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Robust Principal Component Analysis
by Self-Organizing Rules Based
on Statistical Physics Approach

Lei Xu, Senior Member, IEEE, and Alan L. Yuille, Member, IEEE

Abstract—This paper applies statistical physics to the problem
of robust principal component analysis (PCA). The commonly
used PCA learning rules are first related to energy functions.
These functions are generalized by adding a binary decision
field with a given prior distribution so that outliers in the data
are dealt with explicitly in order to make PCA robust. Each of
the generalized energy functions is then used to define a Gibbs
distribution from which a marginal distribution is obtained by
summing over the binary decision field. The marginat distribution
defines an effective energy function, from which self-organizing
rules have been developed for robust PCA. Under the presence
of outliers, both the standard PCA methods and the existing self-
organizing PCA rules studied in the literature of neural networks
perform quite poorly. By contrast, the robust rufes proposed here
resist outliers well and perform excellently for fulfilling various
PCA-like tasks such as obtaining the first principal component
vector, the first k& principal component vectors, and directly
finding the subspace spanned by the first & vector principal
component vectors without solving for each vector individually.
Comparative experiments have been made, and the results show
that our robust rules improve the performances of the existing
PCA algorithms significantly when outliers are present.

I. INTRODUCTION

RINCIPAL component analysis (PCA) is an essential

technique for data compression and feature extraction, and
has been widely used in statistical data analysis, communica-
tion theory, pattern recognition, and image processing.

Oja [22] found that a simple linear neuron with a constrained
Hebbian learning rule can extract the principal component
from stationary input data, thereby building the first connection
between self-organizing rules in neural networks and PCA
techniques. Thereafter, there was increasing interest in the
study of connections between PCA and neural networks. A
symmetrical error-correcting learning rule was proposed by
Williams [35] for a two-layer network which can discover
the subspace spanned by the first & principal components.
Muiltilayer perceptron (MLP) neural networks, which learn by
the backpropagation algorithm in supervised autoassociative
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mode, have been suggested for data compression [8] and have
been shown to be closely connected to PCA [1], [5]. A number
of unsupervised learning rules for extracting principal com-
ponents or their spanned subspace have been also proposed
and studied [16], [26], [36], [28], [34], [32], [20], [4], [6]-
The relationships between PCA and the emergence of feature-
analyzing properties in the cortex field of biological systems
have been revealed and studied [18], [3], [40], [21].

Furthermore, some extensions of PCA have also been made.
For example, in [17], the original PCA problem has been
extended into the so-called constrained principal components
analysis, i.e., the principal components of data are extracted
in such a way that they are constrained to be orthogonal
to some undesired subspace (e.g., a subspace dominated by
interfering noise or redundant components). In [37], [27],
instead of extracting principal components or the subspace
spanned by the principal components, the rules for extracting
minor components (i.e., the counterparts of the principal
components) have been investigated, and have been applied
to total least square curve and surface fitting [37] and dual
subspace pattern recognition [38].

However, almost all the above-mentioned PCA algorithms
are based on the assumption that data have not been spoiled
by outliers.! In practice, real data often contain some outliers,
and usually they are not easy to separate from the data set.
As will be shown by the experiments given in this paper,
these outliers will significantly deteriorate the performances
of the existing PCA algorithms. Currently, little attention has
been paid to this problem in neural network literature, although
the problem is essentially important for real applications. In
the literature of statistics, the importance of this problem is
well appreciated, and a number of efforts have been made to
tackle the problem. As will be further shown in Section VI,
however, the existing algorithms in the statistics literature [14],
[33], [10], [9] are based on computations in batch way, and are
obviously different from those self-organizing or adaptive rules
currently studied in the paradigm of neural network learning.

This paper attempts to develop self-organizing rules for
robust PCA. Recently, there have been a number of successes
in applying the statistical physics approach to a variety of
computer vision problems [42], {43], [41], [12]. It has also
been shown that some techniques developed in robust statis-

!Except the algorithm given in [37], where outliers can be resisted to some
extent.
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tics (e.g., redescending M-estimators, least-trimmed squares
estimators) appear naturally within the Bayesian formulation
by the use of the statistical physics approach. In this paper, we
adapt this approach to tackle the problem of robust PCA. First,
we connect some existing PCA learning rules [22], [25], [36]
to energy functions. Then we generalize the energy function by
adding a binary decision field with a given prior distribution
so that outliers are taken into consideration. Each generalized
energy function is further used to define a Gibbs distribution
from which a marginal distribution is obtained by summing
over the binary decision field. This marginal distribution
further defines an effective energy function, which is used
to derive self-organizing rules for robust PCA. Computer
experiments have been made comparing the obtained robust
self-organizing rules with several existing PCA algorithms,
including the standard eigenvector analyzing algorithm and
those algorithms given in [22], [25], [36]. These experiments
showed that in the presence of outliers, the eigenvector-
analyzing algorithm performs very badly, the algorithms given
in [22], [25], [36] work better but still give quite poor results,
while the robust rules developed in this paper have improved
the performances of the existing PCA algorithms significantly.
From Sections II to IV, we study the robust PCA problem of
finding only the first principal component. In Section II, some
existing PCA algorithms are introduced and then connected to
energy functions. Section Il shows how these energy functions
are used to form the corresponding Gibbs distributions, and
then to determine the related effective energy function by the
statistical physics approach. Thereafter, robust self-organizing
batch way rules for PCA are derived based on the resulting
effective energy functions. Furthermore, in Section IV, the
robust batch way rules are further converted into on-line
way or adaptive rules. Results obtained for solving for the
first principal component vector are given, in comparative
experiments, to show the significant improvements achieved
by the proposed robust rules. In Section V, we generalize
the robust rules obtained in the previous sections to the
cases of solving for the first k(> 2) principal components
or directly for the subspace spanned by the first & principal
component vectors without solving for each of these vectors
individually. Again, the results of comparative experiments
show the success of the proposed robust rules for resisting
outliers. Section VI gives further remarks on the selection
of parameters used in the proposed rules, on making minor
component analysis robust, and on other existing robust PCA
algorithms developed in the literature of statistics.

II. PCA, SELF-ORGANIZING RULES, AND ENERGY FUNCTIONS

Assume that & is an n- dlmensmnal random vector with zero
mean E{Z} = 0. The dot product ¢TF is called the principal
component 1f E{(q?T £)2} = Maxy E{(mTZ)?} with the
constraint MTm = 1. The solution for the vector 1 is the
first dominant eigenvector @ of the data covariance matrix,
given by

£ =Ad,  with & = E{zzT} 1
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where A is the largest eigenvalue of 3. Correspondingly, the
process of finding ¢ (or equivalently, A) is called principal
component analysis (PCA).

For a glven data set {F;, i = 1,---, N} with zero mean
(1/N) Z —1 % =0, a simple approach to do PCA is given
as follows.

1) Compute the simple variance matrix

= —Z“ . )

2) Use any of the existing standard eigenvector analyzing
algorithms (e. g Jacobs method) to solve

Sé=2¢ ©)

where A and $ is the largest eigenvalue and its corresponding
eigenvector, respectively.

This standard eigenvector-analyzing-based approach has
two major problems. First, the solution of 5@ = A is made
after all the data have been collected and S has been calculated,
i.e., the approach works in the batch way. When a new sample
Z' is added, although it is not difficult to get the corresponding
new variance matrix by §' = (NS + ##7)/(N + 1) with a
small amount of computation, all the computations for solving
S& = Mg need to be repeated to solve 5'¢ = Ad. So the
approach is not suitable for real applications where data come
incrementally or in the on-line way. Second, as will be shown
by the results of experiments, the approach will deteriorate
drastically and produce unacceptable results on a data set with
outliers. This unfavorable feature has also been well shown in
Huber’s book [14]. He has demonstrated that even one outlier
can by itself determine an entire component. Worse still, this
component can even have one of the largest eigenvalues.

The first problem can be solved by a number of existing self-
organizing rules for PCA [22], [24], [36], [39]. Three such
rules are listed as follows:

Mt + 1) = m(t) + ca(t)(Fy — M(t)y?) )
o o L m(t)
e+ 1) = 70 + ) (39— des®) O

it +1) = m(t) + (@ - @) + (y —y)d] (6

where y = m(t)TZ, @ = ym(t), ¥’ = m(t)T 4, and a,(t) >0
is the learning rate which decreases to zero as ¢t — oo while
satisfying certain conditions, e.g.,

Zaa(t) = oc, Zaa(t)q <o

Each of the three rules will converge to the principal
component vector 5 almost surely under some mild conditions
which are studied in detail in [22], [24], [36], [39]. By
regarding 77 as the weight vector (i.e., the vector consisting
of synapses) of a linear neuron with output y = mTZ, all
of the three rules can be considered as modifications of the
well-known Hebbian rule

for some ¢ > 1. (7)

it + 1) = 1i(t) + aa(t)Ty (®)
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for self-organizing the synapses of a neuron. In comparison
with the original Hebbian rule, (4)—(6) each has an additional
term for preventing ||7(¢)|| from going to co as ¢t — co.

Among the three rules, (4) requires the smallest number
of computations for each updating of m(t). Moreover, the
updating of each component m(z) of (*) is just based on
locally available variables m(%)(¢) and y. This kind of locality
is usually regarded as being “more biologically plausible”
[13]. Equation (5) is slightly different from (4) in that an
explicit normalization term 73(£)7 7 (t) is used. This destroys
the locality property of (4) since the updating of m(?(¢) also
involves m()(t) for all j # 5. However, we can show that
(5) directly relates to an energy function which can provide a
bridge for generalizing the rules (4), (5) into robust versions
by using the statistical physics approach. Equation (6) is also
local in the sense that the updating of m(?(¢) only involves
mC)(t), y, v/, and u®, all of which are locally available at
the synapse corresponding to this m(%)(t). Moreover, (6) also
possesses the advantage that it directly relates to an energy
function, and thus can be generalized into a robust version by
the statistical physics approach.

As will be shown later by the experimental results given in
Section IV, the above self-organizing rules (4)—(6) can also
partly solve the second problem of the simple approach given
by (2) and (3), i.e., the problem of being sensitive to outliers.
Although some better outlier-resisting versions of (4) and (5)
have also been recently proposed in [37], they work well only
for data which are not severely spoiled by outliers. Here, we
adopt an approach which is totally different from that used
in [37]—we generalize (4)—(6) into more robust versions by
using the statistical physics approach.

In order to use the statistical physics approach, we need to
connect these rules to energy functions. First, we show that
(5) directly relates to the following energy function:

2 =T
. T = y m’ N
Ji(m) = mrm- =tr¥ — —./——— 9
or, in terms of a given sample set &;, 1 = 1,---, N,
N n
1 mT;zTm
Ji(m) = = (i’-T:i;‘i - — . (10)
7 =T .=
Nl,=1 mIm

(Note: it is not difficult to see that J;(m) > 0 since #T% —
(y?/mTm) = ||Z)|?sin® Ozm > 0, where y = mT 4 and ..,

is the angle between i, Z.)
On the one hand, the gradient descent rule for minimizing

Jl(n_’t) is
din _ ah(m) 2 (. wTSh
@ om Cmtm\Cm T ) (D

On the other hand, by taking expectation on (5) and noticing
that 7(¢) changes much more slowly than #, we have

ﬁz(t)TZﬁ‘z(t)m
a0
12)

This is just the discrete form of (11) if the learning rate «,(¢) is
appropriately selected. In other words, (5) is the adaptive rule

At + 1) = m(t) + aq(t) (zm(t) -

(also called the on-line rule or the stochastic approximation
rule) for minimizing J; (%) in the gradient descent manner.

Let us further show that (6) is an adaptive rule for minimiz-
ing the following energy in the gradient descent manner:

Ja (1) = E(||% — a|*)

or

13)

Jo(1) = ( an, - u,|l2)

where @ = ym can be regarded as a reconstructed pattern of
input Z from the output y, and minimizing J2(77%) is equivalent
to the problem of reconstructing Z in the least square sense
[36].

The gradient descent rule for minimizing J>(7) is given by

i dJy(m)
dt -~ om
OE(|Z|? - 2mT 22T + mTmnT 22T m)
B o
_ O(trx — 2T T + mTmmT X
- om
= 2[(1 — ||7i||®) S + S — (mT Sm)m). (14)

On the other hand, by taking the expectation of (6), we get

m(t+ 1)

= m(t) + aq () Ely(Z — @) + (y — v')3]

= 11(t) + aq (B)[Zi(t) — (m()T Ta(t) Jii(t)
()T () Zai(t)].

Again, we see that (15) is the discrete form of (14). That is,
(6) is an adaptive rule for minimizing J»(7%) in the gradient
descent manner.

Finally, let us consider (4). As pointed out in [2], the rule
given by (4) is not a gradient descent rule of any kind of
energy function. However, in [36], [39], one of the present
authors has recently proved the following results.

1) Let hy = Zy — my?, hy = By — (Mm/mIm)y?; then
hThg >0, E(hl)TE(hl) > 0.

2) Let by = y(Z — @) + (y — ¢/ )&; then E(h1)TE(k3) > 0.

3) Both J; and J; have only one local (also global)
minimum tr (¥) — #TT$, and all the other critical points (i.e.,
the points that satisfy 8J;(mi)/0m = 0, ¢ = 1, 2) are saddle
points.

The above results revealed that (4) is a downhill algorithm
for minimizing J; in both the on-line sense and average sense,
and for minimizing J» in the average sense. Since the principal
component vector ¢ is the only local minimum of J;, 7 =1, 2,
the adaptive rules (4)—(6) will finally reach the same solution.
Therefore, we can also connect the rule (4) to either J; or Jo.

+ S(t) — (15)

III. RoBUST PCA BY TECHNIQUES OF STATISTICAL PHYSICS

For a data set {Z;, ¢ = 1,---, N}, the energy functions
Ji(m), Ja(m) given by (10) and (13) can be regarded as



134

special cases of the following general energy function:
2(&i, m) >0 (16)
where z(&;, m) is the portion of energy contributed by the

sample #;, and
ST = =T .=
mI L5 m
—~—) for Jp

for Js.

2(Zi, M) = (f,.T z -

= ||%; — 4| an

Following [42], [43], we now generalize energy (16) into

N
E(V, ) =Y Viz(&, @) + Bpie(V)  (18)
i=1

where V = {V;, i = 1,---, N} is a binary field {V;}, with
each V; being a random variable taking value either O or 1. V;
acts as a decision indicator for deciding whether Z; is an outlier
or a sample. When V; = 1, the portion of energy contributed
by the sample Z; is taken into consideration; otherwise, it is
equivalent to discarding Z; as an outlier. Ep,io,(V') is the a
priori portion of energy contributed by the prior distribution
of {V;}. A natural choice is

N
Eprior(V.) = WZ(]- - V) (19)
=1

This choice of prior has a natural interpretation: for fixed 7,
it is energetically favorable to set V; = 1 (i.e., not to regard
#; as an outlier) if 2(Z;, M) < /7 (i.e., the portion of energy
contributed by Z; is smaller than a prespecified threshold) and
to set it to O otherwise. .

The goal is to minimize E[V, ] with respect to {Vi}
and m simultaneously while obeying the constraint that every
V; only takes binary value. This problem is a mixture of
discrete and continuous optimization. The solution usually
cannot be calculated analytically, and is also hard to ob-
tain by the gradient descent approach. Although, by setting
AE(V,m)/dm = 0 and solving for the 7 in terms of
the {V;}, one may transform the problem into minimizing a
function of the {V;} subject to some constraints, it still leads
to a hard discrete optimization problem.

To help us solve this problem, we define a Gibbs distribution
[30]:

PV, ] = %e‘ﬁE[V!'ﬁl (20)
where Z is the partition function which ensures Y ¢ [ P
[V, /] = 1. Now, minimizing E|[V, 1] is equivalent to max-
imizing P[V ). But this still does not eliminate the difficulty
of discrete optimization with respect to the binary variables
{V;}. One solution for the problem is to compute the marginal
probability distribution Prargin(77i) by averaging out these
variables {V;}, taking into consideration the constraint that
they only take binary values, and then to use the maximization
of Prargin(7) to approximate the maximization of P(V, ).
This is equivalent to computing the mean field approximation
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to the statistical physics system by the saddle point method
[30]. Analytically, Ppargin(1) can be computed as follows:

1 T
Prnargin(1ft) = EZ ¢ L@ m) (-}

-1 =

i Vi={0, 1}
— ZH{e—ﬂn + e—ﬂZ(a‘c‘i,ﬁi)}

~Ngn L
= £ Z H{1+e—5(2(1i1m)‘7}}}.

i

= ZeNO we obtain

e~ PLViz(Z:, A)+n(1-Vi)}

21

Defining Z,,,

A) = L —PEuu(R)

Pma,rgin(m) - (22)

m

where

Eog(m) = IB—lZlog{l + e PEE -0}y (23)

Maximizing Pracgin(772) With tespect to z is equivalent to
minimizing Eeg (7). The form of F.g can be regarded as a
generalization of a robust redescending M -estimators [14] to
the PCA problem. It is clear that each term in the sum for Eeg
is just z(Z;, m) if it has a small value, but becomes constant
as z(Z;, m) — oo. In this way, outliers which are more likely
to yield large z(Z;, 7) are treated differently from samples,
and thus the estimation 77 obtained by minimizing Feg(1)
will be robust and able to resist outliers.

E.g(m) is usually not a convex function, and may have
many local minima. The statistical physics framework suggests
using deterministic annealing to minimize E.g (7). That is, by
the following gradient descent rule (24), to minimize Eg(m)
for small 3 and then track the minimum as [ increases to
infinity (the zero temperature limit):

om _ _0Fea(ii)
ot~ om
. . OF g (mi(t
mt+1) = m(t) — ab(t)—ﬁj%w
. 1
= m(t) — ab(t)zl I eBGE:, mt)—m)
' oni(t) ey

where ap(t) is the learning rate, again it satisfies some
condition like (7).

Specifically, corresponding to the energies Ji, Ja given in
(9) and (13), we have the following batch way for PCA:

. . 1
m(t+ 1) = m(t) + ab(t)zl T IGG A
_ __m_(t>_
. (J;ly, =0 0] Jl) (25)
L . 1
wmt+ 1) = m(t) + ab(t)zl — A
& — @) + (3 — ¥i)E] (26)
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where, as t — oo, the learning rate a(t) — 0 and the
annealing parameter § — oco.

Finally, the converged vector Miconverge is taken as the
resulted principal component vector which has avoided the
effects of outliers. In addition, a byproduct can be easily
obtained by

Vi=1,
=0,

if Z(i,” mconverge) < \/’T]
otherwise 27
which indicates whether Z; is an outlier (V; = 0) or not
Vi = 0).

Before closing this section, we would also like to make
a discussion on the relationship of our approach to maximal
likelihood (ML) estimation of finite mixture distributions.

Note that we can also rewrite (23) in the following form:

Passginl) = L[ (e + @ Wy = [[ (&, )
= [[{afi(@:, m) + bfa(Z:, M)} (28)

with a, b being constants which depend only on 3, 7, but are
independent of &;, m, and

o—B(Ei, ™)

v 1
fi(d@, m) = C1o, 7

f2(Z, m) = C2
where (i, Cy are normalizing constants which ensure
that [ fi(Z;, m)dZ; = 1, [ fo(Fi, Mm)dT; = 1. Because
fi(Z;, M) is constant, we must require that the integral is
taken over a compact domain enclosing the datapoints or,
equivalently, redefine fi(Z;, M) so that it vanishes outside
this compact domain.

It follows from (28) that maximizing Prargin(77) with
respect to 7 is equivalent to solving a maximum-likelihood
(ML) estimation of a mixture distribution [31], [15] of
f1(Z, m) and fo(Z;, m). Clearly, fi(Z;, ) is a uniform
distribution and f2(Z;, M) is a distribution that depends on
our choice of z(#;, m). Thus, from the ML perspective, our
model assumes that the outliers are generated by a uniform
distribution and the data are generated by a process that
depends on our specific choice of 2(Z;, ). Note that this is
a Gaussian for both of the choices described by (17).

IV. ROBUST ADAPTIVE RULES AND COMPUTER EXPERIMENTS

The rules (36), (25), (26), like the simple approach given
by (2), (3), work in the batch way, and thus are not suitable
for situations where data come incrementally, in the on-line
way. Now, let us convert them into adaptive versions and, at
the same time, maintain their robustness in the presence of
outliers.

One way to reach this goal is quite simple: just remove
the summation in (24), or equivalently, minimize the energy
portion contributed by the current sample &;:

e(m, ;) = _—llog {1+ e PlE A)=n}y

29
7 29

By the gradient descent approach, we can get the following
general adaptive rule:

1 0z(Z;, m(t))
1+ eBGEm®)-n)  m(t)
(30)
By taking the expectation of both sides of (24) and (30),
under the assumption that Z; comes from a stationary process
and that 771(¢) changes much slower than &;, we can obtain
the equation

it + 1) = m(t) — aa(t)

m(t+ 1)
= m(t) — a(t)E{

1 d2(i, (t))
1+ PCGEAO-m  am(?)

(€D

where a(t) = a,(t) = Noy(t). This means that (30) is an
adaptive or stochastic approximation rule which minimizes
Eg(m) of (23) in the gradient descent manner.

According to the specific forms of z(Z;, m) for Jy, Jo, we
can rewrite (30) into the following adaptive self-organizing
rules for PCA:

- — o3 1
it +1) = it) + oa() e mm=
gy - D)
(zl% OOk ) (32)
7t + 1) = m(t) + aqt 1
7 =m (s 2 )1 + eP(E, m(t)—n)
(@ — @) + (v — y)E). G3)

We can observe that the difference between (5) and (32) or
(6) and (33) is that the learning rate a,(t) has been modified
by a multiplicative factor

1

am(t) = 1 1 BGGE, A -m)

G4

which adaptively modifies the learning rate to suit the current
input £;. This modifying factor has a similar function to that
used by one of the present authors for robust line fitting
[37]. But the modifying factor (34) is more sophisticated and
performs better.

Based on the connection between (4) and energy function
J1 or Jz (discussed at the end of Section II), we can formally
use the modifying factor a,,(¢) to turn the rule (4) into the
following robust version:

m(t+ 1)
" 1 = BN
= m(t) +a, (t)l + ePG@E, mE)—n) (-Tiyi - m(t)yi )a

(35)

and the corresponding batch way rule is given as follows:

At + 1) = ()

1 L
+ oot T e = (it — ()
i

(36)

where z(F;, m(t)) = (ZT & — (MT ()ZZT m(t)/mT (£)m(t)).
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(©

Fig. 1. The projections of data samples on the -y, y-z, and 2~z planes,
without outliers.

In the rest of this section, we introduce some results obtained
from comparative experiments on the rules given in Section II
and their robust versions given earlier in this section.

Let & be a 3-D vector coming from a 3-D population of
400 samples with zero mean. These samples are located on
an elliptic ring which is centered at the origin of the R3
space, with the largest elliptic axis being along the direction
(-1, 1, 0), the plane of the two elliptic axes intersecting the
z—y plane with an acute angle (30°). The projections of the
400 samples on the z—y, y—2, and z—z planes are shown in
Fig. 1(a)—(c), respectively.

Without the presence of outliers, the simple approach given
by (2), (3) finds that the principal component vector of this data
set is ¢, = [0.0710, 0.8876, 0.4551]7. The results of using
(4)—(6) are given in Fig. 2, where UA1, UA2, UA3 denote
the unrobust adaptive rules (4), (5), and (6), respectively, and
the vertical axis denotes the angle 6 between the present m(t)
and q;,,:

g =46, where 0 < 6 <90° 6§ =180° — ¢, otherwise;
2T
t
and ¢’ = cos™! (M—) (37
llésll I

We see that all three rules converge to q_;p quite perfectly.

Next, the data set is contaminated by ten outlier points
(the amount of contamination is only 2.5% of the data set).
The projections of this spoiled data set on the z-y, y-=,
and z-z planes are shown in Fig. 3(a)(c). This time, the
result of the simple approach given by (2), (3) is (b
[-0.8285, 0.1567, 0.5375]" and the angle between & and the
right one ¢,, is 71.04°. It is obvious that the result is absolutely
unacceptable. This reveals that this simple approach has no
outlier-resisting ability.
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UA1, UA2 behave almost identically

sor &

a0t

angle

30
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0 1000 2000 3000 4000 5000 6000 7000 8000

leaming step
Fig. 2. The leaming curves in the comparative experiments for the first

principal component vector using the unrobust adaptive rules, (4), (5), and
(6), denoted by U A1, UA2, UA3, respectively.

{:}

-
-

(a) b

(c)

Fig. 3. The projections of data samples on the -y, y-z, and 2—z planes,
with ten outlier points.

Fig. 4 gives the results of using the robust batch way rules
(35), (25), (26), and their unrobust counterparts:
= 7(t) + e (t)_(Fiws — (t)y])

i

m(t+ 1) (38)

m{t + 1) = m(t) + ab(t)Z(fiyi - ﬁ;{%!&z) (39)
At +1) = A(t) + op(t) Y _[yilFi — )+ (vi — y})T:]. (40)

i

In Fig. 4, RB1, RB2, RB3 denote the robust batch way
rules (36), (25), and (26), respectively, and UB1, UB2, UB3
denote the unrobust batch way rules (38), (39), and (40),
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UBL, UB2 behave almost identically

st RB1, RB2 behave almost identically

angle

learning step

Fig. 4. The learning curves obtained in the comparative experiments for the
first principal component vector by robust and unrobust rules working in the
Batch way. RB1, RB2, RB3 denote the robust batch rules, (35), (25), and
(26), respectively, and UB1, UB2, UB3 denote the unrobust batch rules,
(38), (39), and (40), respectively.

respectively. It can be seen that all of the three rules con-
verge to a vector which has an angle of 20.97° to the
correct $p. The result is certainly much better than that
obtained by the simple approach given by (2), (3). This
means that the rules UB1, UB2, U B3 do have some outlier-
resisting ability. However, this solution still has a big error.
By contrast, the learning process by all the robust rules
RB1, RB2, RB3 converges to a vector which has an angle
of only about 1.06° to the correct ¢7p. The solution is very
accurate and significantly better than that obtained by the
unrobust rules UB1, UB2, UB3. This shows that the robust
rules RB1, RB2, RB3 do resist outliers very well. In this
experiment, the parameters used are a3(t) = 0.3, 8 = 0.5,
and 1 = 4 for all the rules. Here, for simplicity, we kept these
parameters constant. We would expect that better solutions
could be obtained when a — 0, 3 — o0, 7 — 0 in a suitable
way.

The results of using the robust adaptive rules (35), (32), and
(33) and their unrobust counterparts—the rules (4), (5), and
(6)—are shown in Fig. 5, in which RA1l, RA2, RA3 denote
the robust adaptive rules (35), (32), and (33), respectively, and
like in Fig. 2, UA1, U A2, U A3 denote the unrobust adaptive
rules (4), (5), and (6), respectively.

We again see that all three unrobust rules converge to a
vector which has an angle of about 21° to the correct 5,,, while
the learning process by the robust rules RAl, RA2, RA3
converge to a very accurate solution which has an angle of
only about 0.36° to the correct ¢,. This again revealed that
the robust rules proposed in this paper have improved the
outlier-resisting ability of the conventional PCA algorithms
significantly. In this example, the parameters used are a,(t) =
0.001, 8 = 0.5, and n = 4, respectively.

From Figs. 2, 4, and 5, we can also observe that the normal-
ized versions UA2, UB2, RA2, RB2 behave almost identi-
cally to their unnormalized counterparts UAl, UB1, RAl,
RB1. This suggests that the unnormalized versions are better
choices than the normalized ones because the unnormalized

UAL1, UA2 behave almost identically

s} S RA1, RA2 behave almost identically
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Fig. 5. The learning curves obtained in the comparative experiments for the

first principal component vector by robust and unrobust rules working in the
adaptive way. RA1, RA2, RA3 denote the robust adaptive rules, (35), (32),
and (33), respectively. As in Fig. 2, UA1, UA2, UA3 denote the unrobust
adaptive rules, (4), (5), and (6), respectively.

versions can save the computation of m(t)Tm(t) at each
learning step. In addition, Figs. 2, 4, and 5 also show that ei-
ther UAL, UB1, RAl, RBlorUA2, UB2, RA2, RB2 con-
verge faster but fluctuate more than U A3, UB3, RA3, RB3.
Does this means that the third set of rules is inferior to the
first two sets of rules in the sense of converging speed, but
is superior to the two sets in the sense of low variations?
The answer is negative. Our further experiments have shown
that the convergence speed and fluctuation of every set of
rules depends on the value of the learning rate. The larger the
rate, the faster the convergence and the bigger the fluctuation.
The scale of the rate to each set of rules is different. Even
more interestingly, the three sets of rules can behave almost
identically by appropriately scaling the learning rate used in
each set. For example, when we let the learning rate used by
the third set be two times as large as that used by the first two
sets in an experiment similar to that shown in Fig. 4, we find
that the learning processes of all of the three sets are almost
the same. Therefore, we should consider that the three sets
of rules are equally good in the sense of convergence speed.
However, in the sense of computations consumed, the first set
UAl, UB1, RAl, RB1 is the best. Thus, we recommend that
this set be used in practice. Nevertheless, the other two sets
are also of theoretical importance because of their roles for
developing the robust versions in the previous sections.

V. ROBUST ANALYSIS OF k PRINCIPAL COMPONENTS
AND k-DIMENSIONAL PRINCIPAL SUBSPACE

In real applications, such as image processing and data
communication, the first principal component is not sufficient
and the first k principal components are used. They are defined
as linear combinations J;f Z, 7 =1,---,k of the elements of
Z so that E{((Z’fi’)2}, j =1,---,k are maximized under the
constraints @7 q-;j = ;5 for j < i.

The solution for the vectors Jj, jJ =1,---,k are the k
dominant eigenvectors of the data covariance matrix ¥ given
by (1). They are the k orthogonal unit vectors solved by
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2@ = A\jéj, j =1,---,k with Aj, j = 1,k being the k
largest eigenvalues of ¥ in descending order of magmtude
Correspondingly, the proccss of ﬁndmg d)J, i=1--,k
(or equivalently, Aj, j = -, k) is called k—prmmpal
component analysis (lc-PCA).

In some applications, such as subspace pattern recognition
[23], we do not need to get d-;,-, j = 1,---,k individually,
but only need to get the subspace spanned by these principal
component vectors. We call such a subspace the k-dimensional
principal subspace, and the process of obtaining this subspace
the principal subspace analysis.

The section consists of two parts, each of which discusses
how to generalize the robust rules developed in Section IV
to implement the robust k-PCA, the k-dimensional principal
subspace analysis, respectively.

Let us consider the first part. Now, we need k linear neurons
with k weight vectors 7i;, § = 1,-- -, k, and we expect that
each 7; can converge to the jth principal component vector (i;j
during the learning process. By just directly using any of those
rules developed in the previous sections on 17;, j =1,---,k,
we can expect that all of these vectors will converge to the
same vector—the first principal component vector q-;]. This is

not what we want; instead, we want that /m;, j = 1,---,k
should become orthogonal to each other and converge to k
different principal component vectors ¢;, j = 1,---, k.

There are two ways to reach this goal. One is the
Gram-Schmidt orthonormalization (GSO)-based approach,
like that used in the unrobust PCA algorithm SGA [27] and
GHA [34]. The basic idea is to still use any one of the robust
rules developed in the previous sections on 77, j = 1,---,k,
but at the same time also to use some orthonormalization
procedure on these vectors after each learning step. Based
on this basic idea, we can generalize the robust rules (35),
(32), and (33) into the following general robust adaptive rule
for k-PCA:

i (t+ 1) = 7t (2)
1 -
+ @) T aeEm. w27 (&), M) @D
Jj—1
F(0) =%, (G +1)=&0G) - Y _w(r)i.() @2
vi(j) = ( )i (5) (43)

where Arit;(%:(j), 75(t)),
ing four possibilities:

A (T (), m5(1)) = (@) — M Ow()?),

z(Z;(j), m;(t)) have the follow-

. yi()?
2(Z:(5), m;(t) = ()T EG) - _j(t)T—fﬁj(t_)’ (44)
A (F:(5), T5() = (Z ()i (5) — M5 (5)),
2(Z:(3), m;(8)) = &) — @I (45)
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Ay (& (3), (1)) = (@(j)yiu) - W’t’;%-@yu))
o w()? .
z(Zi(4), m;(t)) = () E() - W, (46)

A (Z:(5), m;(t))

= [w()@i() — &) + w:(4) — w:())F: ()],
2(&:(7), (1)) = 12:(7) — ()| 47

where i#;(j) = wi(5);(t), vi(5) = m] ()@ (5). Specially,

for the combination (44) or (45), the general rule (41) can

be regarded as the generalization of the unrobust k-PCA rule

GHA [34].

The second way is to make the m;, j = 1,---,k become
orthogonal to each other is the so-called asymmetric lateral
anti-Hebbian learning method, like that used by Rubner [32].
Following [32], here we use an additional set of lateral weights
wyj, T < j to laterally connect the rth neuron to the jth
neuron such that the output of the jth neuron is modified by

i-1
i) = &im;(t) = ) weui(r). (48)
r=1

Again, any one of the robust rules developed in the previous
sections can be used to modify m;, 7 = 1,---,k, but now
with ;(j) given by (48) instead of y;(j) = &7 ;(¢). At the
same time, the classical anti-Hebbian learning rule is also used
to modify the lateral weights w,;, i.e.,

wrj(t + 1) = wyi(t) — ogyi(r)y(s) (49)
where o, is the learning rate. The rule will gradually decorre-
late the output ¥;(j), 7 = 1,---,k. After learning reaches
its equilibrium, all the weights wy; will vanish, and 77,
J=1--, k will finally converge to the principal component
vectors ¢, § = 1,--,k.

Fig. 6 is the results obtained by using the robust rule (41)
with each of the possibilities (44) in comparison with its
unrobust counterpart GHA [34] for solving for the first two
principal component vectors. The data set is again the one
used in Figs. 4 and 5 with outliers. The correct first two
principal component vectors (i.e., the ones obtained on the
data set without outliers) are ¢P1 = [0.0710,0.8876, O. 45517
(thch is the same as that obtained earlier in Section IV)
and d),,g = [~0.7999, —0.2219,0.5576]7. The solutions ob-
tained by the unrobust simple rule (2) and (3) are ¢1 =
[~0.8285, 0.1567, 0.5375]7 and ¢2 = [ —0.3666, 0.5738 —
0. 7324]T with angles 8; = angle(d1, ¢p1) = 71.04°, 8, =
angle(¢2, ¢p2) = 76 0°, where 6; = angle(¢,, ¢m) denotes
the angle between dJ. and cfzm, and is calculated in the same
way as that in (37), respectively. Obviously, this result is
absolutely unacceptable. In Fig. 6, UAk1, U Ak2 denote the
learning curves of the angles of f; = angle (1, ¢p1) and
f; = angle (52, $p2), respectively, obtained by using the
unrobust rule GHA [34]. RAkl, RAk2 denote the learning
curves of the angles obtained by using the robust rule (41).
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It can be observed that both U Ak1, UAk2 tend to fluctuate
around an angle of approximately 23°. The result is certainly
much better than that obtained by the simple standard approach
(2) and (3), but still very poor. This reveals that the GHA [34]
algorithm cannot resist outliers effectively. However, by our
robust rule (41), RAk1l, RAk2 converge to an angle of only
about 1.7°, which is obviously a significant improvement from
that obtained by GHA. In this example, the parameters used
are a,(t) = 0.003, 8 = 0.5, and i = 0.4, respectively.

Now, let us proceed to the second part—the robust k-
dimensional principal subspace analysis. Obviously, the job
can be done by simply using the k principal component vectors
¢;, 3 =1,---,k, obtained by the above discussed methods, as
the basis vectors to span a k-dimensional subspace. However,
there are also some more direct ways, which can speed up
convergence and save computation.

Let us denote M = [, -, M), & = [51, e ,qﬂ],
7 = [v1,++,y]T, and § = MTZ. Then the unrobust rule
(4) can be generalized into [25]

M(t+1) = M(t) + as(t)(@Z - 7M@)  (50)

and the unrobust rule (6) can be generalized into [36]
M(t) + aa(W)@E - 97 - F-HFT) 6D

where @ = M§ and ' = MT4.

In the case without outliers, by both the rules (50) and (51),
the weight matrix M (t) will converge to a matrix M whose
column vectors m3°, j = 1,---,k span the k-dimensional
principal subspace [25], [36], although they are not equal to the
k principal component vectors ¢';j, j=1,--- k. In particular,
they are even not orthogonal to each other.

As shown in [36], the rule (51) can be dirrctly connected

to the following energy function:
= (w3a-ar).

7 =MTq.

M(t+1) =

Jy(M) = E(Ig-a|?) or Jy(m

i = My, (52)

Actually, by taking the derivative E(||Z—||)/0M on one
hand and taking the expectation on (51) on the other hand, it
is not difficult to see that (51) is an adaptive or stochastic
approximation rule which minimizes the energy J3 in the
gradient descent way [36].

More interestingly, it has also been proved [36, Theorem 4]
that E(vec [G,])! E(vec [G]) = 2E(vec [Go)) E(vec|[G,)) >
0, where G, = (" — ggT M(t)), G = (§(& ~ D)7 ~ (§ -
7)ZT), and vec transforms a matrix into a column vector by
stacking the columns of the matrix underneath each other. This
result revealed that in the average sense, the subspace rule
(50) is also an adaptive “down-hill” rule for minimizing the
energy function J3. Moreover, it has also been proved [36,
Theorem 3] that all the critical points of 3J3/0M = 0 are
saddle points, except for the one whose column vectors span
the same subspace as the k principal component vectors ¢;,
j =1,---, k span. Therefore, both the rules (50) and (51) will
finally reach the same solution that makes .J5 take the global

2
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Fig. 6. The learning curves obtained in the comparative experiments for

the first two principal component vectors by the robust rule (41) with
the combination (44) and its unrobust counterpan GHA. U Akl, UAK2
denote the lea.rnlng curves of the angles of 6, = angle(qbl, d),,]) and

62 = angle(&2, cbpg) respectively, obtained by GHA. RA4k1, RAk2 denote
the learning curves of the angles obtained by using the robust rule (41).

minimum value. Having the energy function J; as a bridge and
in parallel to what we did in Section III, we can also generalize
the unrobust rules (50) and (51) into robust versions by using
the statistical physics approach again. Omitting the details of
the derivation, we give the resulting robust generalization of
the rule (51) as follows:

1
1+ eB(z(Fi, M(1))—
(5@ — @) - (F
where z(Z;, M(t)) = |T; — @l
Similar to (34), we can again observe that the difference
of (53) from (51) is that the learning rate a4(t) has been
modified by the following multiplicative factor:
1
1 + ef(=(Ei, M(t))—n) "

M@t +1) = M(@t) + aa(t)

= /) —'T] (53)

ap(t) = (54

Based on the connection between (50) and the energy
function J3, we can also formally use this aps(¢) to turn the
unrobust rule (50) into the following robust version:

M(t+1) = M(t)

+aalt) !

2 2T
11 eAGG: M) —n) [

— g M(2)). (59)

Fig. 7(a), (b) show the results of comparative experiments
of using the robust rules and the unrobust rules for solving
the two-dimensional principal subspace of the data set used in
Figs. 4 and 5. Each learning curve in Fig. 7(a), (b) expresses
the change of the residual

2

2
er(t) = ZH'H"'L,(t) - Z(mj(t)Tgpr)ﬁZ"pr“Q

i=1

(56)

r=1

with learning steps. The smaller the residual, the closer the
estimated principal subspace to the correct one. In Fig. 7(a),
(b), SUB1, SUB?2 denote the unrobust rules (50) and (51),
respectively, and RSUB1, RSUB2 denote the robust rules
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Fig. 7. The leaming curves obtained in the comparative experiments of
using the robust rules and the unrobust rules for solving the two-dimensional
principal subspace. Each learning curve expresses the change of the residual
given by (56). SUB1, SUB2 denote the unrobust rules (50) and (51),

respectively, and RSUB1, RSU B2 denote the robust rules (55) and (53),
respectively.

(55) and (53), respectively. It can be seen that the residuals
produced by the unrobust rules SUB1, SUB2 will fluctuate
around a value between 0.05 and 0.1, and will not vanish
to zero. However, the residuals produced by the robust rules
RSUB1, RSU B2 approach zero as learning continues. That
is, the obtained principal subspace is almost identical to the
correct one. We see again that the robust rules really work. In
this example, the parameters used are o, (t) = 0.003, 8 = 2.0,
and n = 0.1, respectively. In addition, by comparing Fig. 7(a)
and (b), we will see that SUB1, RSU B1 converge faster, but
fluctuate more than SU B2, RSU B2. This is a phenomenon
similar to what we discussed at the end of Section V, and the
remarks here also apply here.

V1. FURTHER REMARKS: PARAMETER
SELECTION, MINOR COMPONENT ANALYSIS,
AND OTHER ROBUST PCA ALGORITHMS

First, we make some remarks on the selection of the
three parameters a, 3, and 1 which are involved in all the
implementations of robust rules proposed in the previous
sections. o is the learning rate. The larger the « is, the faster
the learning and the bigger the fluctuations in the learning
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process. ( originates from (20) and is the inverse of the
temperature T = 1/3, which determines the sharpness of
the Gibbs distribution. This parameter influences robust rules
through the modifying multiplicative factor of the learning
rate [see (34) and (54)]. The larger (3 is, the more sensitive
this modifying factor will be. 7 originates from (19), which
expresses the amount of penalty contributed to the whole
energy when a data point is considered as an outlier point.
The larger the 7, the heavier the penalty when a data point
fails to.be considered as a simple point.

In all the experiments in this paper, for simplicity we
selected fixed values for a, 3, and 7 (chosen arbitrarily).
However, in practice, in order to optimize performance, it
is better to vary the three parameters as learning goes on.
Usually, 1) « starts at an initial value and decreases as learning
proceeds according to the condition given by (7); 2) § starts at
a value small enough and then increases with a rate of O(Int);
3) 5 changes according to 3: for small 3, the modifying factor
given by (34) or (54) is not sensitive, and » can be small to
reduce the outliers’ impact on the learning; for a larger 3, the
modifying factor is more sensitive, and thus it is better to also
increase 7 to a large value so that the true sample points are
not be considered as outliers.

Second, we consider how to modify the proposed robust
PCA rules to do robust minor componem analysis (MCA)

, to find vectors ¢;, j = 1,---,k so that E{(d) %)%},
j=1,---,k are minimized under the constraints d) ¢, = ;5
for j < 4. The solution vectors qS,, ] =1, .-,k are the k
orthogonal unit vectors solved by Eq&, =Aj (15], j=1,---,k
with A;, 7 =1,---, k being the k smallest eigenvalues of E in
ascending order of magnitude. Correspondingly, the one with
the smallest eigenvalue is called the minor component vector,
and the k vectors are called k-minor component vectors. The
problem is encountered in some applications such as curve
fitting [37] and dual subspace recognition [38].

As studied in [37], it is not difficult to modify a PCA rule
of the type given in (4)~(6) to find the minor component
vector. One only needs to replace the learning rate a,(t) by
its negative —a,(t). However, not every such resulting rule
works well. The ones resulting from (4), (6) will diverge in the
magnitude |[7(¢)||, although the direction of 77i(t) will tends
to that of the minor component vector. Only the one resulting
from (5), i.e.,

will converge to the minor component vector both in its
direction and magnitude.

We can further show that this rule (57) is actually an
adaptive or stochastic approximation rule for minimizing the
following energy function in the gradient descent way:

At + 1) = M(t) —

. Eyz mT T T
Jl(M) = s = Frm o V=N
N T T >
1 m*T;T;m
or Jy(m) = — L —. (58
4(171) NZI —ra (59)
i=
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This point is not difficult to be seen by taking the derivative
8J4/9m on one hand and taking the expectation on (57) on
the other hand. Using the energy function J, as a bridge, and
in parallel to what we did in Section III for obtaining (32),
we can also generalize the unrobust rule (57) into a robust
version by using the statistical physics approach. Omitting the
detailed derivation, we directly give the obtained robust MCA
rule as follows:

1
1+ eBGGE m@)—n)
Az __m)
YT m@Tme)

where z(Z, mi(t)) = y?/m(t)Tm(t). Moreover, by a similar
derivation to that for getting (41), the rule can be further
extended to the following rule for solving the & minor com-
ponent:

it + 1) = m(t) — aq(t)

yz) (59

1

’Iﬁj(t +1) = ﬁj(t) - aa(t) 1 + eBGEGI, m;(0)—)
cr N m;(t .
: (z(J)y(J) - ;W%y(ﬁ),

8y

(0) =& & +1) = #(j) — Y_y(r)m.(t),
r=1
y(5) = @] ()Z().

Finally, in the rest of this section, we briefly review the
existing robust PCA algorithms in the literature of statistics,
and discuss their differences from the rules proposed in this
paper. In addition, we will also propose a robust PCA rule
which is developed based on the statistical physics approach
too, but which has some similarity to some of the algorithms
in the literature of statistics.

In contrast to the state of the self-organizing rules for PCA
in the neural networks literature, where little attention has
been paid to robust rules for resisting outliers, the problem of
robust PCA has been studied for years in statistics literature
[14], [33], [10}, [9], and there already exist several algorithms.
These existing algorithms are basically of two types. For the
first type, the standard PCA analyzing procedure of (2) and
(3) is still implemented, but in parallel to the procedure, some
diagnostic statistics (e.g., influence function [9]) or graphical
displaying techniques are used to detect and discard outliers
from computing the sample covariance matrix S in (3). The
performance of this type of algorithm highly depends on
the effectiveness of outlier detection; usually, the existing
diagnostic statistics are not simple to compute and work well
only in some specific situations. For the second type, the
robust estimate of sample covariance matrix S* is pursued
by some robust statistical techniques, and then this S™ is used
to solve the principal component vectors by (3). There are two
usual ways to get S*. One is to calculate each element of S*
individually by the specific robust estimator for the correlation
or covariant coefficient. This way has the disadvantage that the
resulting S may no longer be semi-positive, and thus affects

(60)

the solution of (3). The other way is to estimate S* as a whole,
e.g., by
N o
PRI

YL wi(d?)
L&
5" = N;w‘z(df)(@' - @& - m)T (61)

where w1 (d?), wo(d?) are a type of commonly used Huber’s
weighting coefficients [14]. One simple example is given as
follows:

wi(d?) =1, d? <k, and wa(d?) = wl(d?)Z/'y.

=k/d},  otherwise (62)

with d? = (F; — @)TS*~ (% — &) and k, v being some
prespecified coefficients.

Like the standard PCA analyzing procedure (2) and (3),
the algorithms of both types above are implemented in batch
way, and their differences from thf. standard procedure is only
that the sample covariance matrix,is estimated differently.
Thus, these algorithms are obviodsly different from the self-
organizing or adaptive PCA rulgs currently studied in the
literature of neural networks, and from the robust rules pro-
posed in this paper. Specifically, our robust rules are different
from these algorithms in at least two aspects. First, for our
robust rule, there is no explicit computation for obtaining the
sample covariance matrix and.for solving eigenequation (3).
Instead, the solution vectors 4fe obtained directly by samples
fed in adaptively, through step-by-step modifications on those
arbitrarily given initial vectors. Second, for our robust rules, no
hard decision is needed to detect outliers during the learning
process, and outliers are considered implicitly and smoothly
through the effective energy given by (23), which in turn leads
to the modification of learning rate in the adaptive rules. In
contrast, for the algorithms of the above two types, some hard
heuristic decision should be made to detect outliers which are
then discarded or appropriately weighted in the next step of
the computation of the sample covariance matrix.

However, it is interesting that, based on the statistical
physics approach, we can also develop an algorithm similar to
the above second type. This algorithm consists of the following
two stages which are recursively implemented as 3 is gradually
increased to oc.

1) Approximate the binary field {V;} by its corresponding
mean field given by

— 1 1

Vit+D) = ra Ty e T 0 6
where initially V;(0) = 0.
2) Solve
SEDR(t + 1) = peit(t 4 1)
64)

gt+1) — %Zvi(t + &z

where 7, m(t + 1) are, respectively, the largest eigenvalue
and the corresponding eigenvector of the semi-positive defined
matrix S+,
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The first stage comes from the following derivation. It
follows directly from the Gibbs distribution that the condi-
tional probabilities of V; with respect to the other variables,
Vj, j # @ and 7, are given by

PV; = 1|V}, j # i, m] = e P*ERE(V;, j # i, W),

PV, =0|V;, j #4, m) = e PF(V;, j #4,m), (65
where F(V;, j # i, m) is independent of V;.
By normalizing the distributions, we obtain
1
PV = 1|V}, j # i, ] = (66)

1 + eBz(Ei, m)—n)

and thus, taking the expectation with respect to the Gibbs
distribution, we obtain

- 1
Vi= B (—‘1 + ePGE: ) =) )

The second stage is obtained by minimizing E(V, i) with
respect to . That is, 8E(V, m)/dm = 0, which gives

67)

Zvi%ﬁm) =0 (68)
V. m
since
0z(&;, ™) mTI; mTE;
b S P d - b fo J
o Arm\" T W e

= —mT#,5(2 - mTm) + (M'E)*m  for J,.

om 69)
Putting it into (68), we get, respectively,
—oT —
Sit = mTTS-f—n-m 70)
m-m
o mITsm
5= T ab

with S = (1/N)LN,V.##T. Thus, the solution which
satisfies (70) and (71) and minimizes F(V, ) is the largest
eigenvector of the problem S = 7.

VII. CONCLUSIONS

The existing adaptive PCA rules are designed to work on
data that have not been spoiled by outliers. In practice, real
data often contain some outliers, and usually they are not easy
to separate from the data set. These outliers will significantly
deteriorate the performances of the existing PCA algorithms.
In this paper, we have adapted the statistical physics approach
to tackle the problem of robust PCA, and have generalized
several commonly used PCA self-organizing rules into robust
versions. We have studied in detail various PCA-like tasks
such as obtaining the first principal component vector, the first
k principal component vectors, and the subspace spanned by
the first k& vectors directly without solving for each vector
individually. For these tasks, we have shown, through a
number of comparative experiments, that the robust rules
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proposed in this paper can resist outliers very well and
have improved the performances of the existing PCA rules
significantly.

The problems of outliers will also be encountered in su-
pervised learning (for example, in the training of a multilayer
perceptron by backpropagation), although, to our knowledge,
this has not been discussed in the literature. It seems straight-
forward to extend our current work to the models of training
with teachers.
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