension y¥) and
thus reducing the dimension k by one, where y~ is
resulted from y after removing y\). In other words,
model selection will be made automatically during
parameter learning in these cases.

(b) Parameter learning with complexity mini-
mization In the cases that there are some con-
straints on P, (yl€) = Pm,(v), eg., Pu, = 1/k
when y = 1,---,k or the covariance of P, (y) is
c¢l,c > 0 with a constant when y = [y, ... y(*)].
The constraints prevent k to be reduced. However,
the harmony learning eq.(33) will still push pa,,
and Py, to be minimized in complexity. Also, in
the cases that Py, (y|€) changes with £ though there
is on extra constraint on P, (y|€), pushing Py, to-
wards its least complexity form I(y — ym ) does not
necessarily push Py, to be as close as possible to
I(y — §) because this value y, ; may change for dif-
ferent &. Thus, the learning eq.(33) does not nec-
essarily lead to the consequence that the scale k is
automatically reduced.

Generally, the above two types of behaviors may
still happen when Py, is not free but with k large
enough.

e Coordinated competition and conscience
In the B-architecture, after coordinated competition
by eq.(30), we have H; given by eq.(34) such that
the harmony learning-can be simply implemented by
making ML learning on pu,,, and Py, separately
under the best harmony inner representation Y, ;.
However, like what we discussed on classical compet-
itive learning (CL) and RPCL learning in Sec.1, the
coordinated competition eq.(30) is a greedy WTA
competition that will create many local optimal so-
lutions in maximizing H;. Thus, this learning may
result in a bad local optimal solution, similar to the
‘dead unit’ problem as in the classical CL!%1.

Such a local optimal problem can be solved from
two types of strategies as follows:

(1) We can regard this harmony learning as a typ-
ical optimization problem of finding the global opti-
mal solution among many local optimal solutions.
Then, we use one of the existing classical global op-
timization techniques for this purpose.

(i) We can introduce ‘conscience’ into either or
both of the WTA competition eq.(30) and its post-
competition ML learning on par,,, and Py, .

In this paper, we consider the use of the popular
simulated annealing method 3¢ for implementing the
first strategy. As to the implementation of the sec-
ond strategy, we consider the following typical cases:

(a) When z, is given by Choice (b) in eq.(25), we
have the regularization of type eq.(13) and eq.(14),
as discussed in Sec.2.2. Specifically, as to be dis-
cussed in details later, this regularization introduces
‘conscience’ into competition learning in a sense that
not only adds a certain degree of de-learning on the
winner for ‘conscience’ but also may make some de-
learning on the rival and probably other losers as well
to prevent the competition to be weaken too much.

(b) When z, is given by Choice (c) in eq.(25),
we have the data smoothing regularization of type
eq.(16). This regularization introduces ‘conscience’
to moderate the WTA competition eq.(30) indirectly
via adding an extra homogenous variance ¢2I to
p,,,- To prevent adding in too much ‘conscience’,
an appropriate degree of o2 is searched in a similar
way as discussed in Sec.2.2.

(c) We can also introduce ‘conscience’ by replac-
ing the WTA competition eq.(30) with a soften pos-
teriori competition by giving Py, a certain struc-
ture instead of being free. A typical example is
Pu,,, (yle) = P(ylz) by eq.(32). As shown in 8%,



the maximization of H(#,k|€) under this constraint
becomes equivalent to minimizing the following Kull-
back divergence:

mlna KL(PM1||PM2|€) w’w”e K L(Pllg)

It is further equivalent to the ML learning that
only focuses on the marginal distribution pas(z) in
eq.(25), which indirectly takes p,,,, Py, in consid-
eration via a summation. Though the minimization
of KL(p|lg) pushes p(u),g(u) to best match, there
is no force that pushes the least complexity. Thus,
it is not suitable to be used for making parameter

learning with automated model selection.

¢ Parameter learning followed by model selec-
tion As a complement to making learning either
by eq.(33) with Py, constrained with a fixed k or
simply by eq.(35), also as an alternative to making
learning by eq.(33) with automated model selection
at the scales of k large enough (which is also a kind
of wasting resources), we can also make parameter
learning and model selection in two sequential steps.
That is, we can enumerate k from small scales incre-
mentally. At each specific setting of k we perform
parameter learning by either eq.(33) or eq.(35) to
get the best parameter value 8*. Then, we make a
selection on a best k* by
niinJ(k), J(k) = —H(0",k[¢), (36)
where we take the smallest one if k has more than
one choices at which J(k) gets the same minimum.
From an information geometry perspective’®
maximizing H(p||g) corresponds to the maximum
projection of p on ¢ and minimizing K L(p||g) cor-
responds to the minimum residual of this projection,
which are complementary and closely related, but
not equivalent. Therefore, there may be a discrep-
ancy between the resulted 6* in the two ways. How-
ever, this discrepancy will be remedied by the same
subsequent step of model selection eq.(36).

3.  Unsupervised Learning, Gaussian Mix-
ture and Unified RPCL

3.1.  Gaussian mizture, harmony learning,
and unified RPCL

We consider a simple BYY system with its Ying

Best Harmony, RPCL and Automated Model Selection 53

pathway given as follows:

PMm, _Zaj

z) = Z%G(@'lmj,zj), (37)

pMmly -G( |my7 y))

which is a gaussian mixture. Putting eq.(37) into
eq.(25) with its environment £ being irrelevant to

learning, we get H(pa,|lpm,) = Nzt . Zy—
PMylz(ylmt) In [G(xtlmyﬁzy)ay] —1nz, or

H(0,k) = Ly y(0,k) + Hy(0,k) —Inz,, (38)
Hy(0,k) = Zzﬂ&y Inay,

N N

Oy =N']17 Ztk=1PMy|,(yl$t)7 Lwly(e’ k) =

% Zt:l Zy:lPMylx (ylxt) hl G(ztlmy’ Ey)

where z is given by one of three choices as in eq.(25),
and k denotes the only scale (i.e., the number of gaus-
sians in a mixture). In the B-architecture, pa,,, is
given by eq.(30) with

Ym,t = arg me[G(ztlmy; Zy)ay]. (39)

While in a Bl-architecture, a typical choice of Py, ,
is given by the posteriori density

G(zt|my, By )ay
Z, 1G17t|mz; ) (&7}

For the above setting, the learning task is to de-
termine the scale £ and the unknown parameter set
6 = {oj, mj, Ej};?ﬂ. We can implement parameter
learning eq.(33) with automated model selection at a
given large k. Alternatively, we can also enumerate
a number of k values and make parameter learning
at each k by either eq.(33) or eq.(35), followed with
model selection by eq.(36), with J(k) simplified into

(a) Ink +0.5d;In o2,
(b) Ink+0.5d,Y5_, ayIno?,

J(k)=Inz, + (0) Zz Layln |a,,|y ’ (41)

.5
(d) Z;:ﬁ‘y In lE;L )

where (d) is for a general case of covariance ma-
trices {3y}¥_,, which usually have certain specific
structures. For example, we have the case (c) when
%y = o2l, the case (b) if ay = 1/k too, and fi-
nally the case (a) if the variance also becomes same
for each y, i.e., ¥, = o%I. Particularly, when z, is

PMyh; (yl )

(40)
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given by Choice (a) and Choice (b) in eq.(25), Inz,
becomes irrelevant to k, J(k) in eq.(41) becomes the
same as Eq.(24), Eq.(25) and Eq.(30) in the previous
paper 20

In implementation, for different specific struc-
tures of covariance matrices, the detailed updating
rules should also be modified accordingly. Shown in
Tab.1 are typical examples for estimating covariance
matrices. It should be noticed is that the updating
rules in Item B of Tab.1 obey the constraint that a
covariance matrix should be positive definite. More-
over, the eigen-decomposition structure of covariance
matrices shown in Item (C) of Tab.1 are very use-
ful too. E.g., gaussian mixture eq.(37) with each
gaussian in such a structure represents a local factor
analysis model or a local subspace models 28776,

Tab.1 Updating Rules for Covariance Matrices
(A) maxs Y 7 lnG(etIO ), ne > 0,V¢
In batch: ¥ = S , S = Zt 1St n -—Zt 17
Adaptive: 2“3"’ = (1= non)Z% + 0o S;.

ete; (a) ¥ in general,
Se = m { diag[eel], (b) T is diagonal,
diMled?, () =01

7o > 0 is a small constant, and the diagonal
diag[F] consists of diagonal elements of F'.

(B) maxs Y i, 7 InG(e:]0, ),
7: maybe negative or positive.

The rules in Item A can no longer guarantee
that X is positive definite. Instead, we use
¥ = BBT and update B™*¥ = B°4 4 n,6B

B=(x"1sx !t —¢=-1)B
S = { SN S;, in batch,

, adaptive, ’
= Zilm, in batch,
M, adaptive.

(C) maxs Y s, 7 InG(e:]0,%)
in help of the following eigen—decomposition
E—G‘OI+Z_10‘2¢] ,m < dy,
llg;11> = 1, ¢T¢] = 0 i #J,
® = {00){0])¢J}]_1} ¢])a >0
are the j-th eigen-vector and eigen-value
of & — 021, respectively;

A general algorithm is given in Tab.2 for param-
eter learning on 6 at a given k. In the sequel, we
discuss a number of its typical cases.

¢ KMEAN clustering, Mahalanobis exten-
sions, and the hard-cut EM algorithm We
consider the algorithm in Tab.1 in the following spe-

cific settings:

Tab.2 The EM Algorithm and Adaptive Algorithms
for Gaussian Mixtures
(A) A General Algorithm
Step 1 : For each z;, get 7:(y) as shown
in the Item B below, based on a subset Y; that
consists of k; < k different indices of {1,---,k}
that correspond the first k; largest values of
Pit = G(mtlm;,E,;)a,', i=1,--- k.
Particularly, when k; = 1, Y} has only
Ym,e = argmax;[G(z:|m;, X))

Step 2 : update 6, = {my, Xy, ay} by solving
the root of equation Vy, H =0 or by gradient
ascending 0’“”” = 0""” +n0Ve, H, Vo H =
{Et Y X, (06, I [Gladmy, Ey)ay], (),
2y (¥) Ve, In [G(ze|my, Zy)ay)]. (b),
either in batch as (a) or adaptively as (b).
(B) m(y) =~ — 5, P(yla),

R I (yG? y'm,t)é ) eq.(30),

= Tt|My,2y)%y
My @ED) { ZLI Gl tmsa eq.(40),
pPMiZt) - Choice (b) in eq.(25),
{ ﬁvﬁ_lm(m (b) in eq.(25)

(a) & (c) in eq.(25),
pa(er) = > yey, Glzelmy, By)ay,
G(f"t|my: YagI(y—19)
P(ylz:) = = pM(x,)y

(C) EM Algorithm for Step 2 (if ¢ = 0, V¢)
Nyer = m(y), @y = —prel—

Zy:lN‘y’“f
My N,, o Zt—ﬂh( )21, ey, = (@0 — Zld)’
Ty =02l + N > Zt 1y )ey,tegt
(D) Iterative Rules for Step 2 (any cases)

ey new _ ,old
ay_z— ey = cg® + nodey,

e Y
7
Sey, = Zi\[:1‘50y,t, (a) in batch,
! dey,t, (b) adaptively;

dey,e = me(y) — oD, me(r),
mnew —_ m old + 770‘5my,
§my = {Et =1 (y )ey,t, (a) in batch,
ﬂt(y)ey t (b) adaptively;
Update £y as in Tab.1 where X, n;, S; are
substituted by Xy, m:(y), Sty with Sz y =
o2l + ey el 4, (a) Zy in general,
() { 021 + diagle,, tcy, T, (b) X, is diagonal,
oz +dz leyell?,  (0) By =il

(a) When z; = 1 is given by Choice (a) in eq.(25)
with 02 = 0 in Items (C) & (D), we have that Step 1
in Item (A) is simply given by eq.(30), i.e., Y; consists
of only one index Yy, . Thus, 7:(y) = Pu,,, (ylze)/N



because v; = 0.

(b) Step 2 in Item (A) is either given by Item C
or Item D with 02 = 0 in updating X,.

The algorithm in this setting becomes exactly (a)
the KMEAN algorithm for the least square distance
clustering when £, = ¢%l,a; = 1/k simply; (b)
an extended KMEAN algorithm that performs Ma-
halanobis (or elliptic) distance clustering when the
above constraint £y = o1 is released; and (c) the so
called hard-cut EM algorithm previously given in %0
when the constraint o; = 1/k is also released. The
details are referred to in the paper 8°.

This understanding provides a new perspective
on the KMEAN algorithm and its extensions. Ac-
cording to the previous discussion, model selection
can be made automatically during parameter learn-
ing eq.(33). However, such a behavior has not been
observed in the past studies of the KMEAN algo-
rithm. The reason is that the constraint ay = 1/k
for each y is implied in the KMEAN algorithm such
that we can only get complexity minimization under
a fixed scale k instead of automated model selection.

Conceptually, the learning by the hard-cut EM
algorithm should be accompanied with automated
model selection since the constraint o; = 1/k is
released. In implementation, however, maximizing
H(6,k) in eq.(38) by this algorithm may stick at a
local maximum.

e The EM algorithm, ML estimation and har-
mony learning As discussed in Sec.2.4, one solu-
tion to improve the above local maximum problem
is to introduce ‘conscience’ by replacing the WTA
competition eq.(30) with Pp,_ in a certain struc-
ture. Specifically, in the implementation of the al-
gorithm in Tab.2, we may use one of the following
three strategies:

(a) In the case 2z, = 1, we let m(y) =
Pp,,, (ylze)/N with Pu, . by eq.(40) as Step 1 in
Item (A) with Step 2 in Item (A) given by either
Item C or Item D with 02 = 0. The algorithm in
this special case becomes exactly the well known EM
algorithm for ML estimation on gaussian mixture
80,58 However, as previously discussed in Sec.2.4,
the learning is no longer maximizing H (pu,||pa,)
in eq.(38) but minimizing the Kullback divergence
K L(pm,||pm,) which does not force the least com-
plexity nature and no automatic model selection is
made. Such a weak point can be remedied by a
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simulated annealing 3¢ process that maximizes the
weighted average

(1_A)H(pM1||pM2) _’\KL(pM1||pM2)! (42)

with 0 < A < starting at 1 and then gradually re-
ducing to 0 during learning. In this way, the learn-
ing gradually shifts from minimizing K L(par, ||pa,)
to maximizing H (par, |[par,)- In implementation, un-
der a fixed Ppr,,, either maximizing H (pa, ||pas,) or
minimizing K L(pum, ||pm,) leads to the same Step 2
in Tab.2. Thus, only Step 1 is affected, where the
above weighted average is maximized through up-
dating Py, .

(b) We can perform another simulated annealing
36 process that approximately uses a weighted aver-
age of Py, given by eq.(40) and that by eq.(30),
that is,

W) = 10— NI(gle) + APar,, (slo)],  (43)

as Step 1 in Tab.2, with A gradually reducing from
1to 0.

(c) We can also directly insert P, by eq.(40)
into H(f,k) in eq.(38), and then maximize the re-
sulted H (6, k) with respect to @ by gradient ascend-
ing technique.

e Data smoothing regularization  As discussed
in Sec.2.4, the second solution for the local maximum
problem is the algorithm in Tab.2 at the special case
that a smoothing parameter 02 > 0 or h, = V2|0,
is used in Item C or Item D during updating X,.
This special case provides either a smoothed hard-
cut EM algorithm by Item C or a smoothed adaptive
EM algorithm by Item D. For a fixed o2, both cases

T
implement a regularized learning that maximizes

H(e’ k) = H(lellng) = d:l.‘ In (\/2_71'0'z-)+
[po. (:c)zzﬂPMylz(ylx) In[G(z|my, Ty)ay]dz,

where p,_(x) is given by eq.(15).

We can search a best smoothing parameter o2 >
0 in a similar way to what discussed in Sec.2.2.

Alternatively, we can start a value o2 larger
enough. During parameter learning by the above
discussed algorithm, we gradually reduce o2 from a
larger enough initial value towards zero, which is also
a kind of simulated annealing process 3¢ that makes
the learning tends to a global maximum of H (6, k) in
€q.(38), even in the previously discussed case z, = 1.
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o Parzen window density on support vectors
Considering one simplified case of eq.(37), in help
of one of the algorithms in Tab.2, we can also get a
new result on Parzen window density eq.(15). At the
setting

k=Nt=y %, =0ll,m =z, (44)

it is not difficult to observe that the gaussian mixture
eq.(37) degenerates to

Pos (2) =TI, uGzlar, 0°). (45)

Tab.3 Parzen Window Density on Support Vectors
(A) A General Algorithm
Step 1 : For each input z;, get 7,; as shown in
the Item B below, based on a subset Y; that
consists of the I;:t < k indices that corresponds
to the I::t smallest value of

”——”—”‘_“”' +dzlno?

z|r?

or simply

d? = ||:vt - xr||£ for the special case 02, = o2.

z|r
If k; = 1, Y; contains only 7, ; = arg min, d2.
Step 2: ay =€t/ e, ¥ = 2 + nodc,,
de, = {Zt 10¢rs, (a) in batch,
dert, (b) per sample;
Jc, t=1Trt— athnr,t’
update oY = o 4 b og)r

z|r
dog)r = Y t=190z|r, in batch,
60z)r,ts per sample;
dsogit 2=llz—z.|®
00g|rt = Mrt oo ,
For the special case oilr = 02, instead we do
do.
o-ge'w — a':ew + no { Er_ z|r)
Og|rt-
Py, (rlze)
(B) npp= —H5— — 3 P(r]zy),
I(’I’ —Tm t) (a,)
G(xilx"'azh‘I)ar

PMyl:c(rlxt) = (b)
E‘;\;lG(‘”t"‘J: ,;|_,-I)aj

—ppE) _° Choice (b) in eq.(25),
{Zt 1Pm ()
(2) & () in ea.(25),
pM(xt) ZTGYt xt‘xr, mlr.[)ar,
G(z|zj,0% ,I)aJI(r—J)
P(r|z:, &) = Zjey, . le(xt)

(C) The EM Algonthm when v, =0, V¢
at - N Et 17t

ailf = d,;oz,N Zt 177r tl|ze — 2|2,
orol= % Zt 10'x|r 1f0' =o2.

We use one of the algorithms in Tab.2 to estimate
the parameters {02, 0;}. After learning, a sample

z; with its corresponding «; smaller than 1/N has
been discounted and even been discarded when oy
becomes much smaller than 1/N. Moreover, we can
force oy = 0 when «; is smaller than a threshold
€ < 1/N such that z; is completely discarded. In
other words, we estimate the density based on only a
set of supporting sample vectors for a better perfor-
mance, instead of equally using all the samples.

Specifically, the detailed algorithms is given in
Tab.3. Particularly, for Choice (a) and Choice (c) of
zy In eq.(25), we have v; = 0,Vt we get the EM al-
gorithm in Item (C) of Tab.3 from simplifying Item
(C) of Tab.2. In Item (A), the set Y; is obtained via
d? after comparing d?,t = 1,---, N, which is made
on all the samples. Thus, the learning by algorithms
in Tab.3 is of a batch manner in nature. However,
we can also update at,aglr per sample as provided
in Tab.3.

3.2. A general RPCL learning framework

Another solution discussed in Sec.2.4 for the local
maximum problem is the algorithm in Tab.2 at the
special case that o2 = 0 is used in Items (C) & (D)
and z; is given by Choice (b) in eq.(25). In this case,
not only ‘conscience’ is introduced by a certain de-
gree of de-learning on the winner, but also some de-
learning are made on the rival and probably other
losers, which leads to a RPCL learning framework
that extends the original RPCL learning %°

The key to understanding this general RPCL
learning framework is the sign of 7:(y) given in Item
B of Tab.2.

Given by eq.(30) or eq.(39), Pu,, is zero for each
index of {1,---,k} except at and only at the winner
index ym ; where the maximum posteriori probabil-
ity occurs. Correspondingly, 7:(y) will be either zero
or negative on each index that is not y, ;. Actually,
nt(y) will be zero when P(y|z;) is zero and will be
negative when P(y|z;) takes a nonzero value.

Moreover, P(y|z:) is given by Item B, by which
whether it takes zero depends on the choices of the
set Y; in Step 1 of Item A. A typical case is that Y;
consists of only the 1st winner ¥, ; and 2nd winner
yrt (or so called rival), that is,

Y, = {ym,t; yr,t}) (46)
Ym,t = arg miax[G(:ct|m,-, %)ail,

Yrt = arg max [G(z:|m;, X;)as].
1EYm,



In this case, it follows from Item B in Tab.2
that P(y|z:) and thus 7:(y) will be nonzero only at
Ym,t,Yrt. Moreover, 1:(y) is definitely negative at
the rival y, ;, while we have

>0, 1/N > 5P(Ymelzs),
N(Ym,t|2e) { <0, 1/N <%P(ymzlee), (47

G(ze|my By 1)y
P(ym,t|z:) = m,t 7Yt ] Ym,t
( ' | ) Zl:m,rG(x‘lmw,tvzw,g)ay,,,’

Y = PM(‘”t)/Ef;pM(z't),

at the winner yp, ;, where pps(z) is given either ac-
curately by eq.(37) or approximately by Item B of
Tab.2. Moreover, the adaptive updating on m, in
Item D of Tab.2 is simplified into

Ym = N(Ym,t|2e), 7 = —gn(yr,tlxt),

my Y = mZ’d + 10dmy,
Ym (T —mIY),  Y=ymy,

6my =35 (zt - m;ld), Y="Yrt, (48)
0, other y,

which becomes the same form as the original RPCL
89 Actually, it becomes exactly the same in the
cases that 1/N > 4 P(ym¢|z:) and thus v, > 0,
e.g., it occurs when v & 1/N, which is usually the
cases when the mixture fits data reasonably well. As
shown by many experiments as well as many allo-
cations discussed in Sec.1, with an appropriate ratio
of the winner learning rate over the rival de-learning
rate ( e.g., a heuristic range 5—20), the correct num-
ber of clusters or gaussians are automatically decided
8% during RPCL learning in the sense that the means
of extra classes or gaussians are driven far away from
data.

This connection provides further supports to the
previously discussed nature of automatic model se-
lection in Sec.2.4. Moreover, we observe that the
algorithm eq.(48) will demonstrate not only a simi-
lar RPCL behavior but also improved performances
in several perspectives:

(a) Instead of setting the learning and de-learning
rates Ym,¥, in a heuristic way®®, we here get them
given by eq.(48), for which P(ym ¢|z:), P(yr¢|z:) can
be calculated online upon the current sample x;,
but 4; depends on the sum Zf;lpM(a:t). We can
approximate the sum by either the moving sum
Sp(t+1) = (1 — A)Sp(t) + Apam(x:) or simple the
rough approximation 1/N.

(b) The original RPCL®® only updates the means
my, implicitly with an assumption that ¥, =
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0?I,ay = 1/k. Later in a paper™, two extensions
of RPCL (called Type A and Type B, respectively)
have been proposed for covering the general cases of
Yy, ay, but still with heuristic rates of learning and
de-learning. Here, the updating rules in Item (D) of
Tab.2 not only apply to the general cases of oy, X,
too, but also get the learning and de-learning rates by
q.(48). Moreover, in addition to driving extra units
far away from data, we can also discard a gaussian
when its corresponding oy, is very small.

(c) When Zf;lpM(:ct) is more accurately esti-
mated, as discussed above there are chances that
1/N < 4P (Ym,t|z:) for some z; and thus v, < 0.
That is, the net de-learning occurs for preventing a
particular winner to over-dominate data. This effect
becomes more clear if we look at the degenerated
case Y; = {ym,:} of eq.(46). In this case, eq.(48) is
further simplified into
old

mtev — mold Ty —my Y =Ym,t,
N 0, other y,

n= no(% - 1t), (49)

which acts as a regularized version of the previ-
ous hard-cut EM algorithm &, since the cases with
% — 7 < 0 gives the winner more ‘conscience’ to
avoid over-fitting data.

(d) Moreover, we consider the general algorithm
in Tab.2. We start at Y; = {1,-- -, k}, where par(z:)
in Item B of Tab.2 becomes the same as in eq.(37).
In such a case, the algorithm in Item D implements
de-learning on all the gaussians or clusters except the
winner. The winner usually learns with ‘conscience’
in the cases with n:(y) < 0. In the cases that ¥; is a
subset of {1,-- -, k} as described in Item A of Tab.2,
we get a similar situation except the learning and
de-learning occur only within gaussians in Y;.

(¢) Even more generally, when Py, is given
by the Bayesian posteriori probability in Item B
of Tab.2, Par,, (ylz:) will be nonzero not only at
Y = Ym, but at all the other y. As a result, 7:(y)
can be negative or positive for each gaussian in vari-
ous different combinations and thus we get a number
of combinations of learning and de-learning.

In summary, the implementation of eq.(38) with
2z in Choice (b) as shown in Tab.2 provides a general
RPCL framework that extends the original RPCL
learning 8 with improved performances in various
perspectives. With k initially given large enough,
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model selection for a best k* can be made automat-
ically during the parameter learning eq.(33) imple-
mented by an algorithm in this RPCL family.

4. Supervised Learning on Three Layer Nets
and ME-RBF-SVM Models

4.1. Supervised BYY harmony learning:
Yang-dominated vs Ying-dominated system

e Supervised BYY harmony learning via
Yang-dominated system The BYY system and
harmony learning can also be applied to supervised
learning tasks of mapping & —  based on a given
data set {&,z:}],. We consider H(6,k) given in
eq.(26) in a stochastic environment { that changes
according to a distribution p(§), with p(§) given by
eq.(2) and pps, (z|€) simply given by

d(z—=z =
P (2l6) = {nf)t—caré,)’ Etheitn’/ise. (50)
Again, we get €q.(25), eq.(30), eq.(32), and eq.(34).

The key difference from Sec.3 is here we consider
to implement a desired mapping £ — z via the gen-
erative conditional mixture pps(z|€) in eq.(25) in the
following two particular interesting models:

(a) Three layer net When y = [y(1), ... y*)|T
and pur,, (2]y,€) = pm,,,(z|y,0sy), e, the output
z becomes independent from the environment input
¢ once knowing the corresponding inner representa-
tions. In this case, pa(z|€) in eq.(25) becomes

pu(zl€) = 3o, pm,, (2]y, Ozy) Par, (1€, Oye).  (51)

This is actually a general three layer net with the
mapping £ — y via the hidden layer Py, (y|¢, 0y¢)
and the mapping y — & by the output layer
pr|y(x|y’ ez‘y)'

(b) The Mizture-of-Expert model  For the case
ofy=1,---,k, pm(2|é) in eq.(25) becomes

Py (z1€) = Yompmay, (219,€, 0ay) Par, (W€, Oy, (52)

which provides a general form of the mixture-of-
expert (ME) model, with pas, (y|€) acting as a gen-
eral gating net and par,,, (2|y, €, 05)y) at each y value
acting as each local expert.

We can further get various specific forms of
the ME model ppr(z|€) for different structures of
M, P, Typical examples include not only

the original ME model 393334 the alternative ME
model, the normalized Gaussian RBF Nets 874 and
other basis functions, but also kernel regression and
vector support machines. The details are given in
Sec.4.3 and Sec.4.4.

The above two models and the general model
pm(z]€) in eq.(25) share a common feature that the
pathway from external environment £ to the inner
representation y is directly implemented by a rep-
resentative (or so called Yang) parametric model
P, (y|€) that is learned in help of the harmony learn-
ing eq.(33) with H(,k) by by eq.(25) & eq.(34).
Thus, we say that such a par(z|€) is Yang dominated
and call the corresponding BYY system shortly by
BYY Yang-dominated system.

e Supervised BYY harmony learning via
Ying-dominated system  Alternatively, the su-
pervised learning tasks of mapping £ — & can also
be made by a special case of the harmony learning
eq.(11) on the following BYY system

PM, ((L‘, Y, ﬁ) =DMy, ('yll’, E)pMa; (zlg)p(g)a
P, (2,9, €) = pu,, (1Y, §)pm, (3, €),

pMy (y) 5) = P(§|¢y)2g0y5(y - g);

2oy =10<0y <1 (53)

The Yang machine pps, and its components pa,,,
P, , p(€) remain the same as before. In the Ying ma-
chine par,, pum,,, remains as before, while pp L (1,6)
itself acts as a small Ying machine that consists of
parametric density p(€|¢y) and a discrete density
Egay‘s(y - 9).

When y = 1,-- -, k, similar to eq.(25), it follows
from eq.(53) that

H(8,k) = £ N Hy(8, k) —In 2,
Hy(8,k) = Y1 Pa,,, (ylee, &) x
In [pley(mtIy’ £t)p(§t|¢y)ay]:

L Choice
2z = { Zi\’:ﬂ’M(zt,ft), Choice
hziehi%  Choice (0);
pm(2,€) =3 pu., (2|, E)p(€ldy)ay,
hg = V2r|og|, he = V2rog|. (54)

a),
b)?

~— TN N~

Similar to eq.(30), a free Par,, (yl2¢,&:) becomes

Psz(ylzt’&t) = I(ylzt)gt) = I(y - ym,t)) (55)
Ym,t = arg maxy [PM,|y($t|y, ﬁt)P(€t|¢y)ay],



which is the WTA version of the Bayesian posteriori
probability

pley(fL‘t |ya Et)p(ftwy)ay
Zprﬂy(xt |y: ét)p(gt |¢y)ay

Further from eq.(54), H;(f, k) is simplified into

Hi(0,k) = In[pm,, (ze|y, &) (el dy) 2y lly=ym,.- (57)

PMylz(ylztyét) = . (56)

Now the role of mapping £ — z is made via the
generative finite mixture pas(z, €) in eq.(54) through

pm(z,§)
PM(zlf) Z p(£|¢r)ar =
Eprmw(mly’ )PMy(ylE 09)’ (58)

The above ppr(z|€) is exactly the alternative ME
model 8674, with the Bayesian gate

PMy(yK, 09) = P(§|¢y)ay/zrp(§|¢r)ar,
Erarz I)OSar S 1, (59)

As to be shown later in Sec.4.3 and Sec.4.4, the
above ppr(z|€) again leads us to not only the nor-
malized Gaussian and other basis functions, but also
kernel regression and vector support machines.

Though, pa(2|€) in eq.(58) can be written in the
same form as that in eq.(54), the pathway from £ to y
is indirectly implemented via Pz, (y|¢,0y) in eq.(58)
in help of the small Ying machine p(§|¢y)ey, that is
learned in help of the harmony learning eq.(33) with
H(8, k) by eq.(54) & eq.(57). Thus, we call the BYY
system of this type shortly by BYY Ying-dominated
system and the corresponding learning BYY har-
mony learning via Ying-dominated system.

Comparing eq.(34) and eq.(57), both the learn-
ing via Yang-dominated system and the learning via
Ying-dominated system share the ML learning on
pm,,,(z|y,€) for the mapping £ — z. However, the
two types of learning are different in the rest part of
the tasks. The learning via Yang-dominated system
makes ML learning on Pas, (y|é:,0,) that is pushed
towards the least complexity form I(y — ym ), i.e.,
Par,(ylé:,04) = 0 for all y except a particular value
Ym,t. But this value y,, ; may change for different z:,
and thus we are not necessarily lead to Pas,(y) =0
constantly for some value of y such that the scale k
can be automatically reduced.

In contrast, the learning via Ying-dominated sys-
tem directly models the density of £ by a number of
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densities p(§|¢y),y = 1,---,k with each in a priori
probability ay, in help of ML learning that maxi-
mizes In oy under the constraint Z’;___lay = 1. Thus,
ay goes towards 1 for some value of y and goes to-
wards 0 for some other value of y. For a value §
with oy ~ 0, we have Py, (9[é:,6,) ~ 0 constantly
and thus the corresponding local expert par,, (29, €)
is equivalently discarded. In other words, the learn-
ing via Ying-dominated system is accompanied with
automated model selection.

4.2, Three layer net: adaptive algorithm,
least complezxity, and model selection

In implementing a mapping & — z; by three layer
net, we need to compute pyr(z|€) on which we can
get z; by either of the following two choices

(a) & = [zpm(x|é:)dz,
(b) & = arg mfxpM(:clét). (60)

However, the sum in eq.(51) should be made over
2k values of y for each z;, which can be very
expensive in computing cost for a large k. To
avoid the difficulty, we write eq.(51) as py(z|€) =
Ipm,,, (1Y, 00y) 35 Pur, (916, 0y¢)0(y — §)dy.  Re-
garding y in pu,,, as a continuous variable, similar
to the process of getting eq.(27), we have

pm (2l€) = P, (2]Y(€), 0zy)+
erpm,,, (z|y(6), zy)Tr[EylsHym])

U(E) = T,y P, (4€)y, Hyje = otenTVE)
Byle = 2y Par, (1€) (v — y() (v — 9(&))7,

o = 0, 1st order approximation, (61)
T=10.5, 2nd order approximation.

There will be no approximation when Ppr, (y[€) is de-
terministic, i.e., Par, (yl€) = I(y — s(&,04¢)), Byje =
0, and thus the 2nd term of pys(z|€) disappears. Usu-
ally, we can also ignore this 2nd term by the 1st order
approximation via ¢y = 0.

To get a further insight, we look at the following
example:

o, (z]y(€), 0a:y) = G(z|Ay(€), Zopy),
Par, (91€) = 1‘[ (@Y1 - s(g)-9",
Q:W&,s(r;:l/(1+e_r). (62)

In this case, for Hyj¢ and Ly in eq.(61), we have
Hyje = ATE5 4, dj = s(3V)(1 - s(3)),
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Eyl& = diag[dl, teey dk] (63)

Tab.4 Adaptive EM-like Algorithms for
Three Layer Nets
(A) A General Algorithm
Step 1 : get ym,: by eq.(30),
Step 2 : update 8y either by solving
the root of equation Vy,, H(6,k) = 0 or by
gradient ascending f77% = 0"” + 1V, H(0,k),

Vg,y (4, k)
6lanx|y($|ym t,€, a.ry) .
Nt 90as , adaptive,
3lan (z|ym,.€,0zy) .
Zt:lnt 2ly aoty ? , 1n batch.

(zelym,,61,0zy)

— 1 Mzly
mM=x5"" "= zt=1pmx,y(wtlym,u€n ”)a
Step 3 : update fy¢ by gradient ascent
0’“’“’ = GOM + UVQ H, VoyeH =
{ ntvaye In Py %ym ne Hyg) adaptive,
Et=1ntV9ﬁ In Pyr, (Ym,t|€, Oye), in batch.
(B) A Fast Solution of y,; with eq.(62)
getting ym ; approximately by solving the
root of vy[pMﬂ (z|y,£ Osy) P, (yl€, 0ye)] = O:
g= [y L gOIT = A7tz
zg= AT 2w z+d Ay_ATE LA
1, if yOk > 0.5,
0, otherwise.
(C) Updating Rules of Step 2 with eq.(62)
Anew — Aold +"]0(R _ AOldRyy),

Ry = {Zt —1Ryy,¢, in batch,

ly
Then, turn ¥ into ym, = {

Ryﬁ/ft, adaptive;
Ry = t=1flzyt, 1n batch,
! Ry, adaptlve

Ryyt = NtYm, ty;I,; ¢ Royt = mayl, Y
Update Xy as in Tab. 1, %, S; are replaced
by Exlyx Siy with ey s = ¢ — AyYmt, Sty =

o2l + ey el (a) Tg)y in general,

021 + diag[ey €T ,], (b) Ty is diagonal,

{ op +dz ey, t”z (€) Bapy = o2, 1.

If v = 0,Vt, in batch way we have
N

_1Ss,
A=RyRzl, Sy, = ZZ?V;—
(D) Updating Rules of Step 3 with eq

T

Wnew — Wold + {ntatét 3 (
n Zﬁilntetﬁf, (b

adaptively for (a) and in batch for (b

o= [ eNT, (J') —

D, (1- (ym)) - (- “) 9)s S(39).

(62)
a),
)
);

)

)

In the case of eq.(62), we only use the 1st order
approximation pa (z|€) = pu,,,(z|y(§),0zy), which

again becomes exact in the case of a determinis-
tic Pur, (yl€) = I(y — s(§,0y¢)). Moreover, the two
choices in eq.(60) coincide:

Ty = Ay(f), y(f) = 3(5»0316)
=[s(@W), -+, s@NT, 5=we¢,  (64)

i.e., it implements a conventional three layer net with
one hidden layer of sigmoid units and one output
layer of linear units.

If only P, (yl€) = I(y — s(&,0y¢)) is deter-
ministic, it follows from eq.(30) that y,(z:, &) =
s(€,0y¢) and from eq.(34) that H.(6,k|&)
Inpar,,, (z¢|s(€, Oy¢),&). In this case, the learning
eq.(33), with H(6, k) by eq.(25) and with z; = 1 in
choice (a), becomes the conventional ML learning.
Moreover, if X3, = ”x|yI it further becomes the
least square learning which is usually implemented
by back-propagation technique.

Generally, the harmony learning eq.(33) and
eq.(36) with H(6,k) given by eq.(25) will provide
a number of new results as follows.

¢ Regularized maximum likelihood learning
via back-propagation = With Py, (y|¢) = I(y —
s(€,0y¢)) being deterministic and with z; in choice
(b). In this case, we have

BH(0,k) _ LEN 8lnpu,, (w2l3(€,05¢).61)
95 — N 2.t=1"ht 36

paloelfs) ’(65)

1
mM=xN "7 Tt=
N Dt 1pm(@el€r)

which consists of again the ML learning plus a reg-
ularization that introduces a de-learning to the ML
learning for each sample in proportional to the cur-
rent fitting of the model to the sample, similar to
eq.(13) and eq.(14). This learning can be made in
a way similar to back-propagation, either in batch
or adaptively. E.g., in an adaptive implementation,
what needs to be done is simply replacing the gradi-
ent step size 1o with non;. Moreover, we can approx-
imate the sum Zf;lpM(:vtlét) by the moving sum
Sp(t+1) = (1 = A)Sp(t) + Apar(z:|€:) for a suitable
0<A<l.

¢ A family of EM-like algorithms: coordinated
competition and regularization In the case of
eq.(62), instead of getting y = s(&,Oy¢) at a deter-
ministic Par, (y|€) = I(y — s(&,0y¢)), we get ym, in
help of the so called coordinated competition eq.(30)
which provides an intermediate target for the hidden



layer. That is, it solves the classical credit assign-
ment task®®, without using the chain rule via back
propagation. With this technique, we can get a fam-
ily of EM-like algorithms for learning a three layer
net, given in Tab.4.

Precisely, implementing the coordinated compe-
tition in eq.(30) is a task of combinatorial optimiza-
tion. If solving it by enumeration, we need 2* com-
parisons which is very expensive for a large k. Alter-
natively, we use a fast approximation given in Item
B of Tab.4 for this purpose. In the general EM-like
algorithm given in Tab.4, this coordinated competi-
tion acts as Step 1 of Item A that corresponds to the
E-step in the EM algorithm.

Step 2 and Step 3 of Item A together act as the
M-step in the EM-algorithm, for implementing the
learning on the hidden layer and the output layer
respectively, either in batch or adaptively. The im-
plementation of Step 3 (e.g., by Item D) remains the
same for all the three choices of z, in eq.(25). How-
ever, the implementation of Step 2 has three variants.
One is z; = 1 in Choice (a) where no regularization
is enforced such that a problem similar to the ‘dead
unit’ problem %! may occur. This problem is solved
by the other two variants with z, given by Choice (b)
and Choice (c) in eq.(25). In Choice (b) and with
02 =0 in Item C, a ‘conscience’ effect is introduced
by n: = % — v that imposes a de-learning regu-
larization via ;. While in Choice (c), as discussed
in Sec.2.5, a ‘conscience’ regularization is introduced
via a data smoothing parameter o2 > 0.

We can determine a best smoothing parameter
02 > 0 in a similar way as discussed in Sec.2.2, with

2 . o .
o searched by maximizing

H(0,k) = d;Ino,+ (66)
N Et fG zlxt’ a;I lan,w(xtlym t:&t)

Also, we can make learning in a simulated anneal-
ing process 3¢ by starting a value o, large enough
and gradually reducing it towards zero as learning
proceeds.

The algorithms in Tab.4 can also be further ex-
tended by taking the 2nd order term in eq.(61) into
consideration, and thus correspondingly modifying
7t, Item C and Item D in Tab.4.

¢ Least complexity and model selection Dis-
cussed in the end of Sec.4.1, as a special case of the
learning via Yang-dominated system, each of algo-
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rithms in Tab.4 implements harmony learning that
pushes Py, (y|€;) to the least complexity in the sense
that s(§(7)) almost taking either 1 or 0. However, no
automated model selection is guaranteed. Alterna-
tively, by enumerating a number of & values incre-
mentally, model selection can be made by eq.(36)
with

J(k) =Inzy +0.5In|X; | — Ji, (67)
J = Et 12 =145, type (a), -
k { |Z|+ kln 2] type (b); b

v () Ins(§9)) + (1 — 9 (£)) In (1 — s(50))).

Type (a) comes from H;(6,k) in eq.(25), and Type
(b) comes from H;(6, k) in eq.(54) by approximately
considering the inverse of Py, (y|¢;) in help of a back-
ward path

p(€léy) = G(€|By,T), oy =1/2%. (68)

where the parameters B, Y are estimated during the
implementation of the algorithms in Tab.4 adap-
tively by

BtV — Bold + UO(REy _ BOIdRyy),
Rey = SN Reys, in batch,
v Rey s, adaptive;
Rey .t = nebeym (1)7,
update ¥ as in Tab.1, where S; is replaced
by S; . with e; = & — B"’dym(t) and ;. =
021 + g6l (a) L in general,
ne { 021 + diag[eiel], (b) T is diagonal,
o2 +d lel?, (o) E=0%I
Ify. =0, Vt in batch we alternatively have
B= R&'y yy’ Y= Zt 1573 E/Zt_lnt’ (69)

where Ry, is the same of Item C in Tab.4.

4.3. Original and alternative ME models,
RBF nets, other basis functions and kernel
regression

With y = 1,---,k, either the ME model pp(z|¢)
in eq.(25) or the alternative ME model ppr(z|€) in
eq.(58) implements the mapping & — z; by each
individual expert pa,,, (2|y,§) weighted by the gat-
ing net pa,(y|€,0;). Thus, the computing com-
plexity of the sum over y has reduced considerably
from the case of three layer net eq.(51). Moreover,
the implementation of the coordinated competition
eq.(30) or eq.(55) can be made in a much reduced
complexity and thus usually no approximation is
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needed. Furthermore, denoting the regression of each

pley(:c|y,£,0$|y) by fy(€, Ay), e.g., two often used
special cases are

oy _ [ A€ +cy, (a)linear,
fy(& Ay) = {cy, (b) constant,

we have that the regression function by the ME
model becomes

(@) E(zl€) = Sh_1 fu (€ Ay)Par, (vlE, by¢), (a)
(b)  E(2[8) = Yooy (Ayé + cy) Par, (W€, 6,),(T1)

which is easily obtainable as a weighted sum of k
individual regressions. In other words, the case (a)
and case (b) provide a probabilistic piecewise func-
tion that consists of a number of nonlinear and liner
pieces, respectively, with each piece engaged in with
the probability Pz, (yl¢,6y).

We can further get various specific forms of either
the ME model pa(z|€) in eq.(25) or the alternative
ME model pas(z|€) in eq.(58) for different structures

(70)

of pm,,, and Py, .
One typical example for ppr,, is
pMz|y(f'3|y, 6) = G(xlfy(f, Ay); 2:::]3/)7 (72)

with its two typical examples via eq.(70).

Moreover, Py, is either directly a parametric
structure for the Yang-dominated system as shown in
the following first two typical examples, or indirectly
given via eq.(58) in help of the parametric structures
of p(€|¢y) as shown in the following third example:

(1) Softmaz gate Py, is implemented in the so
called softmax form 4%, that is,

Pur, (1€, 05) = ¢ /5,7, u=g(€,0,), (73)

where g(&,0,) is a forward network with the output
u, e.g., the simplest case is g(§,0,) = ,€ + ¢, with
a parametric matrix 6, and a parametric vector cg.
In this case, pp(2[€) in eq.(25) with par,,, in eq.(72)
becomes exactly the original ME model 30:33,34,

(2) Weighted positive gate Py, is implemented
by the normalized weighted positive functions as fol-
lows:

PMy(jlﬁa 0g) = ;K (€,04,5)/2 . 0r K (€, 04,r),
ar >0, K(,0g,) > 0. (74)

There is the scaling indeterminacy o). = cra, and
K(&,04,) = c;1K(€,0,,), which can be removed ei-
ther when 6, , is fixed such that K (¢, 0, ) becomes

a fixed function of £ with no other unknown param-
eters or when we further impose the following con-
straint

>,amiVm =, 0<a, <7, m>0. (75)

E.g., we have ) a, = v when m = 1. We can
link eq.(74) to eq.(73) by writing ;K (§,0,;) =
exp{ln[o; K (€,0,;)]} and thus ul) = Ino; +
In K(£,0,,;). In eq.(73) we have P, (jl€,0,) — 0
only when ul¥) — —oo. In contrast, one new fea-
ture of eq.(74) is that o; = 0 constantly implies
P, (il€,84) = 0 irrelevant to any €. Also, at &,
K(&,0,,;) = 0 implies Py, (j|€,05) = 0. It follows
from previous discussions et the end of Sec.4.1 that
both cases may result in automated model selection.
The other feature of eq.(74) is that g(,6,) is sep-
arated into k functions such that the cross-talk be-
tween learning each 6, ; can be considerably reduced
such that learning becomes easier to be implemented.

(3) Bayesian gate Py, is implemented by
eq.(59), which is actually the special case of eq.(74)
with m = 1,4 = 1 and K(§,6,;) being a density.
With the gate eq.(59) and par,, in eq.(72), pu(2|€)
in eq.(25) provides a typical structure of the alterna-
tive ME model 8674, As previously shown 8674 one
major advantage of the gate eq.(59) is that the ML
learning on the alternative ME model can be exactly
made by the EM algorithm when

pM:cly = G(xlAy€ + Cy, E:L‘k‘/)v
p(€ley) = G(§Imy, Zy). (76)

While the part of the ML learning on the gate in
either eq.(73) or gate eq.(74) can not be handled ex-
actly by the EM algorithm.

(c) Normalized RBF nets ~ We consider the lin-
ear case (b) of eq.(71) and the gate eq.(59) with
p(§|¢y) in eq.(76). Under the following constraint

ay = /I5l/ 22 V2, (77)

(e.g., it is satisfied if X, = X, Vr and thus ay = 1/k),
we have

¥, (A€ + cy)e—0-5(§—my)TE;1(€—my)
B(sl¢) = 05(E—my) TS, (E-my)
Zye . ¥ v y

. (78)

which is exactly is the so called extended normalized
Gaussian RBF net 7432, Particularly, when Ay =0,



it reduces into the normalized Gaussian RBF nets
49,51,88,74

(d) Other basis function nets We further con-
sider the linear case (b) of eq.(71) and the gate
eq.(59), where p(€|¢y) = Z(¢y) " ¥ (£ — my|4y,) with
V(¢ —my|gy) > 0 and [W( —my|gy)dE = Z(¢y) <
0o is invariant to its location parameter m,. Under
the constraint o, = Z(¢,)/>.Z(4;), we can write
€q.(78) into the following general form

E(z|¢) = Zy(AsEf + cy)lK(f)vmy),
_ Y- my oy
Kom) = = 5@ my oy

which represents other mormalized basis function
nets, with integrable basis function ¥(§ — my|d;)
that may or may not be radial symmetrical.

More generally, for the gate eq.(74) at the special
case that

(79)

. K(¢,0
o =1, K(E;m) = ﬁf(ag—az))

we get €q.(79) being applicable to other normalized
basis function nets, with non-local and even non-
integrable basis function K (,6,,).

(d) Kernel regression ~ We further look at the
simplest special case of the RBF net eq.(78) at the
setting

(80)

k=Nt=vy% =0c’l,a; =1/N,
mt'—‘-ft,ct:xt,At:O; (81)

In this case, the regression eq.(71) of the linear case
(b) becomes

B(zl) = zee O 0 o0 (g

which, as previously pointed out in 2, is actually

gaussian kernel regression that has been widely stud-
ied in the literature of statistics 2171618 1In con-
trast to RBF nets, the most salient feature of kernel
regression is that there is no unknown parameters
except that the smoothing parameter o needs to be
pre-specified. Though, many studies are made in lit-
erature on getting the smoothing parameter o2, there
are only theoretical upper bounds for ¢? and how to
estimate a best o2 still remains a challenge problem.

More generally, from eq.(79) and eq.(80), we can
get

E(.’L‘lf) = thtK(gaﬁt): (83)
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which is the general form of kernel regression, where
kernels are non-radial-symmetrical, non-local and
even non-integrable.

4.4, EM-like algorithms, RPCL learning,
automated model selection, and support vec-
tor machines

With a given k, we can implement parameter
learning eq.(33) with H (6, k) either given by eq.(54)
in help of the family of algorithms given in Tab.5 for
the alternative model or given by eq.(25) in help of
the family of algorithms given in Tab.6 for the orig-
inal model. As discussed previously, one advantage
of the alternative ME model is that we can use the
EM algorithm for training its gate in the structure

eq.(76).

e Harmony learning with hard-cut EM algo-
rithm vs. ML learning with EM algorithm
In Tab.5, when 2z, = 1 is given by Choice (a) in
eq.(54), and 07 = 0,07 = 0 in Items (C)&(D), Step
1 in Item (A) becomes simply given by eq.(55), i.e.,
Y; consists of only one index ¥y, Thus, v = 0
and 7:(y) = Py, (ylze, &)/N. When Par,,_(yl2e, &)
is given by eq.(55), the algorithm in this case is
the hard-cut EM algorithm previously given in a
paper’®, where the details are given for implement-
ing the coordinate competition eq.(55) to get ym ¢ in
different situations. Moreover, when Py, (ylz¢,&:)
is given by eq.(56), we get exactly the EM algorithm
that implements the ML learning 8674,

In the sequel, we provide further insights on
Tab.5 and Tab.6 from three aspects.

In Tab.6, with eq.(25) in place of eq.(54), eq.(30)
in place of eq.(55), and eq.(32) in place of eq.(56), we
also get the hard-cut EM algorithm for the original
model and its corresponding the EM algorithm that
implements the ML learning 333474,

Similar to Sec.3, though conceptually the hard-
cut EM algorithm can implement harmony learning
with automated model selection for a given k large
enough, this WTA competition may also cause the
‘dead unit’ problem 1°. This problem is alleviated
in the soft competition eq.(56) or eq.(32), but which
also brings us back to the ML learning with a consid-
erably reduced ability on automated model selection.

e Harmony learning and conscience In the
family of algorithms in Tab.5, the problem can be
solved again by introducing conscience.
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Tab.b EM-like Algorithms for
Alternative Mixture-of-Experts and RBF Nets

(A) A General Algorithm

Step 1 : For each z;, get 7:(y) as shown in
the Item B below, based on a subset Y; that
consists of k; < k different indices of {1,-- -, k}
that correspond the first k; largest values of
Dyt = pMz|y(z|y:£)p(£|¢y)ay; y= 1) Ty k.
When k; = 1, Y; contains only the winner
Ym,¢ given by eq.(55).

Step 2 : for each y, update 0|, by solving the
root of equation Vo H =0

or updating 6’;‘@“’ = 0:12 + 1V, H, Vg, H =
{ Zi\;lzynt(y)Vezly lnPM,w(zly,f; Oz1y), (),
Zynt(y)voxly lanzly(zly’é’ 0w|y)’ (b)’

either in batch as (a) or adaptively as (b).
Step 3 : 67°¥ =05 + Ve H, Vo H =
{ Srma 2y (®)Ve, In[p(Elgy)e], (),

Zy’rlt (y)Veg ].Il [p(£|¢y)ay], (b):
either in batch as (a) or adaptively as (b).

P (Wlze,64)
(B) mi(y) = == 28 — 5 P(ylas, &),

_ given by eq.(55),
Poryy. (vlee, &) = { given by eq.(56),

pu(@ede) - Choice (b) in eq.(25),
Yt = { Zt=1pM(1‘1,§¢) )

0, (a) & (c) in eq‘.(25),
pu(ze, &) = Zyey,PM,,y(-’ﬂtly, &)p(6eldy)y,

P, (T9,€0)p(6e|9) I (y—9)
P(ylzs, &) = Dgey, — FIVICD) -

(C) Updating Rules of Step 2 with eq.(76)

A7 = A7+ o(Rugy — Ay Regy),
Ef; ) Rg?’y, in batch,

R =
sy Rg?,y , adaptive;
Zf;lRS:g y» in batch,
Reey = I0) ' daptive:
oty adaptive;

R{), = n(w)&el, R, = n(v)ait?,
update X, by Tab.1 as Item (C) in Tab.4,
with 7, replaced by 1:(y), eyt = & — Ayé;:.
If 4; = 0,Vt, in batch we alternatively have

A= Rugy R, Soyy = SIS0
ey T TSN )

(D) Updating Rules of Step 3 with eq.(76)

With ey = & — mzld and 7:(y) given in Item B,
we update ay, my, X, by either Item (c) in Tab.2
with the EM algorithm when v; = 0, V¢ or
by Item (D) in Tab.2 with either of
the batch and adaptive rules in any cases of ;.

(E) Updating Rules for RBF Nets

Simply set ay = |Ey|/>,|Xr| in place
of updating «a via ¢, in Item (D).

One solution is the algorithm in Tab.5 or Tab.6
at the special cases:

(1) z is given by Choice (b) in eq.(54),

(2) 02 = 0 is used in Items (C) and 0} = 0 is
used in Items (D),

(3) Y; in Step 1 of Item (A) contains only the win-
ner ym ¢ given by eq.(55). We have n:(y) = & — %
that introduces a conscience via a de-learning regu-
larization via ;.

Another is the algorithm in Tab.5 or Tab.6 at the
special case that z; is given by Choice (c) in eq.(54).
As discussed in Sec.2.4, the smoothing parameters
o > 0,0'? > 0 in Item C and Item D introduce a
‘conscience’ in the WTA competition.

Tab.6 EM-like Algorithms for Mixture-of-Experts
(A) A General Algorithm
Step 1 : The same as Step 1 of Item A in Tab.5,
except that py; = PMm,(-le, &) Py, (y|€) and
Ym,+ given by eq.(30) instead of eq.(55).
Step 2 : The same as Step 2 of Item A in Tab.5
in help of the rules of Item (C) in Tab.5.
Step 3 : update 63°" = 6’;"’ +nVe, H,
(r)
Vo, H = /L, Tyme () Vo, () —In 3, "),
TTon
© z 1E¢
(B) me(y) = =" — 3 P(yla, &),
_ given by eq.(30),
Patyo (ylae, &) = { given by eq.(32),
—puledé) " Choice (b) in eq.(25),
"= { DDA IVICATH ) 25)
0, (a) & (c) in eq.(25),
Yy
pm(xelée) = 3, cv,PM,, (2ely, ft)—u‘jtry,
e

Nos
E@ey‘ Puy, (@419.6) W[(y_g)
e t
Plolen &) = P GET :

Again similar to that in Sec.4.2, we can further
determine the best 02,0 in a similar way as dis-
cussed in Sec.2.2. Also, we can alternatively start at
values of o, 0¢ larger enough and gradually reduce
it towards to zero as learning proceeds in a simulated

annealing manner3®.

¢ RPCL and automated model selection In
the cases that z, is given by Choice (b) in eq.(54)
for Tab.5 and in eq.(25) for Tab.6, with Y; contain-
ing more than one indices as given in Step 1 of Item
(A), we can get a unified RPCL framework for the
ME model, which can be understood in a way similar
to the discussions on RPCL learning in Sec.3. 2.



One typical case is that Y; consists of the 1st win-
ner ym,: and 2nd winner y,; that correspond to the
two largest ones of p, ;. In this case, the algorithm
in either Tab.5 or Tab.6 implements a RPCL-type
learning, similar to eq.(47) and eq.(48). Generally,
the algorithms in either Tab.5 or Tab.6 provide ex-
tensions of RPCL algorithms in other cases of Y;.

When £ is given large enough, the least complex-
ity nature will be in effect during both RPCL learn-
ing and the above harmony learning with conscience.
Specifically, for the alternative model, this nature
will push oy towards to 0 at some y constantly such
that the corresponding expert is actually discarded.
While for the original model, simlar to the case of
three-layer net discussed previously, this nature is in
effect in the sense that each expert becomes more
specific for the task it performs with unnecessary
cross-talks between experts eliminated, though it is
not necessarily lead to the cases that some experts
are constantly discarded.

Alternatively, by enumerating a number of & val-
ues incrementally, model selection may also be made
by eq.(36) with

J(k)=1nz, + 0.5Z:=101y In|X;y| - 84)

(
¥ Ziilzzzll’(y]whgt): (a),
k k
Py=10ylnoy —0.5%° _ oy In|Ey], (b),
L(:‘/'ztagt) = PMyl.r (ylzt,ﬁt) lnPMy(ylft, Hg)’

with Type (a) for the original ME model and Type
(b) for the alternative ME model. We can also ap-
ply Type (b) to the original model, in help of the
following approximation:

N
ay =g 2?1PMy|,(y|$t,€t),
Hy = a:N Loe=1Pnmy, (ylze, &)Ee,
Etﬁ'[ = gt - Hy,

Yy = &';IW t=1PMy|z (y]mt’gt)gtyya;[,‘y'

¢ RBF nets As discussed in Sec.4.3, the nor-
malized RBF net is actually a special case of the
alternative ME model under the constraint eq.(77).
Thus, all the discussions on Tab.5 apply except that
we simply set ay by eq.(77) in place of the updating
of ay in Item (D).

Automated model selection is made in the sense
that some X, is pushed to towards 0 and thus the
corresponding ay, is pushed to towards 0.

Particularly, when ¥, = ¥ and thus ay = 1/k,
as in most of existing applications, automated model
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selection is made in the sense that the center my of
some basis function is driven far away from data.
Moreover, J(k) in eq.(84) is simplified into

J(k)=Inz; +Ink +0.51In|X|
0.5
+ 5 gt 10 Sy - (85)

4.5. Kernel regression and support vector
machine (SVM)

As shown in eq.(82), the normalized RBF net
further degenerates into kernel regression. Here,
an interesting new result is that the only unknown
smoothing parameter o can be estimated by the cor-
responding special case of Tab.5. Further details are
shown in Tab.7 and particularly pointed out in its
Item (D).

Another interesting special case of the alterna-
tive ME model with the gate eq.(59) will lead us to
a typical support vector machine (SVM). Again, we
consider eq.(76) under the condition eq.(81) except
that we let oy being free to be determined via the
harmony learning. That is, we consider the case

pu,,, = G(zlze, 03, 1), p(Elde) = G(Elés, o7 1). (86)

In this case, the regression eq.(71) of linear case (b)
becomes

[
_ Yme
E(xlﬁ) - E o 6_0.5 = 2 (87)
t e i

which can be regarded as a modified kernel regres-
sion. Alternatively, we can rewrite it into

E(z]§) = Y, nze K (€, &),
e-o.sﬂ%r-lli
K(ﬁaét) =

£-£4]12
_0_511_0%11_

(88)

2oi0ne

which is a typical case of the popular SVM®”, with
the normalized gaussian kernel K (¢,¢&;).

In the classical SVM, the parameters {a;} are de-
termined via maximizing the following constrained
quadratic cost

J(a) =3 o — 0~5Zt,ratat@'t$rK(€r,ft),
0<a; <7, Yo =0, (89)

for the cases that z; takes either 0 or 1. This is a
typical constrained quadratic programming problem.
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After learning, the contribution corresponding to the
kernel K (€,&;) is discounted or even been discarded
when a; becomes much smaller than 1/N. More-
over, we can force a; = 0 when «; is smaller than
a threshold € < 1/N such that the kernel K (¢,&;)
is completely removed, and the regression E(z|€) is
built only on a set of supporting vectors for a better
generalization performance.

Tab.7 Harmony Learning Algorithms for
Support Vector Machines
(A) A General Algorithm
Step 1 : For each pair z;,&;, get n,; as shown in
the Item B below, based on a subset Y; that

consists of the k; < k indices that corresponds
to the k; smallest value of d? given in eq.(93).

If k; = 1, Y; contains only rm = = arg min, d2.

Step 2 : update agrrw = a:lr T 10004y
8oz = {Et =190z|r,t, 1in batch,
60z)rt) per sample;
_ o deogl 2 —fle—a?
delr,t - nr,t—T’

z|r

. 2 —_ 2 .
For the special case Oalr = 02> instead we do

N
Step 2’ : o = 2% 4 1 { Zr=150z|r,
Tg|r,t-
Step 3rap= e°’/Z e’r, ene¥ = %% + nodey,
Zt 160rt, (a) in batch,
dcr s (b) per sample;
der e = Nrp = 0r) 4Tt

new

update og® = 0 + modog
So¢ = {Zr_lzt_ 50’§|rt, in batch,

d0¢|r 5 per sample;

deagi? 2~ |lge—¢- II2
0° 3

z Tll‘g,f
(B) .= M e P(r|z, &),

PMyL., (rlzt) gt)

I(r —rm.z), (a)
G("’"t|-”"rv0'i|rI)G(§f|§rya§I)ar

Y i1 G edles0% DG Eles 02 Das’ ®)
{ —WJ—L”M z€)  Choice (b) in eq.(25),
= Zt 1PM(z1,€1)

: (a) & (c) in eq.(25),
Pau(p0,8) = ¥yey,Olatlor, o, DO(ENer o2 D
P(r|z:, &) = Ejer e xljgz((ilijt’)a St 2
(C) Smoothing Parameter in Kernel Regression

In Step 3, fix a; = 1/N without updating it.

Now, in help of the algorithms in Tab.5, we
can alternatively learn the parameters {a;} as well
as the smoothing parameter o2, via the harmony
learning eq.(54). To get a further insight, we put
(ylze, &) in eq.(56) into eq.(54) and simply let

00¢|rt = Nt

My|z

2z = 1, resulting in

H(0,k) =3, a,Fo(2r,& ) Inar
+Z,.arF1(mry€r):

_ pMIly(mtlr’ £t)p(€t|¢r)
Fo(mryfr) - Zt ]{p}}l(zt)’ fzé |¢ ))

. PM . \ T T, Gt )PISt | Pr
Fl(mrafr) —Et NpM(xtaft) X
In[par,,, (2ly, £)p(€ldy)]- (90)

Then, from ) o, =1 we insert o =1 — Z#r o
in eq.(90) and get

H(0,k) = =32, 3 4,2 Fo(zr, &) Inar

+>, Fo(zr, &) Inoy + 3 0 Fi(2,, &),

0<a; <1,y ay—1=0. (91)
t

On the other hand, we rewrite eq.(89) into

J(a) = _0‘5Zt’,-atarF(xta xra&nét) + Etatv
F(l't, Ty, gragt) = xter(fr;gt);
0<a; <7y, Yoz =0. (92)

It can be observed that eq.(91) and eq.(92) are , qual-
itatively quite similar, though they are not exactly
the same. Specifically, it follows from eq.(91) that
the harmony learning is a constrained sub-quadratic
programming problem in the sense o, of the order
one is replaced by In «, that is lower than order one.
This insight provides a justification for using the al-
gorithms in Tab.5 for learning SVM of type eq.(88)
with the normalized gaussian kernel K (&,¢&;).

Moreover, considering other cases of eq.(59) or
even eq.(74), we may also learn support vector ma-
chines with other normalized kernels by the harmony
learning.

Furthermore, we can simplify Tab.5 into Tab.7.
Specifically, the task of finding ke < k different in-
dices of {1,---,k} can be simplified into finding the
k; smallest value of d? as follows

2

@ 2=l |y bl srn
a:|r

_ 2 _ 2

) o=l | e - &P

2 2
o ¢

(93)

where the choice (a) is for par,, = G(z|zs, 02 1o1) in

eq.(86) and the choice (b) is for its special case that
02, = 2. In Item (A) of Tab.7, the set Y; is ob-

z|t
tained via d? after comparing all d?,¢ = 1,---, N.



Thus, the learning by algorithms in Tab.7 is of a
batch manner in nature. However, we can also alter-
natively update a;, 07,07 per sample as provided in
Tab.7 too.

We further consider the simplest case in Tab.7
that 4 = 0 in Item B and k; = 1in Step 1. In
this case, we get the following competitive learning
algorithm for the SVM learning on eq.(88):

Fm = argmin, d2, d? is given in eq.(93),
T r g

l—ay, y=rm
cnev — Czld + 7o Y )

y —Qy, Y :lé Tm;
deotlt lloemed®
New — LNew - gold 3 — 'm,
U:c|r - Yz|r + 7o Izlr
s ) Y F Tm;
deogiy “=[l&: =&l y=r
— —— @I =
U?ew — o.?ew _I_ ,'70 agfr 3 ) my
0; Y ;é Pm.
For the special case Uzlt = 02, we simply replace the
new old new old
above 071", 0710 by o7¥,02°%.

5. Conclusion

The BYY harmony learning on systems with dis-
crete inner-representations has been systematically
introduced. For unsupervised learning on Gaussian
mixture, we not only revisited the previous obtained
criteria for selecting the number of Gaussians 8, but
also got new regularization techniques and a unified
RPCL framework that performs parameter learning
with automated model selection. Moreover, a by-
product is also obtained for determining a set of
‘supporting vectors’ for Parzen window density es-
timation. Similar new results are also obtained for
supervised learning on the original ME model, the al-
ternative ME model and radial basis function (RBF)
nets, respectively. Moreover, three layer net is bene-
fited with a regularized ML learning, a new criterion
for selecting the hidden unit number, and a family of
EM-like algorithms that combines harmony learning
with new regularization techniques. Furthermore, an
easily implemented approach is given for determin-
ing the smoothing parameter in the kernel regression,
and an alternative approach is provided to select sup-
porting vectors in the popular supporting vector ma-
chines for a better generalization.

References

1. S.C.Ahalt, et al, “Competitive learning algorithms

Best Harmony, RPCL and Automated Model Selection 67

for vector quantization”, Neural Networks, 3, 277-291
(1990).

2. H.Akaike, “A new look at the statistical model iden-
tification”, IEEFE Tr. Automatic Control, 19, 714-723
(1974).

3. G.H. Ball & D.J. Hall, “ISODATA: A novel method
of data analysis and pattern classification’, Tech.
Rep. No. AD 699616, Stanford Research International
(1965).

4. S. A. Billings & G. L. Zheng, “Radial basis function
network configuration using genetic algorithms”, Neu-
ral Networks, 8, 877-890 (1995).

5. C.M Bishop, “Training with noise is equivalent to
Tikhonov regularization”, Neural Computation 7,
108-116 (1995).

6. A. G. Bors and 1. Pitas, “Median radial basis function
neural network”, IEEFE Trans. on Neural Networks, 7,
1351-1364 (1996).

7. A. G. Bors & I. Pitas, “Object classification in 3-D im-
ages using alpha-trimmed mean radial basis function
network,” IEEE Trans. on Image Process, 8, 1744-
1756 (1999).

8. H. Bozdogan, “ Model Selection and Akaike’s Infor-
mation Criterion: The general theory and its ana-
lytical extension”, PSYCHOMETRIKA, 52, 345-370
(1987).

9. H. Bozdogan, “ Mixture-Model Cluster analysis using
model selection criteria and a new information mea-
sure of complexity”, Proc. 1st US/Japan Conf. on the
Frontiers of Statistical Modeling, 2, 69-113 (1994).

10. D.S.Broomhead & D.Lowe, “Multivariable functional
interpolation and adaptive networks”, Complex Sys-
tems 2, 321-323 (1988).

11. P.R. Chang & W. H. Yang, “Environment-adaptation
mobile radio propagation prediction using radial basis
function neural networks”, IEEE Trans. on Vehicular
Technology, 46, 155-160 (1997).

12. Y. M. Cheung & L. Xu, “A RPCL-based approach
for Markov model identification with unknown state
number,” IEEF Signal Processing Letters, 7, 284-287
(2000).

13. Y. M. Cheung, et al, “A RPCL-CLP architecture for
financial time series forecasting,” in Proc. of 1995
IEEE ICNN, 2, 829-832 (1995).

14. E. Chiarantoni, et al, “Scene segmentation in video
sequences by a RPCL neural network,” Proc. of 1998
IEEE WCCI, 3, 1877-1882 (1998).

15. P. A. Devijver & J. Kittler, Pattern Recognition: A
Statistical Approach, Prentice-Hall (1982).

16. L.Devroye, “On the almost everywhere convergence
of nonparametric regression function estimates”, The
Annals of Statistics, 9, 1310-1319 (1981).

17. L. Devroye, A Course in Density FEstimation,
Birkhauser, Boston (1987).

18. L. Devroye, et al, A Probability Theory of Pattern
Recognition, Springer (1996).

19. D.Desieno, “Adding a conscience to competitive learn-



68

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39

L. Xu

ing”, Proc. IEEE Intl. Conf. on Neural Networks, I,
117-124 (1988).

A.P.Dempster, et al, “Maximum- likelihood from in-
complete data via the EM algorithm”, J. of Royal
Statistical Society, B39, 1-38 (1977).

R.0.Duda and P.E.Hart, Pattern classification and
Scene analysis, Wiley (1973).

H.P.Friedman & J.Rubin, “ On Some invariant crite-
ria for grouping data”, J. Amer. Statis., Assoc, 62,
1159-1178 (1967).

H. Furukawa, et al, “A systematic method for ratio-
nal definition of plant diagnostic symptoms by self-
organizing neural networks”, Neurocomputing, 13,
171-183 (1996).

F. Girosi, et al, “Regularization theory and neural ar-
chitectures”, Neural Computation, 7, 219-269 (1995).
W.Greblicki, et al, “Distribution-free consistency of
Kernel regression estimate”, The Annals of Statistics,
12, 1570-1575 (1984).

S. Grossberg, “Competitive learning: from interactive
activation to adaptive resonance”, Cognitive Science,
11, 23-63(1987).

R. Hecht-Nielsen, “Counterpropagation networks,”
Appl. Opt., 26, 4979-4984 (1987).

G. E. Hinton & R.S. Zemel, “Autoencoders, minimum
description length and Helmholtz free energy”, Ad-
vances in NIPS, 6, 3-10 (1994).

G.E.Hinton, et al, “Modeling the manifolds of images
of handwritten digits”, IEEE Trans. Neural Networks,
8, 65-74 (1997).

R.A.Jacobs, et al, “Adaptive mixtures of local ex-
perts”, Neural Computation, 3, 79-87 (1991).

, AK.Jain & R.C.Dubes, Algorithm for Clustering
Data, Prentice-Hall (1988).

R.D.Jones et al, “Information theoretic derivation of
network architecture and learning algorithms”, Proc.
of IIJCNN91-Seattle, 11, 473-478 (1991).

M. 1. Jordan & R.A.Jacobs, “ Hierarchical mixtures of
experts and the EM algorithm”, Neural Computation,
6, 181-214 (1994).

M. I. Jordan & L. Xu, “Convergence results for the
EM approach to mixtures of experts”, Neural Net-
works, 8, 1409-1431 (1995).

I. King, et al, “Using rival penalized competitive clus-
tering for feature indexing in Hong Kong’s textile and
fashion image database,” Proc. of 1998 IEEE WCCI,
1, 237-240 (1998).

S.Kirkpatrick, et al, “Optimization by simulated an-
nealing”, Science, 220, 671-680 (1983).

T.K. Lau & I. King, “Performance analysis of clus-
tering algorithms for information retrieval in image
databases,” Proc. of 1998 IEEE World Congress on
Computational Intelligence, 2, 932-937 (1998).

J. Lee, et al, “A practical radial basis function equal-
izer,” IEEE Trans. on Neural Networks, 10, 450-455
(1999).

. X. Q. Li &. King, “Regression analysis for rival pe-

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

nalized competitive learning binary tree,” Proc. of
IJCNN2000, 6, 290-295 (2000).

R. Li, et al, “Fast image vector quantization using
a modified competitive learning neural network ap-
proach” Intl J. of Imaging Systems and Technology,
8, 413-418 ( 1997).

D.J.C. Mackey, “ Bayesian Interpolation”, Neural
Computation, 4, 488-472 (1992),.

D.J.C. Mackey, “A practical Bayesian framework for
backpropagation”, Neural Computation, 4, 415-447
(1992).

J. Makhoul, et al, “Vector quantization in speech cod-
ing,” Proc. IEEE, 73, 1551-1558 (1985).

A. Marazzi, et al, “Automatic selection of the number
of clusters in multidimensional data problems”, Proc.
of Intl. Conf. on Image Processing, 3, 631-634 (1996).
P. McCullagh & J.A. Nelder, Generalized Linear Mod-
els, Chapman and Hall (1983).

G.J. McLachlan & K.E. Basford, Mizture Models: In-
ference and Application to Clustering, Dekker (1988).
G. W. Millgan, “ A monte carlo study of thirty in-
ternal criterion measures for cluster analysis”, PSY-
CHOMETRIKA, 46, 187-199 (1985).

G. W. Millgan & M.C. Copper, “ An examination of
procedures for determining the number of clusters in
adata set”, PSYCHOMETRIKA, 50, 159-179 (1985).
J.Moody & J.Darken, “Fast learning in networks of
locally-tuned processing units”, Neural Computation,
1, 281-294 (1989).

N. Nasrabadi & R. A. King, “Image coding using vec-
tor quantization: a review,” IEEE Trans. Commun.,
36, 957-971 (1988).

S.J.Nowlan, “Max likelihood competition in RBF net-
works”, Tech. Rep. CRG-Tr-90-2, Dept. of Computer
Sci., U. of Toronto (1990).

T.Poggio & F.Girosi, “Networks for approximation
and learning”, Proc. of IEEE, 78, 1481-1497 (1990).
M.J.D.Powell, “Radial basis functions for multivari-
able interpolation: a review”, eds, J.C.Mason and
M.G.Cox, Algorithms for Approzimation, Clarendon
Press, Oxford (1987).

D.F.Specht, “Probabilistic neural networks”, Neural
Networks, 3, 109-118 (1990).

V. Ramamurti & J. Ghosh, “Regularization and er-
ror bars for the mixture of experts network”, Proc. of
IEEE ICNN97”, 221-225 (1997.

F.Ronsenblatt, Principles of Neurodynamics: Percep-
trons and the Theory of Brain Mechanisms, Washing-
ton D.C.: Spartan Books (1962).

D.E.Rumelhart, G.E.Hinton & R.J.Williams, “Learn-
ing internal representations by error propagation”,
Parallel distributed processing, 1, MIT press (1986).
R.A. Redner & H.F. Walker, “Mixture densities, max-
imum likelihood, and the EM algorithm”, SIAM Re-
view, 26, 195-239 (1984).

J.Rissanen, Stochastic Complezity in Statistical In-
quiry, World Scientific: Singapore (1989).



60

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

1.

72.

73.

74.

75.

76.

77.

. J. Rissanen et al, “Unsupervised classification with
stochastic complexity in multivariate statistical mod-
eling”, Proc. The 1st US/Japan Conf. on the Frontiers
of Statistical Modeling: An In formational Approach,
(1994).

D. E. Rumelhart & D. Zipser, “Feature discovery by
competitive learning,” Cognitive Science, 9, 75-112
(1985).

I. Rivals & L. Personnaz, “On Cross Validation for
Model Selection”, Neural Computation, 11, 863-870
(1999).

A. Roy, et al, “A neural-network learning theory and
a polynomial time RBF algorithm”, IEEE Trans. on
Neural Networks, 8, 1301-1313 (1997).

A.J. Scott & M.J. Symons, “Clustering methods based
on likelihood ratio criteria”, Biometrics, 27, 387-397
(1971).

M. Stone, “Cross-validation: A review”, Math. Operat.
Statist. , 9, 127-140 (1978).

A.N.Tikhonov & V.Y. Arsenin, Solutions of Ill-posed
Problems, V.H. Winston and Sons (1977).
V.N.Vapnik, The Nature Of Statistical Learning The-
ory, Springer-Verlag (1995).

L. Xu, “ BYY Harmony Learning, Independent State
Space and Generalized APT Financial Analyses”, to
appear on IEEE Trans. on Neural Networks, (2001).
L. Xu, “ Temporal BYY Learning for State Space Ap-
proach, Hidden Markov Model and Blind Source Sep-
aration”, IEEFE Trans on Signal Processing, 48, 2132-
2144 (2000). A part of its preliminary version on Proc.
IJCNN99, 2, 949-954 (1999).

L. Xu, “Best Harmony Learning ”, Proc. IDEAL2000:
Lecture Notes in Computer Science, 1983, Springer-
Verlag, 116-125(2000).

L. Xu, “Best Harmony Learning for BYY -II Factor
Systems”, Proc. 7th Intl. Conf. On Neural Informa-
tion Processing , bf 1, 548-558(2000).

L. Xu, “BYY System and Theory for Statistical
Learning: Best Harmony, Data Smoothing, and Model
Selection”, Proc. of 1999 Chinese Conf. on Neu-
ral Networks and Signal Processing, Nov., Shantou,
China, (12-29) 1999.

L. Xu, ”Bayesian Ying-Yang Supervised Learning,
Modular Models, and Three Layer Nets”, Proc. 1999
IJCNN, 1, 540-545(1999).

L. Xu, “RBF Nets, Mixture Experts, and Bayesian
Ying-Yang Learning”, Neurocomputing, 19, 223-257
(1998).

L. Xu, “ Bayesian Kullback Ying-Yang Depen-
dence Reduction Theory”, Neurocomputing, 22, 81-
112 (1998).

L. Xu, “Rival penalized competitive learning, finite
mixture, and multisets clustering,” Proc. of 1998
IEEE IJCNN, 3, 251-2530 (1988).

L. Xu, “ Bayesian Ying-Yang Learning Theory For
Data Dimension Reduction and Determination ”, J. of
Computational Intelligence in Finance, 6, 6-18 (1998).

78

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

Best Harmony, RPCL and Automated Model Selection 69

. L. Xu, C.C.Cheung, & S.-I.Amari, “ Learned Para-
metric Mixture Based ICA Algorithm ”, Neurocom-
puting, 22, 69-80 (1998).

L. Xu, “Bayesian Ying-Yang Learning Based ICA
Models” , Proc. 1997 IEEE Workshop on Neural Net-
works for Signal Processing, 476-485 (1997).

L. Xu, “Bayesian Ying-Yang Machine, Clustering and
Number of Clusters”, Pattern Recognition Letters, 18,
1167-1178 (1997).

L. Xu, “Bayesian-Kullback YING-YANG Machines
for Supervised Learning”, Proc. of 1996 World
Congress On Neural Networks, 193-200 (1996).

L. Xu, & M. 1. Jordan, ”On Convergence Properties
of the EM Algorithm for Gaussian Mixtures”, Neural
Computation, 8, 129-151 (1996).

L. Xu, “Bayesian-Kullback YING-YANG Machine:
Reviews and New Results”, Progress in Neural Infor-
mation Processing: Proc. ICONIP96, Springer-Verlag,
59-67 (1996).

L. Xu, “Vector Quantization, Cluster Number Selec-
tion and The EM Algorithms”, Proc. of 1995 IEEE
Intl Conf. on Neural Networks and Signal Processing,
II, 1499-1502 (1995).

L. Xu, “A TUnified Learning Scheme: Bayesian-
Kullback YING-YANG Machine”, Advances in Neural
Information Processing Systems, 8, 444-450 (1996). A
part of its preliminary version on Proc. ICONIP95-
Peking, 977-988(1995).

L. Xu, M.I. Jordan, & G.E. Hinton, “An Alternative
Model for Mixtures of Experts”, Advances in Neural
Information Processing Systems, 7, 633-640 (1995).
Its preliminary version on Proc. of WCNN’94, 2, 405-
410 (1994).

L. Xu ”A Unified Learning Framework: Multisets
Modeling Learning”, Proc. of 1995 World Congress
on Neural Networks, 1, 35-42 (1995). A part of its
preliminary version on Proc. 1994 IEEE Intl. Conf.
on Neural Networks , 1, 315-320 (1994).

L. Xu, A Krzyzak, & A.L.Yuille, “On Radial Ba-
sis Function Nets and Kernel Regression: Statistical
Consistency, Convergence Rates and Receptive Field
Size”, Neural Networks, 7, 609-628 (1994).

L. Xu, A.Krzyzak, & E.Qja, “ Rival Penalized Com-
petitive Learning for Clustering Analysis, RBF net
and Curve Detection”, IEEE Trans. on Neural Net-
works, 4, 636-649 (1993). Its early version on Proc.
of 11th Intl. Conf. on Pattern Recognition, 1, 672-675
(1992).

L. Xu, “Least mean square error reconstruction for
self-organizing neural-nets”, Neural Networks, 6, 627-
648 (1993). Its early version on Proc. 1991 Intl. Joint
Conf. on Neural Networks (IJCNN91’Singapore),
2363-2373 (1991).

G. L. Zheng & S. A. Billings, “Radial basis function
network configuration using mutual information and
the orthogonal least squares algorithm”, Neural Net-
works, 9, 1619-1637(1996).



