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Rival Penalized Competitive Learning for
Clustering Analysis, RBF Net, and Curve Detection

Lei Xu, Adam Krzyzak, Member, IEEE, and Erkki Oja, Senior Member, IEEE

Abstract—It is well known that the classical k-means clustering
algorithm has a problem.of selecting an appropriate k, the num-
ber of clusters. It is a hard problem and affects the performance
of k-means strongly. When used for clustering analysis, the
conventional competitive learning (CL) algorithms also have a
similar crucial problem: the selection of an appropriate number
of neural units, aithough the problem remains largely unrevealed
(or ignored) in the CL literature. As shown in this paper, fre-
quency sensitive competitive learning (FSCL), one version of the
recently improved CL algorithms, also significantly deteriorates
its performance when the number of units is inappropriately
selected. This paper proposes a new algorithm called rival pe-
nalized competitive learning (RPCL). The basic idea is that for
each input not only the winner unit is modified to adapt to
the input, but also its rival (the 2nd winner) is delearned by a
smaller learning rate. RPCL can be regarded as an unsupervised
extension of Kohonen’s supervised LVQ2. RPCL has the ability
of automatically allocating an appropriate number of units for
an input data set. The experimental results show that RPCL
outperforms FSCL when used for unsupervised classification, for
training a radial basis function (RBF) network, and for curve
detection in digital images.

I. INTRODUCTION

S an adaptive version of the classical k-means clustering
/ algorithm, competitive learning (CL) has a number of
applications. First, it can function as an adaptive method for
clustering analysis problems encountered in statistical data
analysis or unsupervised pattern recognition [1]. Second, it can
be used for vector quantization which is widely used in image
processing and speech signal processing for compressing data
and ‘message coding [2], [3]. Third, it has also been recently
incorporated into some supetrvised learning methods for train-
ing 'multilayer feedforward nets more effectively, e.g., into the
radial basis function (RBF) nets for locating the centers of
Gaussian receptive fields [4]-[6].

However, it-was found by Rumelhart et al. [7], Gross-
berg [8], and Hecht-Nielsen [8] that the simple classical
CL algorithm has the so called under-utilized or dead unit
problem. Many efforts have been made to solve the problem.
Grossberg’s ART series [7], [10]-{13] and Kohonen Map [14],
[15] are two main developments of the classical competitive
learning. ART provides a stable model for unsupervised pattern

Manuscript received December 12, 1991; revised August 17, 1992.

L. Xu is with the Harvard Robotics Laboratory, Harvard University,
Cambridge, MA 02138 and is also with the Department of Mathematics,
Peking University, Beijing, P. R. China.

A. Krzyzak is with the Department of Computer Science, Concordia
University, Montreal, Quebec H3G 1M8, Canada.

E. Oja is with the Department of Information Technology, Lappeenranta

University of Technology, SF-53851 Lappeenranta, Finland.
IEEE Log Number 9204279.

recognition and associative memory. However, as pointed out
by Lippmann [16], the ART method does not correspond to
k-means algorithm for clustering analysis and vector quantiza-
tion in the global optimization sense. Although Kohonen Map
is related to adaptive k-means, its main purpose is to form a
topographic feature map which is a more complex task than
just clustering analysis. It is therefore also computationally
more complicated.

Focusing on improving the dead units problem of the
classical CL, there are also several other techniques proposed,
e.g., leaky learning by Rumelhart [7] and Grossberg [8], and
convex bridge by Hecht-Nielsen [9]. A notable improvement
is the strategy of reducing the winning rate of the frequent
winners [8], [17]-{19], sometimes called conscience [18].
Frequency Sensitive Competitive Learning (FSCL) [19] is a
good example which uses this strategy. The idea is fairly
straightforward but the method does improve the classical CL
significantly.

In this paper, we will show that there is another critical
problem with the present CL algorithms: the selection of an
appropriate number of the units needed. It is well known
that one key problem with the k-means algorithm is that k
(the number of clusters) should be appropriately pre-selected,
otherwise the algorithm will perform badly. In a competitive
learning net, k directly corresponds to the number of the neural
units used. This number should also be externally preselected
appropriately, since the number of units corresponds to the
number of resulted clusters when CL is used for solving a
clustering problem, or to the the number of hidden units when
CL is used in a RBF network. As will be shown later, inappro-
priately selected k& will result in a poor clustering result that
will in turn affect the performances of FSCL for unsupervised
classification, RBF net, and curve detection significantly.

For tackling this problem, we propose a new version of
competitive learning algorithm called rival penalized compet-
itive learning (RPCL), which is developed by adding a new
mechanism into FSCL. The basic idea is that for each input,
not only the weights of the winner unit are modified to adapt to
the input, but also the weights of its rival (the 2nd winner) are
delearned by a smaller learning rate. The idea can be regarded
as an unsupervised extension of Kohonen’s LVQ2 [15] which
is a supervised vector quantization algorithm, and closer in
effect to Bayes decision theory. We have applied RPCL to the
problems of unsupervised classification, RBF network training,
and curve detection, and compared its performance with FSCL.
The experimental results show that significant improvements
have been obtained by RPCL.
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In the sequel, the problem of selecting the number of units
in a competitive learning net will be addressed in Section
II. Then RPCL is proposed and analyzed in Section IIL In
Section IV, FSCL, and RPCL are experimentally compared
in the problems of unsupervised classification and RBF net’s
training. In Section V, the curve detection problem is modeled
into a problem of competitive learning, and both FSCL and
RPCL are tested with a problem of detecting four lines in a
diamond-shaped frame.

II. A CRUCIAL PROBLEM FOR COMPETITIVE LEARNING

Given a layer of units with the output of each unit denoted
by u; and its weight vector by j; fors =1,-- -, k, the classical
CL algorithm consists of the following two steps.

Step 1: Randomly take a sample & from a data set D, and
fori = 1,---,k, let

w = 1, if i = c such that || — @||? = min; |Z — &%,
t 0, otherwise.

(1a)
Step 2: Update the weight vectors w; by
Au_)‘i = aiui(f— 1171)
- = a;()'('— VVi), if u; = 1,
e, AW; = { 0, otherwise. (10)

Thus in practice only the winning unit or best matching unit
W, is updated. In (1b), the parameter a. with 0<a <1
is the learning rate which is usually a small real number, or
it starts from a reasonable initial value and then reduces to
zero in some way [14], [15], e.g., in the way used in the
Robbins—Monro stochastic approximation procedure [21]. The
explicit dependence of a. on time is not shown above.

Note: Equations (1a) and (1b) are often called the Winner-
Take-All rule. In addition, there are also some other versions
of the classical CL [26]. However, the basic idea is the same;
the weight vector of the neural unit which tunes to an input
most strongly is adjusted most strongly to tune to the input
even stronger.

The implementation of the above algorithm is quite easy;
each weight vector 1; is randomly initialized, and then the
above two steps are iterated until the iteration converges or
freezes as the learning rate o becomes zero or very small, or
until the number of iterations reaches a prespecified value.

For a data set D consisting of several clusters of samples
(e.g., three clusters as shown in Fig. 1(a)), when the number
of units k is equal to the number of these clusters, the desired
results of implementing the above algorithm should be that the
weight vector of each unit is moved to the center of one of
the clusters (Fig. 1(a)) regardless of the initial values of these
weight vectors. However, the actual results highly depend on
the initial weight vectors. For example, even for a two clusters
problem shown in Fig. 1(b), when the two weight vectors
W, W, are initialized at positions A, By, respectively, they
finally move to the center points of the two clusters after the
learning has converged. However, when w, is initialized at
position A and Wy at Bs, the result of (1) will always be
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Fig. 1. A crucial problem for competitive learning. (a) The desired result of
using CL: each of weight vectors moved to a cluster center regardless of the
initial values of these weight vectors. (b) The actual result highly depends on
the initial weight vectors. @y, W2 will move to cluster centers when they are
initialized at points Aj, Bj, respectively; but when Wy is initialized at A2
and @ at Ba, W, will be located around the middle point of the two clusters,
while 2 remains unmoved as a dead unit. (c) A typical result of using the
conscience strategy and FSCL when the number k of used units is larger than
the number of clusters in a data set, where the two extra units have also been
moved to some boundary points between different clusters, and may confuse
quite a large portion of samples from different clusters.

u; = 1 and ugy = 0 during the implementation of the above
algorithm. Thus w; is always moving and eventually oscillates
around the mean vector of the two clusters of samples, while
Wy is always the loser and remains fixed during the whole
learning process. Such a loser unit is usually called a dead unit.

Unfortunately, the situation of dead units happens quite
often for the above simple CL algorithm unless the weight
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vectors are initialized near the cluster centers which are the
eventual points of attraction. As mentioned previously in
Section I, many efforts have been made to solve the problem.
An often used strategy, sometimes called conscience, is to
reduce the winning rate of the frequent winners. For example,
in Fig. 1(b), when w; initialized at A, wins a certain number
of times, we force u; = 0 and uy = 1 to bring W, according
to (1b) towards its point of attraction. By doing so, W, will
be gradually brought towards the right-side cluster while v/
keeps oscillating between the two clusters. Finally w7 will
stop oscillating and. the two weight vectors will converge to
the two cluster centers. The so called FSCL [19] is a recent
algorithm using this strategy. It is a straightforward extension
of CL, obtained by modifying (1a) into the following.

Yell# = Welf? = ming ;|7 — 7|2,
0, otherwise.

1, if ¢ = ¢ such that
u; = { )]

where v; = n;/ S°r_, n; and n; is the cumulative number of
the occurrences of u; = 1.

The conscience strategy and FSCL do solve the problem of
dead units well. Unfortunately, they also bring a new problem.
As shown in Fig. 1(c), when the number k of units used in a
CL net is larger than the number of clusters in the input data
set, all the k£ weight vectors will be finally moved to some
places in the data set and some weight vectors (at least one)
will no longer be located at the centers of the clusters but
either at some boundary points between different clusters or at
points biased from some cluster centers (the phenomenon will
be further verified by experiments shown in the next section).

The new problem is quite crucial, since it raises some
serious problems for the CL applications. For example, some
problems are as follows.

1) For an unsupervised classification application, we expect
results like the ones shown in Fig. 1(a), where we obtained
three weight vectors located at the mean vectors of the three
classes or clusters. In this case, the recognition rate will be
the highest when all the samples are classified by distance
classifiers based on the three weight vectors. However, in the
case shown in Fig. 1(c), the recognition rate will significantly
decrease since there are two disturbing units located at the
boundary points of different clusters and the two units will
draw quite a large portion of samples from three of the four
clusters to form two mixture groups which give an incorrect
clustering result.

2) For the application of training the hidden units of a RBF
net, we would like to expect that in Fig. 1(c) only four weight
vectors of the hidden units will be located at the centers of
the four clusters, while the weights of the other units should
be driven away from the input data set so that the linear units
in the output layer of the RBF net become capable to perform
further classifications. But the results presented in Fig. 1(c)
show two hidden units becoming disturbing units which may
confuse quite a large portion of input samples from different
clusters. In the case of supervised learning, a class may consist
of more than one cluster, so there may be no problem if
the confused clusters belong to the same class. However, if
the confused clusters do not belong to the same class, the
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two disturbing units will not only increase the difficulty of
learning for the units in the output layer, but will also reduce
the recognition rate considerably since the linear output units
may not be able to separate the samples confused by the two
disturbing hidden units.

The above addressed problem may not notably deteriorate
the performance of CL on an application of vector quanti-
zation, where the goal is not to find any clusters or classes.
However, even in this case the input data density is usually not
uniform, and results like the one shown in Fig. 1(a) are desired.
For the codebook we would now have three weight vectors,
each located at the center of one of the clusters. Results like
that shown in Fig. 1(c) will increase the number of vectors
in the codebook, without much improvement on the coding
performance due to the fact that the code vectors which are
located at the boundary points between clusters can contribute
only a little in reducing the distortion.

Therefore, we see that the conscience strategy and FSCL
work well only when the number of clusters in the input data
set is known in advance so that we can let our CL net have
the same number of units. This is not an easy task since we
usually do not know the number of clusters in the input data a
priori. The same problem exists in the conventional k-means
clustering method: if the number of clusters k is selected
inappropriately, we may obtain very poor clustering results.
Unfortunately, the selection of & is a hard problem. It could
only be solved heuristically by some prior knowledge, or by
enumerating a number of different values and doing clustering
for each of these values so that a better value could be obtained
according to some rule, e.g., finding the value with a sharp
change on the curve of the average least square error versus
the values of k [1].

III. RivAL PENALIZED COMPETITIVE LEARNING

A. The Algorithm

For tackling the crucial problem described above, we pro-
pose here an new version of CL—RPCL, by adding a new
mechanism into FSCL. The basic idea is that for each input
not only the weight vector . of the unit which wins the
competition is modified to adapt to the input, but also the
weight vector o, of its rival (i.e., the second winner) is
delearned by a learning rate smaller than that used by ..
Specifically, we modify the algorithm given in the beginning
of Section II into the following one.

Step 1: Randomly take a sample Z from a data set D, and
fore = 1,---,k, let

1, if ¢ = ¢ such that
Vell& = We||? = min; ;|| — ;%
—1, if ¢ = rsuch that
YellZ — @, |12 = minjze ;|7 — @12,
0, otherwise.
(3a)

U; =
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Fig. 2. Rival penalized competitive learning. (a) The rival is pushed away from the cluster that the winner is learning. (b) The rival @3 of both w; and W,
is driven out along a zig-zag path. (c) Leaming of @3 is faster because it is pushed towards its correct cluster by the two rivals @ and @2.

Step 2: Update the weight vector w; by

(T — W;), ifu =1
Au')'i = —ar(a'c' - d)'i), if Uy = —1, (3b)
0, otherwise.

where 0 < a., o, < 1 are the learning rates for the winner and
rival unit, respectively. In practice they may depend on time
and usually at each iteration step ¢ it holds a.(t) > a.(t).
Moreover, v; = n;/ ZLI n; is the same parameter as that in
the FSCL algorithm introduced earlier.

As shown in Fig. 2(a), the rival penalized mechanism
tries to push its rival far away from the cluster towards
which the winner is moving, thus implicitly producing a force
which attempts to make sure that each cluster is learned by
only one weight vector. This force is just a balance to the
force generated by the conscience strategy of FSCL, which
encourages both weight vectors to share one cluster. This
balancing role can be more clearly seen from Fig. 2(b).
Assuming that three weight vectors have already been brought

somewhere between two classes, the rival penalized force will
gradually drive away the weight vector w3 along a zig-zag
path as the input samples come randomly and alternatively
from both classes. Similarly, we can also imagine that the two
disturbing units given in Fig. 1(c) can be driven away by this
force.

So, we see that the key point of using the rival penalized
mechanism is that the appropriate number of units will be
selected automatically for representing an input data set by
gradually driving extra units far away from the distribution of
data set in the case that the number of units in a competitive
learning net is larger than the number of clusters in the input
data set. Thus the crucial problem described in Section I can
be tackled. In addition, the extra units become now spare units
which are ready to learn some new clusters if some additional
data are input in the future.

Another important point is that the rival penalized mecha-
nism may sometimes speed up the learning process: as shown
in Fig. 2(c), the de-learning of w3 caused by the learning of
Wy, Ws will push w3 toward its correct cluster.
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The 400 Points of Four Classes, 100 Points for Each
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Fig. 3. The data set used in the experiments. Each of four clusters has 100
samples from four Gaussian distributions with variance 0.1 and centered at
(-1,0), (1,0, (0,1), (0,-1), marked by an asterisk.

It may be also interesting to note that the basic idea of RPCL
can be regarded as a kind of unsupervised extension of Koho-
nen’s supervised learning vector quantization algorithm LVQ2
[15] which can give a result closer in effect to Bayes decision
theory by simultaneously modifying the weight vectors of both
the winner and its rival when the winner is in a wrong class
but the rival is in a correct class for an input vector.

In the sequel, the characteristics of RPCL will be further
illustrated through some experiments.

B. Simulation Results

The data set used here is given in Fig. 3. There are four
clusters of samples, and each cluster has 100 samples from
four Gaussian distributions with variance 0.1 and centered
at (-1,0), (1,0), (0,1), (0,-1), marked by an asterisk. At each
learning step, one sample & is randomly selected from the four
clusters with anyone of 400 samples being chosen with equal
probability. For simplicity, in all the experiments below, we
fixed the learning rates at o, = 0.05, o, = 0.002, although
it is usually assumed that better results may be obtained by
some specific schedule for changing the rates like that used by
the Robbins—Monro stochastic approximation procedure [21].
In addition, we always initialize the weight vectors by random
numbers in the interval between 3.0 and 4.0.

First, we choose the number of units in our CL net as 4, the
same as the number of clusters in the data set. Fig. 4(a) shows
the learning traces (i.e., trajectories of weight vectors during
the learning process) obtained by the classical CL algorithm.
Obviously there are three dead units, and only the weight
vector 4 of one unit quickly moves towards a cluster center
point (0,0) in less than 50 learning steps and then oscillates
around it, which can be observed from the learning curves
(i.e., the changes of the component variables in every weight
vector versus the learning steps) given in Fig. 4(b).

The fluctuations are due to the fact that the learning rate o,
is fixed at 0.05. If the rate is gradually reduced to zero, then
the fluctuations will vanish.

The results obtained by FSCL are given in Figs. 4(c) and
(d). It can be seen that after about 160 learning steps (see the
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corresponding learning curves in Fig. 4(d)) each of the four
weight vectors has smoothly moved into one of the four cluster
centers. This result again confirms that FSCL solves the “dead
unit” problem [19].

Fig. 4(e) shows the learning traces obtained by using
our RPCL. Comparing it with Fig. 4(c), we see that the
performances of RPCL and FSCL are almost the same in this
case. Moreover, the learning curves of RPCL are also almost
the same as those in Fig. 4(d), thus we omit them here.

Second, we choose the number of units in our CL net larger
than the number of clusters in the data set. Fig. 5(a) and (b)
gives the learning traces (curves) obtained by FSCL with five
units in the CL net. As argued in Section II, there now occurs
the problem that all the five units are brought among the four
clusters (it will be more clear by comparing the coordinates
given in Fig. 3 and Fig. 5(a)). In addition to the four units
located around the four cluster centers (-1,0) (1,0), (0,-1), (0,1),
there is also one disturbing unit located around (-0.4, 0.4)—a
boundary point between the two clusters centered at (-1,0),
(0,1). Moreover, due to the effect of the disturbing unit, the
other two units, although located around the cluster centers
(-1,0) and (0,1), are somewhat biased from these points. As
expected, such problems are absent in Fig. 5(c), showing the
results obtained by RPCL. There are only four units moved to
the four cluster centers, while the extra unit has been dragged
towards the data points only for a while, and then the rival
penalized mechanism has driven it back and far away from
the four clusters as a spare unit. This phenomenon can also
be clearly observed from the dashed learning curve of @, in
Fig. 5(d).

The advantage of RPCL over FSCL can also be observed
in Fig. 6(a) and (b), showing results obtained with six units in
the CL networks. Fig. 6(a) shows the learning traces obtained
by FSCL. Again, all the six units were brought among the
four clusters, with four units located around the centers of the
clusters, one disturbing unit at a boundary point between the
two clusters centered at (-1,0), (0,1), and the other disturbing
unit near (0.2,-1). Fig. 6(b) is the result obtained by RPCL.
Similar to the case in Fig. 5(c), again only four units moved
to each of the four cluster centers, while the two extra units
moved towards the clusters only for a while, and then were
driven back far away as spare units.

Furthermore, by comparing Fig. 5(b) and (d), one can
observe that the learning curves of FSCL became nearly
stabilized after about 150 steps, while those of RPCL became
near stabilized only after 80 steps. So as we mentioned earlier,
the rival penalized mechanism intreduced some speedup to the
learning process.

IV. COMPARISONS ON THE PERFORMANCES OF RPCL AND
FSCL FOR UNSUPERVISED AND SUPERVISED CLASSIFICATION

A. Unsupervised Classification

Given a set of data consisting of unlabeled samples from
several classes, the task of unsupervised classification (or
clustering analysis) is to label every sample in the same
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Fig. 4. Experimental results obtained in the case k = 4, ie., the number of units is equal to the number of ‘clusters in the data. (a) The learning traces,
i.c., trajectories of weight vectors during the learning process; obtained by the classical CL algorithm. In this figure, as well as in all the following figures
showing learning traces, each of the target locations is marked by an asterisk (in the present figure, only two of the four target locations appear). (b) The
learning curves, i.e., the changes of the component variables in every weight vector versus the learning step in the classical CL algorithms. (¢) The learning
traces obtained by FSCL. (d) The learning curves obtained by FSCL. () The learning traces obtained by RPCL.

class by the same symbol such that the data set is divided and usually we have no knowledge of the number of classes
into several clusters (classes) each associated with a different contained in the data set. In the sequel, we compare the
symbol. The task is harder than supervised classification for performances of RPCL and FSCL in carrying out the task
two reasons: we have no training samples with known labels, of unsupervised classification.
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Fig. 5. Experimental results obtained in the case k = 5 > 4, i.e., the number of units is larger than the number of clusters in the data. (a) The learning
traces obtained by FSCL. (b) The learning curves obtained by FSCL. (c) The learning traces obtained by RPCL. (d) The learning curves obtained by RPCL.

The task is carried out in two steps. First, the weight vectors
w1, - Wy of units in a CL net are trained by samples from
the data set using FSCL or RPCL. Second, each of the trained
weight vectors is used as the center of each possible class, and
every sample Z of the data set is labeled as follows.

if i = argmin;||Z — ;||%, then label Z by index i. (4)
As a result, all the samples with the same index 7 constitute a
class, and the number of indices is just the number of classes
contained in the data set. Each index has been assigned to at
least one sample (or at least m samples, m being a predefined
number; samples less than this number are regarded as forming
a cluster of noise points).

In the following experiments, the data set is again the same
as in Fig. 3. The learning rates o, c, are also the same as
those used in the experiments of Fig. 4(c)(e). In the sequel,
for convenience we denote the classes with centers located
at (0,-1), (0,1), (1,0), and (-1,0) by class 1, 2, 3, and 4,
respectively.

We first consider a simpler case of k£ = 4. The classification
results obtained by FSCL and RPCL are given in Tables I and
II, respectively.

It is seen from the tables that both FSCL and RPCL perform
similarly in this case. A recognition rate of about 97%. is
obtained. This rate is already very good since the four classes
in Fig. 3 are not separated and one cannot expect a zero error
rate. This suggests that FSCL can work equally well as RPCL
if we know the number of classes in the data set in advance.

Second we consider the cases of k larger than 4. Tables III
and IV present the classification results obtained when k = 5,
and Tables V and VI show the results obtained when k& = 6.
Again, the learning processes of FSCL and RPCL are similar to
those given in Fig. 5(a)«(d) and Fig. 6(a) and (b), respectively.

It can be seen from the above tables that now the perfor-
mances of FSCL and RPCL are significantly different. RPCL
can still obtain recognition rates of (96 + 98+ 97+ 97) /400 =
97% when k = 5 and (98 + 98 + 98 + 95)/400 = 97.25%
when k = 6, which are as good as in the case when k = 4.
However, the recognition rates obtained by FSCL have been
considerably reduced to (96 + 69 + 85 + 93)/400 = 85.75%
when k = 5 and (54 + 75 + 97 + 84)/400 = 77.5% when
k = 6, due to the influences of the disturbing units. By using
FSCL, it follows from Table III that unit number 4 becomes a
disturbing unit which forms a mixture group with 48 samples
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Fig. 6. Experimental results obtained in the case k = 6 > 4. (a) The fearning
traces obtained by FSCL. (b) The learning traces obtained by RPCL.

TABLE Il
THE CONFUSION MATRIX OBTAINED BY FSCL WHEN k = 5
unity unity unit3 unity units
class 1 0 0 3 1 96
class 2 69 0 1 30 0
class 3 1 85 0 12 2
class 4 1 0 93 5
TABLE IV
THE CONFUSION MATRIX OBTAINED BY RPCL WHEN k = 5
unit; unity units unity units
class 1 0 96 3 0 1
class 2 98 0 1 0 1
class 3 1 2 0 0 97
class 4 2 1 97 0 0
TABLE V
THE CONFUSION MATRiX OBTAINED BY FSCL WHEN k = 6
unity unity units unity units unitg
class 1 1 1 0 45 54 0
class 2 0 1 75 0 0 24
class 3 0 97 1 0 2 0
class 4 84 0 0 4 0 12
TABLE V1
THE CONFUSION MATRIX OBTAINED BY RPCL WHEN k = 6
unit; unit; units unit, units unite
class 1 1 0 0 98 1 0
class 2 1 0 98 1 1 0
class 3 - 0 0 1 98 98 0
class 4 95 0 2 0 0 0

TABLE 1
THE CONFUSION MATRIX OBTAINED BY FSCL WHEN k = 4.
unity unity units unity
class 1 0 1 3 96
class 2 98 1 1 0
class 3 1 97 0 2
class 4 2 0 97 1
TABLE 11
THE CONFUSION MATRIX OBTAINED BY RPCL WHEN k = 4
unity unity units unity
class 1 0 1 2 97
class 2 98 1 1
class 3 1 97 0 2
class 4 2 0 97

from each of the four classes when k& = 5; and it follows from
Table V that when k£ = 6, units number 4 and 6 become two
disturbing units with one drawing 49 samples from classes
1,4 and the other drawing 36 samples from classes 2, 4. In
contrast, by using RPCL, unit number 4 in Table IV has been

driven far away from the other four units. It is just a spare
unit which draws none of the samples. Similarly, units 2 and
6 in Table VI also become spare units.

Thus we see that for the case when k is larger than the
number of classes in the data set, the performance of the
FSCL deteriorates, while the RPCL is able to maintain a good
performance. Furthermore, RPCL can automatically find the
number of classes in the data set (e.g., in both Tables IV and
VI, there are only four clusters obtained by four units) and
leave the extra units unused as spare units.

B. Supervised Classification through RBF Net

The RBF network has rtecently become popular in su-
pervised classification due to its good performance and fast
training [4]-[6]. An RBF net consists of one hidden layer of
units with the Gaussian radial basis activation functions given

by
exp[~||1 — ;|2 /207]
Sk exp[-||T — @il|2/207]

9;(%) = (52)

and an output layer of linear units given by 0; = Z?:l wyi 95>
where W9 = [w@,- -, w,]" is the weight vector of the ith
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Fig. 7. The data set used for testing a RBF net. There are clusters which
are produced in the same way as the data shown in Fig. 3. The two clusters
centered at (0,1), (0,1) form class 1, and the two centered at (1,0), (-1,0)
form: class 2.

output urit, and k, q are the numbers of units in the hidden
and output layer, respectively.

As suggested by Moody and Darken [4], the training of a
RBEF net consists of two steps. First, the center weight vectors
w;,j = 1,---k are moved in an unsupervised manner by a
version of the k-means algorithm so that they become located
at the centers of clusters in the input data set. Then the weight
vectors w; are simply trained by the delta rule using a set of
desired output values d; and a learning rate a°:

A’Uq)gj = Olo(d,‘ - Oi)g]‘. (Sb)

A competitive learning algorithm, especially FSCL, has the
same function as the k-means algorithm, and thus can take the
same role in training the RBF net. However, here we should
point out that FSCL as well as the k-means algorithm work
well only when the hidden unit number k is appropriately
selected to be the same as the number of clusters in the
input data set, otherwise the performance of the RBF net
will deteriorate considerably. The problem is again that one
usually does not know the number of clusters in the data set

in advance.

In the sequel, we will show through the results of experi-
ments how this problem affects the recognition performance
of FSCL, and how RPCL can automatically solve the problem
so that good performances are insensitive to the selection of k.

The data set is given in Fig. 7. It consists of two classes
which have in total four clusters which are produced in the
same way as the data shown in Fig. 3. However, here two
clusters form a class. Specifically, the two clusters centered at
(0,1), (0,1) form class 1, and the the two centered at (1,0), (-
1,0) form class 2. In fact, we confront a “noisy” XOR problem.
Two sets of such data are generated. One is used as a training
set which consists of 400 samples. They are the same as
those in Fig. 3, with each cluster having 100 samples and
thus each class having 200 samples. The other is used as a
testing set, the 400 samples of which come from the same
four Gaussian distributions as the training set, but they are
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TABLE VII
THE CONFUSION MATRIX OBTAINED BY FSCL WHEN k = 4

Training Set  Testing Set

class 1 class 2 reject class 1 class 2 reject

class

1 189 6 B 189 5 6
CI“ZSS 6 187 7 5 189 6
TABLE VIII
THE CONFUSION MATRIX OBTAINED BY RPCL WHEN k = 4
Training Set  Testing Set
class 1 class 2 reject class 1 class 2 Teject
class 1 189 6 5 189 6 5
class 2 6 186 8 5 189 6
TABLE IX
THE CONFUSION MATRIX OBTAINED BY FSCL WHEN k& = 5
Training Set  Testing Set
class 1 class 2 reject class1  class 2 reject
class 1 174 4 22 167 2 31
class 2 16 170 14 13 170 17
TABLE X
THE CoNFUSION. MATRIX OBTAINED BY. RPCL WHEN k = 5
Training Set Testing Set
class 1 class 2 reject class 1 class 2 reject
class 1 189 6 5 189 5 6
class 2 6 187 7 5 190 5

obtained by different random samplings. Again, each cluster
has 100 samples, and thus each class has 200 samples.

The first step of training, i.e., locating the weight vectors
of hidden RBF units, is performed in the same way as
we did earlier in the case of unsupervised classification.
Then these trained weight vectors are fixed, and we train
the weight vectors of the top linear units by (5b). The
Gaussian activation functions g; of (5a) are calculated under
the parameter 02 = 0.1. The same parameter is used in the
four Gaussian distributions when we generate the data set.
Again, we first record the recognition results obtained in the
case k = 4, in the following Tables VII and VIII.

We see that FSCL and RPCL work similarly well in this
case, with a recognition rate around 94% and an error rate
below 3% for both the training and testing sets.

However, we find that the performance changes consider-
ably in the cases when the number of hidden units k is larger
than 4 or the number of clusters in the data set. Tables IX and
X present the classification results obtained when k£ = 5, and
Tables XI and XII show the results for & = 6.

RPCL can still maintain a recognition rate around 93% and
an error rate below 3% for both the training and testing sets
for both cases £k = 5 and kK = 6. However, the recognition
rates obtained by FSCL have been reduced down to around
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TABLE XI
THE CONFUSION MATRIX OBTAINED BY FSCL WHEN k = €
Training Set Testing Set
class 1 class 2 reject class 1 class 2 reject
class 1 171 3 26 171 1 28
class 2 10 170 20 12 172 17
TABLE XII
THE CONFUSION MATRIX OBTAINED BY RPCL WHEN k= 6
Training Set Testing Set
class 1 class 2 reject class 1 class 2 reject
class 1 190 4 6 185 6 9
class 2 7 189 4 3 185 12

85% in the cases of kK = 5 and k = 6, while the error rate is
still around 3%. That is, the performance of FSCL deteriorates
considerably.

Before closing this section, we would like to further note
that in fact the extra units could be discarded from the RBF net
after the weight vectors of the hidden units have been trained
by using RPCL. These extra units can be detected simply by
doing unsupervised classification as indicated in the first part
of this section. The exclusion of the extra units can save some
computation cost of the RBF net. Moreover, it may also help
to keep a good generalization ability. By comparing the results
given in Tables VIII, X, and XII, we can see that as the number
of extra units increases, the generalization ability is slightly
reduced although the good recognition rates prevail.

V. CURVE DETECTION By RPCL

Detecting curves (straight line, circle, ellipse, etc.) from
an image is one of the basic tasks in image processing and
machine vision. In the traditional pattern recognition literature,
a lot of methods have been proposed for solving this problem.
However, the study of using neural network techniques for
such problems may cast some new light on this classical but
important task. In [22], motivated by an investigation into the
learning characteristics of the Kohonen self-organizing map
[14], we developed a new neural network technique, a Hough-
like technique called Randomized Hough Transform (RHT),
for detecting curves. It has been shown [22] that RHT has
several advantages over the conventional Hough transform
(HT) and can improve the performance of HT significantly.
In the sequel, we further study the possibility of using a
competitive learning model for the curve detection tasks.

Let us assume a binary image (which is usually obtained
from a gray-level image by some conventional or neural
techniques, , .g., the Canny operator [23] or the Marr—Hildreth
operators [24]). Let F(@, %) = 0 be the parametric equation
of a curve with @ = [a1,---,a.,,] a vector of parameters
and ¥ = [z1,79] the coordinates of a pixel in the image.
If the image contains one curve expressible by the equation,
then there must be a number of “white” or “on” pixels
Z;,i = 1,---,n which all satisfy the equation F(@,Z;) = 0.
When n > m, the parameter vector @ can often be solved.
This problem is usually called a curve fitting problem and

it is not difficult to solve. However, if the image contains a
number of groups of pixels (e.g., a number of straight line
segments or a number of circles) with each group lying on its
own curve expressible by the parametric equation F'(«, &) = 0,
with the parameter @ differing from curve to curve, we need
to classify every pixel into one of the groups. Thus it is a type
of clustering analysis problem. However the clusters here are
more complex than what we have studied in the earlier section.

Let’s try to express the problem as a competitive learning
problem. Assume we have a number k& of neural units with
their outputs denoted by u;,7 = 1,---,k and weight vectors
by a@;,i = 1,---, k. For an input pixel £, we let the output of
each unit be given by

U; = 612, € = F(a,,?) (63)

Now each unit stands for one possible parametric curve in the
image. Our basic idea is to use competitive learning to modify
the weight vectors of these units so that after training the
output of each unit can selectively become the minimum for
the pixels drawn from a specific curve. Then the weight vectors
of the units would directly give estimates for the parameter
vectors of the curves. The implementation of this idea is quite
simple—just the repeated use of the following two steps.

Step 1: Randomly take a pixel £ from D, compute u;,? =
1,---,k by (6a) and then find the index ¢ with . = min; u,.

Step 2: Update the weight vector d. by d. = d. —
ac(0e2/0a,).

There D is a set containing all the “on” pixels of the image,
. is the learning rate, and each @, is initialized randomly.

This simple procedure is just what was proposed earlier by
two of the authors in [23]. Several further improvements are
possible as suggested in the following.

e First, ¢; given in (6a) can be replaced by

F(@,7)
0F (@, 7)/07]

T, =

(6b)

where |r;| is the orthogonal distance from & to the curve,
yielding a better error criterion than ¢;. Minimization of €2
actually corresponds to the minimization of the conventional
least square (LS) fitting errors, while the minimization of r?
corresponds to the minimization of the so called total least
square (TLS) fitting errors [20]. We have shown that the results
of curve fitting obtained from TLS are considerably better than
those from LS [20].

e Second, FSCL can be used to replace the simple com-
petitive learning, i.e., we can replace the above two learning
steps by the following.

Step 1: Randomly take a pixel # from D, compute u; = 72
by (6b) and then find the index ¢ with y.u. = min; vyju;.
Here v; = n;/ Zle n; is the same frequency parameter as
the one used for FSCL in the earlier sections of this paper.

Step 2: Update the weight vector @. by a. = d. —
a.(0r?/oa.).

e Third, it is better to use RPCL to replace FSCL, i.e.,

Step 1: Randomly take a pixel ¥ from D, compute u; = r?
by (6b) and then find the index ¢ with y.u. = min; v;u; and
index r with y,u, = minjx. v;u;.
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The 404 Points of Four Lines, 101 Points for Each
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Fig. 8. The data set used for testing curve detection by FSCL and RPCL. It
consists of pixels lying on four line segments which constitute the diamond
shape. The four linesare L1 : xy—xo = 1, L2 : 1422 =1, L3 : —x1 422
=1, L4: —r; — 22 = 1, and on each line there are 101 pixels.
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Step 2: Update the weight vectors @., @, by @, := d. —
a.0r2/0d. and @, := @, + o, 0r2/0d,.

That is, the winner u, is awarded using a learning rate o,
and the rival u, of u. is penalized using a smaller learning
rate a, < ac.

In the above, the curve is considered in its general form
F(a@,z) = 0. For a specific curve, the learning rules can
be written more precisely. For example, for detecting a line
@z + ¢ = 0, we have

or? _ 2ri(@ — ridi/||dl))
da;

atz + c
p ) T =
lla:ll 1|
from which @, := @, — a.0r?/da. in both FSCL and RPCL
could be computed by direct substitution. However, let us
teplace it by

(72)

8, = @, — o re(Z — TCFC/HECH)
1)

and let us replace @, := @, + o, 0r2/dd, in RPCL by

(7b)

[

(70)

Now the scalar factor ﬁgl-—ﬂ in (7a) has been replaced by
1/]|Z]|. Mathematically, this is equivalent to redefining the
learning rates «. and «,. The reason is to let the learning
rate be adjusted according to input Z, resulting in more stable
learning under noise. The details are similar to those given
in [20].

In_the sequel, we compare the performances of FSCL
and RPCL on a four-line detection problem through several
experiments.

As shown in Fig. 8, our data consists of the “on” pixels
(in this case, black pixels) in an image containing four line
segments which form a diamond. The theoretical equations of
the four lines are L1 : 21 — 2o =1, L2: 21 +10 =1, L3:
—z1+ 19 =1, L4 : —x1 — 2 = 1, and each line segment
in the actual digital binary image consists of 101 pixels. Now
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Fig. 9. The results obtained by the classical CL with k- =4. (a) The learning

traces. (b) The learning curves. Only one curve was detected.

the problem is to detect the two parameters of each line under
the line equation F(@,Z) = a1x; + aszo — 1 = 0 in an
unsupervised manner, using only the available pixels. In all the
experiments, we let for simplicity the number of neural units be
k = 4, which is the same as the number of line segments. The
weight vectors are all initialized by random numbers between
[0,1]. The learning rates are a, = 0.01, a, = 0.001.

Fig. 9(a) and (b) shows the learning traces and learning
curves for the four weight vectors obtained by using the
classical CL. The result is very poor although the learning
is quickly stabilized (see Fig. 9(b)). Now only one vector ws
reached a correct point (1,1), which is the parameter pair of
line L2. Two other vectors converged to wrong points, and
another vector was simply dead from the beginning.

Fig. 10(a) and (b) give results obtained by FSCL. Now,
some improvement is obtained. Two vectors w; and w,
reached two parameter pairs (1,-1) and (-1,1) of lines L1, L3.
However, there are still two vector ws,ws which moved
towards the wrong points (—3,3),(3,~3). So, we see_that
the four-line problem seems much harder than the four-cluster
problem given in Fig. 5, where FSCL can very easily produce
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Fig. 10. The results obtained by FSCL with k = 4. (a) The learning traces,
(b) The learning curves. Two curves were detected.

good tesults. But, here in Fig. 10(a) and (b) the performance
of FSCL is obviously quite suboptimal.

However, this problem can be solved by RPCL as. shown
in Fig. 11(a) and (b). Now the two vectors W, and w4 rapidly
converge to two parameter pairs (1,1) and (-1,1) of lines
L2, L3 (see Fig. 11(b)). The other two vectors 1, ws also
moved towards two parameter pairs (1,-1), (-1,-1) of lines L1
and L4 although they converge more slowly. In particular, i3
has taken a long indirect way to avoid the barrier produced
by the trace of wj.

VI. SOME FURTHER REMARKS ON THE NUMBER OF UNITS

In the previous sections we have only considered the cases
that the number k of units in the CL net is equal to or larger
than the number of clusters in the input data. There will
naturally arise a question: What will happen for FSCL and
RPCL when k is smaller than the number of clusters, and
is it possible to detect this occurrence and use it to find a

647

0.5 e A__w3

wi
0.5 : 3

1 " L 1
1

-15 o 1 -

2

25 : i .
15 a1 05 0 05 1 15 2 25 3

al

(a)
3} -solid wl ~ dashs w2 - dot-dashs w3 .. dots wd ]
i
3
g
]
4 ]
K15 4
4
0 100 200 300 400 500 600 700
x10
the number of learning steps
(b)
Fig. 11. The results obtained by RPCL with k = 4. (a) The learning traces,

(b) The learning curves. All four curves were detected.

good value for k? This section will answer this question in a
positive way for the RPCL network.

Fig. 12(a) and (b) show the results obtained by both FSCL
and RPCL when k& = 3. The data set used here is still the
four clusters given in Fig. 3, and thus k is too small. It can
be seen from Fig. 12(a) and more clearly from Fig. 12(b)
that all the three weight vectors oscillate strongly between
different clusters and the learning can not stabilize with the
fixed learning rate a. = 0.05. Moreover, if we reduce a. to
zero as the learning proceeds, then each of the three weight
vectors will be finally stabilized at some point which is either
away from a cluster center at a certain distance or is a boundary
point of two different clusters, as marked by the small black
rectangles in Fig. 12(a). Clearly, when this kind of learning
behavior occurs for unsupervised classification or RBF net,
the performance will not be good, since each of three weight
vectors will draw samples from two different classes. Thus,
like the k-means algorithm, both FSCL and RPCL will work
poorly if k is too small.
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Fortunately, it is quite easy for RPCL to avoid such sit-
uations, e.g., just by the simple method of choosing a large
number as k such that it is surely larger than the number
N. of clusters in the data set. This may not be desirable,
however, since a large k& >> N, will increase the training time.
A better way is the following: we can start with a small number
or a guess for k£ and perform unsupervised classification as
was done in Section IV. By checking whether there are spare
units left, we would know if & > N.. If yes, then take the
present results as the solutions; if not, increase k by adding a
positive increment, or double it and then perform unsupervised
classification again. The same procedure can be repeated until
k > N.. Actually, few iterations are needed for a moderately
large number as the starting value of k, especially when there
are not too many clusters in the data set.

VII. CONCLUSIONS

Similar to the problem of selecting an appropriate k in the
classical k-means algorithm, the present Competitive Learning
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algorithms have also a similar crucial problem: the selection
of an appropriate number of neural units. It has been shown
that FSCL significantly deteriorates its performance when the
number of units is inappropriately chosen. A new algorithm
called RPCL has been developed from the basic idea that for
each input not only the winner unit is modified to adapt to
the input, but also its rival is de-learned by a smaller learning
rate. RPCL can automatically allocate an appropriate number
of units for an input data set. The experimental results have
shown that RPCL outperforms FSCL when they -are used for
unsupervised classification, for training a RBF network, and
for curve detection in digital images.
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