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Abstract

In this paper a globally convergent Lagrange and barrier function iterative algorithm is proposed for approximating a solution of the
traveling salesman problem. The algorithm employs an entropy-type barrier function to deal with nonnegativity constraints and Lagrange
multipliers to handle linear equality constraints, and attempts to produce a solution of high quality by generating a minimum point of a barrier
problem for a sequence of descending values of the barrier parameter. For any given value of the barrier parameter, the algorithm searches for
a minimum point of the barrier problem in a feasible descent direction, which has a desired property that the nonnegativity constraints are
always satisfied automatically if the step length is a number between zero and one. At each iteration the feasible descent direction is found by
updating Lagrange multipliers with a globally convergent iterative procedure. For any given value of the barrier parameter, the algorithm
converges to a stationary point of the barrier problem without any condition on the objective function. Theoretical and numerical results show
that the algorithm seems more effective and efficient than the softassign algorithm. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The traveling salesman problem (TSP) is an NP hard
combinatorial optimization problem and has a variety of
important applications. In order to solve it, several classic
algorithms and heuristics have been proposed. An excellent
survey of techniques for solving the TSP can be found in
Lawler, Lenstra, Rinnoy Kan and Shmoys (1985).

In Hopfield and Tank (1985), the first combinatorial opti-
mization neural network was proposed, which minimized an
energy function in quadratic form and solves a system of
ordinary differential equations. Since then, many combinator-
ial optimization neural networks have been developed. One of
them we would like to mention here is an elastic network
combinatorial optimization algorithm given by Durbin and
Willshaw (1987). An extension of the neural network algo-
rithm to solving the multiple TSP can be found in Wacholder,
Han and Mann (1989). A systematic investigation of combi-
natorial optimization neural networks was carried out in van
den Berg (1996). Some other optimization neural networks
were studied in Cichocki and Unbehaunen (1993).

Instead of solving a system of ordinary differential equa-
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tions, a Lagrange and barrier function iterative algorithm
was proposed in Xu (1994) for combinatorial optimization
problems of assignment type. It treats linear equality
constraints with Lagrange multipliers and nonnegativity
constraints with an entropy-type barrier function, respec-
tively. Although the separate treatments of the linear equal-
ity constraints and the nonnegativity constraints with
Lagrange multipliers and a barrier function can also be
found in van den Berg (1996) and Fang and Tsao (1995),
the algorithm (Xu, 1994) bears an interesting feature of the
alternative minimization iterative procedure. Firstly, an
iterative formula was proposed to generate an interior
point within binary bounds. The interior point can be inter-
preted as the expectation of a binary distribution implicitly
specified by the value of a Lagrange and barrier function,
which is related to the statistical physics algorithms for
optimization given by Yuille and Kosowsky (1994).
Secondly, at the interior point, another iterative formula
was proposed to obtain Lagrange multipliers that satisfy a
system of special nonlinear equations induced from the
linear equality constraints. It was shown experimentally in
Lau, Chan and Xu (1995) that the algorithm (Xu, 1994) is
frequently superior to the algorithm (Hopfield & Tank,
1985) with a doubled convergence speed and a higher rate
of finding valid and better quality solutions. However,
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whether the algorithm (Xu, 1994) converges still remains
unknown. In Rangarajan, Gold and Mjolsness (1996), a soft-
assign algorithm based on Sinkhorn’s formula for updating
Lagrange multipliers was proposed for the combinatorial
optimization problems of assignment type. The softassign
algorithm is the same as Xu’s algorithm except that the
objective function in Rangarajan et al. (1996) has an addi-
tional negative quadratic term. Under the assumption that
the objective function is strictly concave on the null space of
the constraint matrix, it was proved in Rangarajan, Yuille
and Mjolsness (1999) that for any given value of the barrier
parameter, the softassign algorithm converges to a station-
ary point of a barrier problem.

In this paper we propose a globally convergent
Lagrange and barrier function iterative algorithm for
approximating a solution of the TSP. The algorithm
employs an entropy-type barrier function to deal with
nonnegativity constraints and Lagrange multipliers to
handle linear equality constraints, and attempts to produce
a solution of high quality by generating a minimum point
of a barrier problem for a sequence of descending values
of the barrier parameter. For any given value of the barrier
parameter, the algorithm searches for a minimum point of
the barrier problem in a feasible descent direction, which
has a desired property that the nonnegativity constraints
are always satisfied automatically if the step length is a
number between zero and one. At each iteration the
feasible descent direction is found by updating Lagrange
multipliers with a globally convergent iterative procedure.
For any given value of the barrier parameter, the algorithm
converges to a stationary point of the barrier problem
without any condition on the objective function.
Theoretical and numerical results show that the algorithm
seems more effective and efficient than the softassign
algorithm.

The rest of this paper is organized as follows. We intro-
duce the entropy-type barrier function and derive some
important properties in Section 2. We present the algorithm
and show its convergence to a stationary point of the barrier
problem for any given value of the barrier parameter in
Section 3. We prove global convergence of the iterative
procedure for updating Lagrange multipliers to find a feasi-
ble descent direction in Section 4. We report some numer-
ical results in Section 5. We conclude the paper with some
remarks in Section 6.

2. Entropy-type barrier function

Given n cities, we consider the problem of finding a tour
such that each city is visited exactly once and that the total
distance traveled is minimized. Let v; = 1 if city i is the kth
city to be visited in a tour, 0 otherwise, i=1,2,...,n,
k=1,2,...,n, and

— T
V= (Vl|9v127"'7vln’""an7"'7vn25"'7vnn) .

In Hopfield and Tank (1985), the problem was formulated
as

n n n
min dijViRVik+1
i=1 j=1 k=1
n n
subject to vi=1Li=12,..n, Zv,] =1, )
j=1 i=1
j=12,...,n, vij € {0, 1}, i=1,2,...,n,
j=12,...,n,

where d;; denotes the distance from city i to city j, and
Vik+1 = vj1 for k= n. Clearly, for any given p =0, (1) is
equivalent to

n n n 1
miney(v) = Z Z (Z diviVige1 — Epv%j) subject to

i=1 j=1 \k=1

@

where the negative quadratic term was employed in the
energy function given by Rangarajan et al. (1996). The
continuous relaxation of (2) yields

n n n ]
miney(v) = Z Z (Z divigVige1 — Epi) subject to

i=1 j=1 \k=1

n n
ZVU =1, i=1,2,....n, Zvij =1,
=1 i=1
]:1,2,..,”, O_Vif’ 1_1,2,..,}’1,
j=L12,..,n

3)

When p is sufficiently large, one can see that an optimal
solution of (3) is an integer solution. Thus, when p is
sufficiently large, (3) is equivalent to (1). We remark that
the size of p affects the quality of a solution produced by a
deterministic annealing algorithm and it should be as small
as possible.

Following Xu (1994), we introduce an entropy-type
barrier term,

ij>

d(vy) = Joij Inrdt = vylnv; — v

to incorporate 0 < x;; into the objective function of (3), and
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obtain

mine(v; B) = eo(v) + B> D d(vy)

i=1 j=1

subject to

i=1,2,...,n,

n
D vy =1,
J=1

j=12,...,n,

z": v =1, )
i=1

where f3 is a positive barrier parameter. Note that the barrier
term can also be found in Eriksson (1980) and Erlander
(1981). Instead of solving (3) directly, we consider a
scheme, which obtains a solution of (3) from the solution
of (4) at the limit of 8| 0.

Let

b(v) = Z Zd(v,,)

i=1 j=

Then, e(v; B) = eg(v) + Bb(v). Let

dDvi=1, i=12..n
j=1
2
P={vER"|Z
Zv,y»:l, j=12,..,n,
i=1
L OSvij, i=1,2 i=12,...n]

Then, P is the feasible region of (3) and bounded. Let us
define d(0)=0. lence lim,, _,0+ d(v;) = 0, hence, b(v) is
continuous on ={ve R |O = v}. From b(v), we obtain
bW/ dv; = lnv and llmvij_,m(&b(v)/o"vlj) = —o0. From
eo(v) we get

deo(v)
o

ij

Z (dlekJ 1 + dzkvk,]+l) pvl]
ij

where v ;| =y, for j=1, and vy = vy for j=n.
Clearly, dey(v)/dv;; is bounded on P. Due to de(v; B)/dv;; =
deg(v)dv;; + ,B&b(v)/&v we have hmv,-,-—»o* de(v; B) dv; =

—00.

lj’

Lemma 1. For any given 8 > 0, if v" is a local minimum
point of (4), v* is an interior point of P, i.e.
0< vl], i=12,...,n, j=12,....n

Proof. Let)’ be an interior point of P. Suppose that some
component of v say v,j, equals 0. For any given number
€eE€(0,1], let y" =v" + e(v —v"). Then y” is an interior
point of P. For any given é € (0, 1] satisfying € + 6 < 1,
letz" = y* + 80° —v) =" + (e + 8(° — v*). Then 7" is
an interior point of P, which can be made arbitrarily close to
v* through decreasing € + §. From the Taylor’s expansion,
we obtain

e B) = e(v'; B) + 80" — V)TV e(y" + 80" — V') B), (5)

where n €[0,1] and V,e(y" + n60° —v*):B) is the
gradient of e(v; B) at v =y* + 180" — v*). Consider

0 = v)TV,e(y" + 80" — v B)

n . de(y" + 18’ —v");
_ Z Z(Vgl ) e(y no(v- —v’) .8)

(9Vk[

Let 6 =€ + nd. Then,
Vo4 1800 = v = v + (e + 98)(V° — v

="+ 00" — ).

1. If vj; = 0, then v}, — vj; > 0 and

de(y* + 960° —v*); B)

lim

6—0 &Vkl
. dey(y” + 180" —v)) 0

=1 + Bl —vi) = —
lim v BIn(0(viy — vir) 0

* 0 W
2 0f 0<vl, then limy_, 20 T MV —V iR
bounded. Mu
Since there is a component of v, satisfying v =0,
the above results imply

l]’
: 0 _ #\T * 0 _ . [
lim (V" =v) Ve(y” + nd(v" = v B)

Thus, when € and 0 are sufficiently small, from (5) we
obtain

ez B) <ey'; B

since (' — V)TV, e(y* + n8(° — v*); B) < 0. Therefore,
using lim_oe(y™; B) = e(v"; B), we get e(z"; B) < e(v*; B)
when € and § are sufficiently small. It contradicts that v*
is a local minimum point of (4). Hence, no component of v*
equals 0. The lemma follows.[]

Let

L, A", X)) =e(v; B) + i)\f(i vy — 1) + i)\]‘?(ivﬁ - 1).
= =1 \i=

i=1

Lemma 1 indicates that if v* is a local minimum point of (4)
then there exist A" and A" satisfying

VLG NLAD =0, =1,

j=12..,n,

n
Sk
D=1,
i=1



220 C. Dang, L. Xu / Neural Networks 14 (2001) 217-230

where
V,L(v, A", X%)
_ [ LGy, AN L, AT, A9 AL(v, A", X%)
vy ' v T Ny,
AL, X", X)) dL(v, A", X°) AL(v, A", X%) T
o (?an , (?VnZ T (9Vnn
with
OL(v, A", X¢ 0 .
v, A, 4) = co(v) + A + A + Bloyy,
e B
ij ij
i=1,2,...,n, j=12,..,n.

Let By, k=1,2, ..., be a sequence of positive numbers
satisfying By > 8, >+ and limj_.B; =0. For
k=1,2,..., let v(B;) denote a global minimum point of
(4) with B = B;. Following a standard argument (Minoux,
1986), one can readily obtain the next therorem.

Theorem 1. ¢,(v(By) = eg(V(Br+1)), k=1,2, ..., and
every limit point of v(3;), k=1, 2, ..., is a global minimum
point of (3).

This theorem indicates that a global minimum point of (3)
can be obtained if we are able to generate a global minimum
point of (4) for a sequence of descending values of the
barrier parameter with zero limit.

Theorem 2. For k=1,2, ..., let v* be a local minimum
point of (4) with 8 = 8. For any limit point v* of vk,
k=1,2,..., if there are no A = (/\’,/\g,...,/\,’,)T and
A= (A5, XS, ..., AS) T satisfying

deg(v™)

FAL A =0,

i

i=1,2,...,n,j=1,2,...,n, then v" is a local minimum
point of (3).

Proof. Since vk, k=1, 2, ..., are contained in the bounded
set P, we can extract a convergent subsequence. Let
vkq, qg=1,2,..., be a convergent subsequence of vk,
k=1,2,.... Assume limq_,oovkq ="

Since V¥ is a local minimum point of (4) with g = ,qu,
using Lemma 1 and the first-order necessary optimalit;g condi-
tion, we obtain that there are Noke = ()\:’k" s )\;’kq, I ")T and
Ak = (XM A AT satisfying

deg(v')

kg cky k,
v + A7+ )tj +qu1an =0,

i
i=1,2,...,n,j=1,2,...,n Thus,
560("*)

v

. deg(v') . rk, X, k
= lim = —limyoo(A; + A+ By Invy),

q—0 ij
(6)

i

i=1,2,...,n, j=1,2,...,n. Let v be an interior point
of P. Then

n o on k.
k. deg(Vv'1)
S Sy
Vii

i=1 j=1 ij

n n n n
.k, k, ¢k, k
:_(Z& DIACEIEDRED AR
i=1 =1 j=1 i=1

+ By, i i (vij — vZf’)lnqu)

i=1 j=1

n n
k, k,
= _qu Z Z (Vij - vi;)lnvijq-

=1 j=1
Let K = {(i,j)|v; = 0}. Then, for any (i,)) € K,
li — VI =0
ql_{g qu(vij Vij) v, = 0.

Consider (i,/)) EK. We have v;—v;>0 and
lim, v,/ = 0. Then, when g is sufficiently large,

k, k,
,qu(v,-j - Viil)lnvii] < 0.

From (6) and the assumption, we obtain that K # 0 and
at least one of

. k, . .

lim B, Inv;/, (i,j) € K,

g—oo 4 7

is not equal to zero. Thus, at least one of
k

(vij = vij) 1152 Bi, v, (i,)) € K,

is negative, and all of them are not positive. Therefore,

n n y (960(‘}*)
Z Z (vij - Vij) &Vij

i=1 j=1

. n n X 86 (qu)
= lim Z Z(Vij - Vijq) 0

=1 j=1 Wi

— lim By, Z Z (vij — vi;q)lnv;‘i 7
oo

i=1 j=1

— 11 — k‘i k’I
141}}3 By, Z (v — v;)lnyy;

(ij)EK

. k,
_ Z (v; = viplimy_.e By Invy/ > 0.

i)eK

Observe that eg(v) is a quadratic function and can be
rewritten in a matrix form as ey(v) = (1/2)vTQv. From
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this matrix form, we get Vey(v) = Qv and

1 #\T *
700y

* 1 T
eo(v) —eg(v) = EV Qv —

=w-vHTov" + %(v —vHTow —vh.

Then, when v is an interior point of P sufficiently close
to v*, using (7), we obtain

eo(v) — eo(v") >0

since (v —v)Tov* = ZJ 1 vy = vi) (e dvy) >
0 and (1/2)(v— v) Q(v—v) goes to zero twice as
fast as (v —v")TQv* if v approaches v*. It implies that
v* is a local minimum point of (3). The theorem
follows.[]

This theorem indicates that at least a local minimum
point of (3) can be obtained if we are able to generate
a local minimum point of (4) for a sequence of
descending values of the barrier parameter with zero
limit.

3. The algorithm

In this section we develop an algorithm for approximating
a solution of (3). Given any 8 > 0, consider the first-order
necessary optimality condition for (4),

n

V. Ly, \",X°) = 0, D=1, i=1,2,...n,
j=1
dDvi=1, j=12..n
=1
From
AL(v, A", A o .
Y ) _ %) | A+ XS+ Blnv; = 0,
Ni: ..
y y

we obtain

; 1
ij .
m%(x”+m+xw)

g

Let r; = exp(A;/B) and ¢; = exp(A;/B). Then,
1

r,-cjexp( eo(v) B)
U

For convenience of the following discussions, let

a;;(v) = ex ( &EO(V) B)

Vij:

Then,

1

Vi = riC; aU(v) ®)

Substituting (8) into >, v;=1,i=1,2,...,n, and
Yiivy=1,j=1,2,...,n, we obtain

- 1
=1,i=12,...,n,
= ric a,](v)
9)
“ 1
> ———=1j=12..n
= ricioy(v)

Based on the above notations, an algorithm was proposed by
Xu (1994) for approximating a solution of (3) without the
negative quadratic term.

Let
1 . .
h,-j(v,r,c) i=12,...,n, j=12,...,n,
riCi a,j(v)
and
h(v,r,¢) = (hy;(v,1,¢), h1p(v, 1, 0),
why, 0 0), e by (v 0), (v, 1, C), ey By (0, 1y c))T.

When v > 0, the next lemma shows that i(v,r,c,) — vis a
descent direction of L(v, A", A").

Lemma 2. Assume 0 <.

AL(v, A", Y .
1. M >0 if hij(v, r,c) —v; <0.
EYR !
ij
AL(v, A", A" ,
g, LOAA) g hi(v,r,¢) — v > 0,
;i
y
AL(v, A", Y .
3 B0 o i hyane) — vy =0,

Wij

4. (h(v,r,c) — V)"V Ly, A", A°) < 0 if h(v,r,c) —v # 0.
5. (h(v,r,c) = v)'V e(v; B) <0 if h(v,r,c)—v#0 and

ZZ:I (hik(v9 r, C) - Vik) = ZZ:I (hkj(va r, C) - ij) = 09
i=12,...,n j=12,...,n

Proof. We only need to show that JL(v, A", A")/dv;; > O if

hi(v,r,c) — v;; < 0. The rest can be obtained similarly or
straightforward. From
hii( ) ! <0
(v, rc) — v = — vy ,
Y ¥iC; a,J(v) /
we obtain
I < ricjay(V)vy;. (10)

Applying the natural logarithm, In, to both sides of (10), we
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get
0 < In(ric;a(v)vy) = Ing;(v) + Inr; + Inc; + Iny;

1 dep(v) 1

—)\’ — A+ Inv;; =
B vy B B’ B Wij
Thus,
IL(v, A", X%) -0
(9\}“

y

The lemma follows.[(J

Since 0 < hy;(v, r, ¢), we remark that the descent direction
h(v,r,c) —v has a desired property that any point generated
along h(v, r,c) — v is always positive automatically if v > 0
and the step length is a number between zero and one.

For any given point v, we use (r(v),c(v)) to denote a
positive solution of (9). Let v be an interior point of P. In
order for h(v,r,c) — v to become a feasible descent direc-
tion of (4), we need to compute a positive solution
(r(v), c(v)) of (9). Let

1 n n 1 2
fro = 2(; (]Z: r;¢j 0 (v) B ) * Z(lzl: 70 (v) 1) )

Then, f(r, c) equals zero only at a solution of (9). For
i=1,2,...,n,let

L 1
x(r,c)=r; (; e a,j(v) 1),

and forj=1,2,...,n,let

! 1
¥r.e) = Cj(.Z ricja;(v) 1)'

i=1

Let
x(r,¢) = (X, (r, ©), X(F, €)s c.os Xy (1, )"
and
Y(r,©) = G1(r, ), 32, ©), oo, yu(r )

It is proved in the next section that

( x(r, c) )

y(r,¢)

is a descent direction of f{(r, ¢). For any given v, based on this

descent direction, the following iterative procedure is

proposed for computing a positive solution (#(v), c(v)) of (9).
Take (ro, CO) to be an arbitrary positive vector, and for

k=0,1, ..., let

k+1

A= (), A = e B, an

1AL, N0

where u; is a number in [0, 1] satisfying

FETL ST = min 05+ (), E ot ),
wE,1]

Clearly, (rk, ck) >0,k=0, 1, .... There are many ways to
determine u, (Minoux, 1986). For example, one can simply
choose w to be any number in (0, 1] satisfying Z;(:O L — 00
and u;— 0 as k— 0. We have found in our numerical tests
that when w, is any fixed number in (0, 1], the iterative
procedure (11) converges to a positive solution of (9).
Global convergence of the iterative procedure (11) will be
given in the next section.

Based on the feasible descent direction, i(v, r(v), c(v)) —
v, and the iterative procedure (11), we have developed an
algorithm for approximating a solution of (3), which is as
follows.

Step 0: Let € >0 be a given tolerance. Let B, be a
sufficiently large positive number satisfying that e(v; B¢)
is convex. Choose an arbitrary point v satisfying 0 < v <
1,i=1,2,...n,j=1,2...,n, and two arbitrary posmve
vectors, r° and ¢’. Take an arbitrary positive number
n € (0, 1) (in general, 1 should be close to one). Given v =
v, use (11) to obtain a positive solution (r(¥), c(v)) of (9). Let
= r(v) and &’ = c(v). Let

0 0 0 0 0 0 0

1% :(Vll,Vlz,...,Vln,...,an,Vnz,...,Vnn)

with

oo _ b

Y r(e(May ()

i=1,2,..,n j=1,2,...,n Let g=0 and k=0. Go to
Step 1.

Step 1: Given v = v*, use (11) to obtain a positive solu-
tion (r(V%), c(V*)) of (9). Let r* = r(v*) and ° = ¢(v*). Go to
Step 2.

Step 2:  Let  A(K, r(vF), () = (hy, 05, r(V5), c(VY)),
B O, F05), ), ..y, OF, 15, ), -y OF, 15,
(W), b O, 105, e, ..., by, 5, 105, c(F))T with

1

By 10, €)= R Ry

i=1,2,..,n, j=1,2,....n If RO, r(5h), (b)) =V

< €, do as follows:

e If B, is sufficiently small, the algorithm terminates.

e Otherwise, let v/ =1v1"=1" B, = nBqg=q + 1,

and k= 0. Go to Step 1.

If ||, r(V), c(vF)) — V¥|| = €, do as follows: Compute
=0k 4 00, (), ) =), (12)
where 6, is a number in [0, 1] satisfying

e B,) = min e(v* + O(h(*, r(Vb), c()) — V0 By.

6E€[0,1]

Let k =k + 1 and go to Step 1.
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We remark that an exact positive solution (r(vk), c(vk)) of
(9) for v=v* and an exact solution of min‘ge[o,l]e(vk +
H(h(vk, r(vk), c(vk)) - vk); B,) are not required in the imple-
mentation of the algorithm, and their approximate solutions
will do. There are many ways to determine 6, (Minoux,
1986). For example, one can simply choose 6, to be any
number in (0, 1] satisfying 3% 6, — o0 and 6, — 0 as k —
0. In our implementation of the algorithm, 6, is deter-
mined with the Armijo-type search. Since e(v; By) is
convex, hence, the algorithm is insensitive to the start-
ing point.

Theorem 3. For 8=, every limit point of vk,
k=0, 1, ..., generated by (12) is a stationary point of (4).

Proof. Let ap, = MaXx| <=, | <j=,MaX,ep;(V)r(V)c;(v).
Since  {dey()/dvy|lv € P} and {r;,(»)c;(v)[v € P}  are
bounded, hence, a,,, is finite. Let

min __ . min _min min min _ min min\T
v - (V]] sVI2 5o Vi seees Vil sVn2 55 Vi )

ith v = 1/ i=1,2 i=1,2 Then, fi
with vy = Mamx, 1= 1,2, ..., n, =1, 2, ..., 1. en, 10or

any vEP, 0<VI™=hvr(v),cv), i=12 ..n

j=1,2,...,n, and v"™ =", k=0, 1, .... Therefore, no

limit of vﬁ-, k=0,1,...,1is equal to O for i=1,2,...,n,

j=1,2,...,n. From Lemma 2, we obtain that

R, r(v5), c(vF)) — V¥ is a feasible descent direction of (4).
Let X = {v € Pp™" < v} and

0= {v € X|h(v,r(v),c(v)) — v =0}.

For any v € X, let
AW) = {v + 0" (h(v, r(v), c(v)) — v)

6" €10,1]
e(v+ 6" (h(v, r(v), c(v)) — v); B)
= mingepg (v + OV, r(v), c(v)) — v); B)

In the following we prove that A(v) is closed at every point
v € X\

Let ¥ be an arbitrary point of X\{2. Let v/ € X\(2,
g=1,2,..., be a sequence convergent to v, and y? €
AT, g=1,2,..., a sequence convergent to y. To prove
that A(V) is closed, we only need to show y € A(V). From
viE X\2 and v € X\{2, we have h(v9, r(v?), c(?)) — v #
0 and AV, r(9), c(¥)) — ¥ # 0. Due to continuity of A(v, r(v),
c(v)), h(v?, r(v?), c(v?)) converges to h(, r(v),c(v) as g —
oo, Since y? € A(v?), hence, there is some number OZ S
[0, 1] satisfying y¥ = v + GZ(h(v”, r(vh), c(v?)) — v7). From
h(v?, r(v?), c(v?)) — v? # 0, we obtain that

. Iy =]
© = R, (), ()= VA

and as g — oo,

i a* ”}7_‘7”
g — 0 =
! 1A, (), (@) |

with 8* € [0, 1]. Therefore, = ¥ + 6" (h(@, r(¥), c(¥)) — V).
Furthermore, since y! € A7), we have e(y?; B) =
e(V! + 0(h(v?, r(v?), c(v?)) — v¥); B) for any 0 €[0,1]. It
implies that e(3; 8) = e(¥ + O(h(V, r(v), c(¥)) — v); B) for
any 6 € [0, 1], which proves that

e(y; B) = mingeg j1e(v + O(h(V, r(v), c(V)) — V); B).

According to the definition of A(v), it follows that ¥y € A(¥).

Since X is bounded and v € X, k=1,2, ..., we can extract
a convergent subsequence from the sequence, vk, k=1,2,....
Let Vb, j=1,2,..., be a convergent subsequence of the
sequence, v k=1,2,.... Let v* be the limit point of the
subsequence. We show v* € £ in the following. Clearly, as
k— oo, e(vk; B) converges to e(v'; B) since e(v; B) is
continuous and e(vk“; B) < e(vk; B), k=1,2,.... Consider
the sequence, ka, j=1,2,.... Note that VIt =k 4
0y, (", r(V9), c(v)) — V¥) and

e B) = mingeio e + B(ROY, r(V9), (M) — V) B).

According to the definition of A(v), we have Wi e A(ka').
Since V5! ,j=1,2, ...,are bounded, we can extract a conver-
gent subsequence from the sequence yhitt j=1,2,.... Let
vhith J € K, be a convergent subsequence extracted from the
sequence, Yt ,j=1,2,.... Let v* be the limit point of the
subsequence, V97!, j € K. Suppose that v* & (2. Since A(v") is
closed, we have v € A(v*). Thus, e(v*; B) < e(v*; B), which
contradicts that e(V*; B) converges as k— oo, Therefore,
v* € . The theorem follows.[]

Although it is difficult to prove that for any given
B >0, a limit point of vok=0,1, ..., generated by
(12) is at least a local minimum point of (4), in general,
it is indeed at least a local minimum point of (4).
Theorem 2 implies that every limit point of V™9,
qg=0,1,..., is at least a local minimum point of (3)
if v*? is a minimum point of (4) with B =B,

We remark that for 8 = 8 ,, our algorithm converges to a
stationary point of (4) for any given p, however, the softas-
sign algorithm proposed in Rangarajan et al. (1996)
converges to a stationary point of (4) only if p is sufficiently
large so that e((v) is strictly concave on the null space of the
constraint matrix. Thus, for the softassign algorithm to
converge, one has to determine the size of p through esti-
mating the maximum eigenvalue of the matrix of the
objective function of (1), which requires some extra
computational work. As we pointed out before, the size of
p affects quality of a solution generated by a deterministic
annealing algorithm and it should be as small as possible.
Since our algorithm converges for any p, hence, one can
start with p being a smaller positive number and then
increase p if the solution generated by the algorithm is not
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a near integer solution. In this aspect, our algorithm is better
than the softassign algorithm. Numerical results will further
support this argument.

4. Global convergence of the iterative procedure

In this section we prove that for any given v, the iterative
procedure (11) converges to a positive solution (r", ¢*) of
).

We verify first that (x(r, ¢), y(r, ¢)) is a descent direction
of f(r, ¢). Let

< 1

AE] = 1’
ui{r, ) ; ricja(v)
i=1,2,...,n, and u(r,c) = (u;(r,c), uy(r,c),..., u,(r, c))T.
Let
wi(r,c) = i ! -1
A = ricio(v) ’
j=1,2,...,n,andw(r,c) = (w(r,c),wa(r,C), ..., w,(r, c))T.

Computing the partial derivative of f(r, c) with respect to 7,
we obtain

o) _ _ choyp(v) c 1 _
ry & (nepap(v))? = ricpag(v)
L 1
TH)
1; FpCh0(V) )
cpay(v)

W(“l("’ ¢) + wy(r, 0)).
h=1

Computing the partial derivative of f(r, c) with respect to ¢,
we obtain

‘#(”,C) _Z

&Ch

riogp(v) ( c 1
—i

(richag(M)* \ & ric,a,(v)

< 1
+y ——— 1
[,Zl rpchaph(v) )

_xnem()
=1 (rlchalh(V))2 (uy(r, ) + wy(r, ).

Let Vf(r,c) = (df (r,c)lory, of (r,c)ors, ..., If (r,c)lor,,
af (r,c)ldcy, of (r, )l dcy, ..., If (r, c)/&cn)T. The next lemma
shows that (x(r,c),y(r,c)) is a descent direction of

fir, c).

Lemma 3. If (r, ¢) > 0 and (x(r, ¢), y(r, ¢)) # 0O then

x(r,c)
V(r, c)T( ) <0.
y(r,c)
Proof. Note that

x/(r,c)=r, i;—l = ru(r,c)
e - p=1 rlc,,oz,[,(v) CERR R
[=1,2,...,

(r,c)=c i;—l = cwy,(7, )
YT, h P F,,Chaph(v) WWalFs C),

h=1,2,..,

n, and

n. Then,

ricpay(v)

x(r,c) n.on
V ) T — _ ) 2
fr. ) (y(r, c)) ; ,; (ricpogp(v )2 (e, )

+ 2uy(r, c)wy(r,c) + (wy(r, c))z)

- - Z Z NS )+ wr, )

= A& (reyag,(0)? (v

(13)
We show in the following that if u;(r,c) + wy(r,c) =0,
[=1,2,...,n, h=1,2,...,n, then u(r,c) =0,
I=1,2,...,n, and wy(r,c)=0, h=1,2, ..., n. From
u(r,c) + wy(r,c)=0, h=1,2,...,n, we obtain that
wy(r,c), h=1,2,...,n, are equal. From ur,c)+ w,
(r,c)=0,1=1,2,...,n, we get that u;(r,c), [=1,2, ..., n,
are equal. Let u;(r,c) = ¢, [=1,2,...,n, and w(r,c) = ¢
h=1,2,...,n. Then, ¢ + ¢ = 0. Note that

iuz<nc)=i(i - 1)

=1 =1 \p=1 11Cp (V)

33 emw )

Z (Z "»Ch ph(V) ) = h; wy (7, ©).

Thus, ¢ =¢. From ¢ + ¢ =0 and ¢ = ¢, we obtain
¢ = ¢ =0. Therefore, when (x(r,c),y(r,c)) # 0, at least
one of u(r,c) + wy(r,c), I=1,2,...,n, h=1,2,...,n, is
not equal to zero. Thus, from (13), we get

VF(r c)T(x(r’ C)) <0.
y(r, c)

The lemma follows.[]

We show next that for any i, no subsequence of rf‘,
k=0,1, ..., approaches zero or infinity and that for
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any j, no subsequence of c]-‘, k=0,1, ..., approaches
zero or infinity. Let ¥ be an interior point of P.
Then,

n

Zvu =1,i=12,...,n,

Jj=1

Zﬁ =1,j=12,..

0<v;,i=12,..,nj=12,..,n

lj’

Thus, for any r>0 and ¢ >0,

Zlnr +Zlnc —Zlnr Zv,j—kZln Zv,j

(14)
= Z Zvu(lnr + Inc)).
i=1 j=
Consider
n n Inr;+Inc; 1
s(r,c) = J dt + > Inr; + » Ing;.
= ]_Zl 0 ea; (V) ; Z
(15)
We have
NG
Vs(r,c) = =(Q(r,0)) ,
w(r,c)
where
r
rl’L
O(r,c) =
C1
cﬂ
Using

x(r, c) u(r,c)
y(r,c) w(r, ¢)
we obtain that

x(r,c)

Vs(r,c)T (
y(r,c)

) = —(u(r, C)Tu(r, c) + w(r, C)Tw(r, ) <0

when (u(r, c), w(r,c)) # 0. Thus, (x(r,c), y(r,c)) is a desc-
ent direction of s(r, ¢). Therefore s, ck) is not increasing
as k is increasing since =y ,Lth(r ) and &M =
&+ ,uky(rk,ck).

From the mean-value integration theorem, we get

Inr; +Inc; 1 1
di = In; + Incy), 16
J 0 e’al»j(v) eli(r:¢) a;(v) (Inr; + Incy) (16)

where £;(r, ¢) is a number between zero and In r; + In ¢; satis-
fying that #;;(r, ¢) — oo aslnr; + Inc; — oo and that ¢;(r, ¢) —

—o0 as Inr; + Inc; — —oo. Substituting (14) and (16) into
(15), we obtain

s(r,c) = Z Z( P \7,-]-)(lnr,- +1nc).  (17)

i=1 j=1

Suppose that there is a pa1r of i and j, say (i, jo), for
which a subsequencke of r,0 ]0, k=0,1, ..., approaches
zero or infinity. Let r; /¢, q 0,1,...be the subsequence.
From (17), We get that s(r “ c ‘1) — 00 as ¢ — 0. It contra-
dicts that s(r ,C ) is not increasing as k is increasing. Thus,
for any i and j, no subsequence of r| cjk, k=0,1, ...,
approaches zero or infinity.

Suppose that there is some index / for which a subse-
quence of rf, k=0,1, ..., approaches zero. Let rfq,
q=0,1, ..., be the subsequence. Using the above results,
we derive that as g — oo, rf" —0fori=1,2,...,n, and
c;f’ — oo forj=1,2, ..., n. Consider

n n
Zlnri - Zlncj.
i=1 j=1

Clearly, g(rk‘l, ck‘f) — 00 as g — o0, From g(r, c), we obtain

1 1 1 1 1 1
Vg(r,c) = (_’ Taeees T s T _—9‘-',__)T-
rn n n €1 C2 Cn

g(r,c) =

Note that

x(r, c) n
Vg(r, -1
g(r C) (y(r, C)) i=1 (Z ric alp(v) )

- Z (le 1€t (V) l): 0-

Then, (x(r,c), y(r, c))T is perpendicular to the gradient of
g(r,c). Thus, g(rk",ck") cannot approach minus infinity as
q— %  since =k ,ukx(rk,ck) and =
&+ ;ka(rkck), which yields a contradiction. Therefore,
for any i, no subsequence of rf»‘, k=0,1, ..., approaches
zero. In the same way, one can prove that for any j, no
subsequence of c k=0, 1, ..., approaches zero, for any i,
no subsequence of k=1,2, ..., approaches infinity.

Note that f(r,c¢) = 0 and f(rk , ck) decreases strictly and
monotonically. From Lemma 3 and the boundedness of In rf
and In c}‘, we derive that

k k

Vf(rk,ck)T(x(r ¢ )) —0

NG
as k— oo. Then, from (13), we obtain that for any i and j,
u(r C)+Wj(l" c)—>0 as k— oo, Thus, u(r c)—>0
and w(r )= 0 as k— 0. Therefore, every limit point
of (.5, k=0,1,..., is a positive solution of (9).
Hence, the next theorem follows.

Theorem 4. For any given v, every limit point of (r*, b,
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Fig. 1. Relative error to optimal tour: 1, bays29; 2, att48; 3, eil51; 4, berlin52; 5, st70; 6, €il76; 7, pr76; 8, rd100; 9, eil101; and 10, 1in105.

k=0,1, ..., generated by the iterative procedure (11) is a where
positive solution of (9).

5. Numerical results

The algorithm has been used to approximate solutions of
a number of TSP instances. The algorithm succeeds in find-
ing a tour of high quality for each of the TSP instances. In
our implementation of the algorithm,

1. By=200 (B¢ can be any positive number satisfying that

e(v; By) is convex);

0 0
.r =(r{,13,..

0

i=1,2,...,n

. o =0.95 (uy can be any number in (0, 1)), and for any
given v, the iterative procedure (11) terminates as soon as

VK, R < §;

. we replace e(x; B) with L(v, A", A°) in the algorithm since
(r(vk), c(vk)) is an approximate solution of (9);
. ¢ is determined with the following Armijo-type line

search:

with my being the smallest nonnegative integer satisfying

LOX + €™, r(5), c(F)) — vF), A7, Ak

Gk — (fmk

= LOK, XK XY + £ (b, r(5), c(F))

_ vk)TVVL(Vk,)\r’k,/\C’k),

.,rff)T and ° = (c?,cg,...,cg)T are two

random vectors satisfying 0 < r,Q <land 0< c? <1,

XK = B (nr(5), Inry (), .. Tnr, ()

A = B, (Inc;(v"), Inc, (v, ..., Inc, (V)T

selecting ¢ and v).

The algorithm terminates as soon as SB,<I.

the following procedure,
Step 0: Let B8 =1, v’ =v™% and k= 0. Go to Step 1.

Vl.. =

{1 if vi; = 0.9,
y

0 if v§; < 0.9,

i=1,2,...,n,j=1,2,...,n. If v* € P, the procedure termi-

nates. Otherwise, let p = p + 2 and go to Step 2.

Step 2: Given v= vk, use (11) to obtain a positive solu-

tion (r(V*), c()) of (9). Let ¥ = r(v*), * = (%),
N = (Inr (V9), Inry, V9, ..., Inr, V)T,

and

A% = (Ine, (), Ine, (VF), ..., Inc, (V)T

Go to Step 3.

and ¢ and +y can be any numbers in (0, 1) (we
set £=0.6 and y=0.8, but there is no rule for

produce a solution of higher quality, the size of p
should be as small as possible. However, a small p
may lead to a fractional solution v*?. To make sure
that an integer solution is generated, we continue

* e % * s * # \T -
Stepl:Letv = (V][, V125 os Vigs eoes Vals Vn2s -++s Vi) With
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Fig. 2. Computation time for different algorithms: 1, bays29; 2, att48; 3, eil51; 4, berlin52; 5, st70; 6, €il76; 7,

Step 3: Let
RO, r(0), c(VF))
= (hy; 55, (05, e, i OF, 165, e M), o, iy OF, 100,
c(V8)), oo By 05, 705), cV0)), B OF, 1), cF)), ..., By
0505, 0T
with

1
h (05, r0), ey = ———

GO r(), c(v)) PSP a8
i=1,2,..,n j=12, .0 If [R5 r(5),c0b) =
< €, let v =1vFand k= 0, and go to Step 1. Otherwise, do
as follows: Compute

I = 4 0,0k, r(vh), ) = ),

where 6 ; is determined with the Armijo-type line search.
Let k=k + 1 and go to Step 2.

The algorithm is programmed in MATLAB. To compare
the algorithm with the softassign algorithm proposed in
Rangarajan et al. (1996, 1999), the softassign algorithm is
also programmed in MATLAB. All our numerical tests are
done on a PC. In the presentations of numerical results, DA
stands for our algorithm, SA the softassign algorithm, CT
the computation time in seconds, OPT the length of an
optimal tour, OBJ the length of a tour generated by an
algorithm, OBJD the length of the tour generated by our
algorithm, OBJSA the length of the tour generated by the

pr76; 8, rd100; 9, eil101; and 10, lin105.

softassign, and

_ OBJ — OPT
B OPT

To show the robustness of our algorithm, we have taken two
different values for each of 7, € and 8. Numerical results are
as follows.

Example 1. These ten TSP instances are from a well-
known website, TSPLIB. We have used our algorithm and
the softassign algorithm to approximate solutions of these
TSP instances. Note that the softassign algorithm fails to
converge when p=20. For n=0.95, ¢=0.01 and
6 =0.001, the computation time and the relative errors
to the optimal tours of the tours generated by our
algorithm and the softassign algorithm are compared
in Figs. 1 and 2.

RE

1. It is shown in Fig. 1 that the tour generated by our algo-
rithm is closer to the optimal tour than that generated by
the softassign algorithm. The maximum relative error in
the optimal tour for our algorithm (p =20) is 16%,
whereas that for the softassign algorithm is 69%. Espe-
cially for bays29, the relative error to the optimal tour for
our algorithm (p = 20) is only 1%, whereas the relative
error to the optimal tour for the softassign algorithm is 50
times larger than that for our algorithm.

. Itis clearly indicated in Fig. 2 that our algorithm is much
more efficient than the softassign algorithm. Considering
the computation time of our algorithm and the softassign
algorithm for eill01, one can see that the computation
time of our algorithm (p = 20) is 802 s, whereas the
computation time of the softassign algorithm is twice
that of our algorithm.
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Table 2
Numerical results (e = 0.01 and 6 = 0.001)

Algorithm TSP n=09 TSP n=0.95
p CT OBJ OBJD/OBIJSA CT OBJ OBJD/OBIJSA

SA 80 1 543 889 11 584 905

DA 80 370 956 1.07 565 967 1.06
DA 20 706 845 0.95 906 809 0.89
SA 80 2 613 907 12 592 847

DA 80 377 988 1.08 432 1004 1.18
DA 20 783 809 0.89 836 799 0.94
SA 80 3 578 934 13 688 994

DA 80 483 904 0.97 417 1143 1.15
DA 20 618 856 0.92 913 869 0.87
SA 80 4 451 906 14 685 854

DA 80 369 1020 1.12 600 932 1.09
DA 20 638 810 0.89 866 802 0.94
SA 80 5 577 955 15 557 937

DA 80 251 1063 1.11 578 1052 1.12
DA 20 615 895 0.93 859 791 0.84
SA 80 6 416 952 16 577 998

DA 80 486 1011 1.06 382 1029 1.03
DA 20 796 858 0.90 894 893 0.89
SA 80 7 776 895 17 590 945

DA 80 241 1130 1.26 703 978 1.03
DA 20 811 859 0.90 929 847 0.90
SA 80 8 439 862 18 688 861

DA 80 258 959 1.11 474 953 1.10
DA 20 688 816 0.94 852 833 0.96
SA 80 9 343 907 19 527 929

DA 80 422 846 0.93 349 1065 1.14
DA 20 620 792 0.87 973 866 0.93
SA 80 10 448 897 20 780 870

DA 80 269 1085 1.20 303 1113 1.27
DA 20 643 774 0.86 830 810 0.93

3. For two different values of 7, € and &, the numerical
results are similar to those mentioned above, which
are presented in Table 1. This clearly shows that our
algorithm is robust and outperforms the softassign
algorithm.

Example 2. These (TSP) instances have 100 cities and
are generated randomly. Every city is a point in a square
with integer coordinates (x, y) satisfying 0 = x = 100 and
0 =y =100. We have used our algorithm and the softas-
sign algorithm to approximate solutions of 20 (TSP)
instances (10 for n = 0.9 and 10 for n = 0.95). For two
different values of 7, the computation time and the qual-
ity of a tour generated by our algorithm and the softassign
algorithm are compared in Table 2. Note that the softas-
sign algorithm fails to converge when p = 20. Numerical
results further confirm that our algorithm outperforms the
softassign algorithm.

6. Conclusions

We have developed a globally convergent Lagrange

multiplier and barrier function iterative algorithm for
approximating a solution of the TSP. Some theoretical
results have been derived. For any given value of the barrier
parameter, we have proved that the algorithm converges to a
stationary point of (4) without any condition on the objec-
tive function, which is stronger than the convergence result
for the softassign algorithm. We have reported some numer-
ical results, which show that our algorithm seems more
effective and efficient than the softassign algorithm. The
algorithm would be improved if one could propose a faster
iterative procedure for updating Lagrange multipliers to
obtain the feasible descent direction.
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