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An RPCL-Based Approach for Markov Model
|dentification with Unknown State Number

Yiu-ming Cheung and Lei Xu

Abstract—This paper presents an alternative identification ap- rameters are estimated. The experiment performed has shown
proach for the Markov model studied in [3]. Our approach esti- that this new approach works well.
mates the state sequence and model parameters with the help of
a clustering analysis by the rival penalized competitive learning
(RPCL) algorithm [4]. Compared to the method in [3], this new Il. MARKOV MODEL IDENTIFICATION PROBLEM

approach not only extends the model from scalar states to multi- ) gt pe a finite state, discrete-time, first order irreducible er-

dimensional ones, but also makes the model identification with the dic Mark At h tinges, | : finite stat
correct number of states decided automatically. The experiments godic Markov process. At each Uimgs, IS one ofx inite states

have shown that it works well. q, € Q= {qj}§=l with q; € R Let the (i, j)th eIement
Index Terms—Clustering property, .Markov model identifi.- i OT .the tragsgl.?.n ?rObablllty matrgAd be thehcondlt}onal
cation, number of states, rival penalized competitive learning transm(_)p probability fromg; to g ah enote the stationary
(RPCL). probability ofq; by 7; € 7 = {wj}é?:l. The state sequence
s1, - -+, sy are not directly known but only noisily observed as
X1, ---, Xx. The observation noise are white, zero-mean, and
|. INTRODUCTION Gaussian but the covariancBs’s of noise in observing dif-
ECENTLY, one Markov model has been studied in papégrent stateg;;'s are in general different. Therefore, the obser-
[3] due to its attractive applications in neurobiologicavation equation can be written as
signal processing and communication systems. This model W
formulates a discrete time finite-scalar-state Markov chain Xt =St t+ € 1)
observed under the corruption of noise. Paper [3] has presentehd )
an on-line EM algorithm based on the Kullback—LeiblefN€ree:
information measure to identify the model's parameters and ) G)
state sequence. The experiments in [3] have shown that this €t ( 0, 21)
on-line EM-based algorithm can significantly reduce memory , .
requirements and improve EM convergence in contrast Yéth G(e”|0, ;) denoting the Gaussian distribution eff’
the off-line EM algorithms [1], [2]. However, this approachvith mean0 and covariance matrix;.
assumes that the number of states is exactly known in advancen this model.k, Q, {3;}%_,, A, =, and the state sequence

is observation noise of statg thats, is in, and

)

otherwise its performance may deteriorate to a certain degrée. - -, sx are all unknown and only the observation sequence
Unfortunately, this assumption is often violated in practicét, - - -, Xn iS known. The problem is to identify all the above
leaving the estimation of the number of states as an op@gntioned unknown quantities from the observation sequence
practical problem. alone.

In this paper, we extend the above model from scalar states
to multidimensional ones, and present an alternative approach IIl. NEwW APPROACH TO THEPROBLEM

to identify the model with unknown number of states. We will e ynknown quantities to be identified can be classified into
show in Section 1l that the observations from the model formg, categories. The first category, consistingpQ, {,}*_,

. . . " 1 ’ 1J5=1
set of clusters, each of which corresponds to noisy observatigfi}y; is related only to some properties of the observation data
of a state. That is, the number of states is qual to the numegfp — {x, ¥, without regarding the temporal relationship
of clusters. Hence, our proposed approach first estimates fageen the data points. The second category consists of the
state number by using the rival penalized competitive learning sition probability matrixA. and state sequensg, -- -, sy

b ) 4

(RPCL) Type B algorithm [6], [5], which is robust in automatyha¢ are related to the temporal relationship along the observa-
ically finding out the correct cluster number while performingj,, sequence.

clustering. Then the state sequence is recovered by Bayesian d§+,e identification of the unknowns in the first category is

cision via a variant of the EM algorithm [4] and the model payaged on the insight that they are not relevant to the temporal

relationship, and therefore, we can drop the temporal meaning
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* B use the RPCL Type B algorithm [5] to estimate the number of
af Rt PR stateg: and give preliminary estimates of cluster centers, covari-
ash o ances, and proportions as initial values of the iterative algorithm
- in Stage 2. In Stage 2, we use the hard-cut EM algorithm [4] to
T . RROCE l estimateQ, {3,}%_,, andr, then recoves,, - - -, sy and es-
ot S ] timate A.
! sy Stage 1: RPCL Clustering and Identification/of
°sr . 1 Please read papers [6], [5] for details of the algorithm. Here,
of , : ] we only show how we use algorithm in our problem.
ol B ;" a L , . , ] Step 1: Initialization : Randomly placen (n > k) seed
' ' ' ' points{w,}7_, in the observation space containing
Fig. 1. Two-dimensional (2-D) example demonstrating that the observations the data seb) with » appropriately determined either
glfutshtzrg/larkov process (1), with five states marked By," form five visible from a prior information ork or by simply setting:

large enoughﬁj’s can be initialized as any positive
definite matrix. We initialize thecounts of winning
m; =1,5 =1, ---, nand approximaté; by

frj:mj/zmi- (4)

observation data séP can be regarded as samples from the
following mixture of Gaussians

k
p(x) =Y mG(x|q;, T;). 3)
j=1 Step 2: Adaptive learning:
Sequentially, take the observatiepfrom the data
setD. For eachk,, determine thevinnerseed point
w(y) and therival seed pointv, ;) according to

Samples from a mixture-of-Gaussians generally form a set of
clusters. Fig. 1 shows an example that the observations of the
Markov process form clusters. In this correspondence between
noisy observations of a stafg and a cluster that we call;, we
can identifyk as the determined number of clusters in the ob-
servation spacg. Up to a nonidentifiable permutation of index r(t) = arg  min  d;(t)

4, Q. {Z;}¥_,, andr can be estimated as the cluster centers, JFe 1Sjsn
cluster covariances, and the relative numbers of data points in  d,;(t) =#; [(xt — wj)Tﬁ:jfl(xt —w,)+1In ‘21
the clusters.

c(t) = arg l%ign d;(¢)

]. (5)

The parameters of the clusters can be estimated by the well The winner is moved in a direction that increases
known maximum likelihood (ML) approach with the EM algo- the posterior probability thak; belongs toC..,),
rithm, and an appropriafecan be determined by the number se- P(c(t)|x¢), and rival is moved in a direction that
lection criteria recently proposed in [4]. However, the computa- decrease®(r(t)|x;). That is
tional procedure in [4] can be laborious. Therefore, in this paper
we propose using a more simple and intuitive heuristic method Wi = led + Aw;, (1) (6)
called rival penalized competitive learning (RPCL) Type B clus- )
tering algorithm [6], [5], which showed the best performance in with
zelectmg the correct in previous studies [5], to automatically .S (x, — W;ld% if j = e(t)

etermine an appropriate number of clusterdhen, the ob-
servation points are classified into theclusters according to Aw;(t) = | —a, 7 (x — W), if j =7 (t)
Bayesian (maximuna posteriori probability: MAP) decision 0 otherwise

simultaneously with cluster centers, covariances,and stationary
probabilities estimated by a variant of the EM algorithm called
the “hard-cut” EM algorithm [4], which converges faster than

the EM algorithm.

After the unknowns of the first category are identified, each
states; can be easily recovered as #j¢ corresponding to the
clusterC; that x, classified into. Finally, we identifyA ac-
cording to the transition frequency of the estimatigérom one
state to another one. In the next section, we will go into details
of the algorithm.

wherea, anda,. with 0 < «, € a. < 1 are
the learning rates for the winner and rival, re-
spectively. We use fixed learning rates during the
whole process for practicality. The covariance of
the winner’s cluster is adaptively learned by
27 = (1= o) B el — Wi ) (o - wi)T
while the covariances of other clusters remain un-
changed. The count for winnet.,) is incremented
by 1 andr is updated according to (4).
Step 2 is repeated until the winner-ship of seed points is un-
changed for alik; € D. The RPCL Type B algorithm is quite
Given an observation sequenge, ---, x5, our proposed robust in successfully moving an appropriate number of seed
RPCL-based approach consists of two stages. In Stage 1, points to the small regions around the centers of the clusters and

IV. ALGORITHM OF THE RPCL-BASED APPROACH FOR
MARKOV MODEL IDENTIFICATION
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the other excessive seed points away from the clusters [5]. The ke x k matrixB = (bi;) as zero matrix, and then adaptively
seed points converged to the places surrounded by data points update the# ;)th element oB for each timet by

are regarded as cluster centers preliminarily, and those diverged

away from the data points are regarded as excessive and dis- bij +1;(t+1), ifxe e,
carded. The remaining number of seed points is denotéd as = {bij, otherwise.
The number of statek is thus identified ag now. We use the

remaining/% seed points as preliminary estimatedhf

)

Afterward, the transition matrid is estimated byA =

Stage 2: Estimation of State Set, State Sequence and Model (@i;) with

Parameters by 10
The RPCL Type B algorithm actually does not provide MAP %= ‘ (10)

clustering. The preliminary estimates of cluster parameters Z bim

are only approximation to those according to MAP clustering. m=1

Therefore, after Stage 1, we carry out MAP clustering and
estimation of the cluster parameters with the hard-cut EM
algorithm [4] as follows.
Step 1: Bayesian (MAP) classification Eachx, is classi- ~ To save space, we here present only one of the several exper-
fied into theC; with maximum log posterior prob- iments we performed. In the experiment, the states were

ability In p(j|x,) thatx, is in C;. We represent the

V. SIMULATION EXPERIMENT

classification with the indicator functiofy (¢) @ =00010" q=(1,01% qs=(1,1,07
1, if j = arg min d;(t) and the transition probability matrix was
Ii(t) = Lsisk @)
0, otherwise 03 05 0.2
. A=]102 04 04
with 0.5 0.2 0.3
d;(t) = — Inp(j[x.) with = = (34/105,\,39/105,\,32/105) (0.3238, 0.3714,
=(x¢ — di)TﬁJ;I(xt —§)+1n ‘21‘ —2In#;+ K  0.3048). The covariances of observation ndisés were
whereK is an unimportant constant. 2, =0.0113,
Step 2: Updating of q;, X;, and 7: We recalculate
0.01 0
1 N 3 = 0 0.015 0
4 =5 > L), 0 0 003
J 3=
t;f 004 002 0.004
N X X Ss=[ 002 017 -002
%=y, Zlff(t)(xt —4;)(x — q;)" 0.004 —0.02 0.1
t=
X 1 & N whereI; denotes the 3< 3 identity matrix. We generated a
= ﬁj Z L), N;= Z 1;(®). 8) sample state sequence and observation sequence for 1000 time
t=1 t=1

steps.

. , In the RPCL, we initialized six seed points randomly from
The above two steps are iterated until convergence occ%s : - o
. e N . é observation space containing the clusters,ane- 0.113,
i.e., the classification of all théx, };*; does not change. Since .~ 1. ..., 6. We fixed the learning rates at — 0.001 and
Stage 1 has already provided good initial values to the hard-dut. ~7 " 0 > 9 -

EM algorithm, the number of iterations will generally be smalfx”A?te?'gggi"'mn the set of observation data points for two
Now the estimates of, {X;}%_,, andr are obtained. 9 P

Finally, we estimate the unknowns in the second category.t'mes’ three seed points diverged far away from the data points

_ _ while three seed points remained in the clusters. Hence, the
1) Recovery of state sequenceéachs, is estimated to be yoiarmination o is correct in this experiment.

the q; with maximum posterior probability from the re-
sult obtained above. That i§; = q;, wherej is the
unique one with/; (¢) = 1.

2) Estimation of A: The transition probability;; ; can be . T
estimated by counting the relative frequencyjof transition h (~0.0085, —0.0029, 1'0034)
from §; to g, in the N — 1 pairs of, ands,, in the G2 =(0.9989, 0.0081, 0.9934)
whole state sequence. In implementation, we initialize a ds =(0.9837, 1.0216, 0.0080)"

Using the algorithm in Stage 2, the estimates of the unknown
states were found to be

Q
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Fig. 2. Slide window showing the original state sequesicg in the first row

(3)

| i
VI W hamhvanin
DNTORREE LD AA

(b)

DT
AT
LA

(c)

. 0.3397 0.4889 0.1714
A= 01620 0.4344 0.4036
0.4881 0.2271 0.2847

Fig. 2 shows a slide window of the original state sequence,
observations, and the estimated state sequence. As we can see,
the original state sequence has been almost totally recovered
with few state-level errors.

VI. CONCLUDING REMARKS

In this paper, we have presented a RPCL-based identification
approach for the multidimensional-state Markov model with
clustering property. The experiment shows that this approach
can successfully identify the model with the correct number of
states decided automatically. When the algorithm presented is
in batch way, adaptive variants can be made and further studied.
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of (a)—(c), the observations,; s in the middle row of (a)—(c), and the recovered

state sequenc® s in the third row of (a)—(c).

whereas the estimates of {3, }%_,, andA were

#1 =0.3150, 7> = 0.3900,
) 0.0122  0.0005
S = 00005 0.0099
—0.0001 —0.0001
A 0.0093  0.0000
$5, = | 0.0000 0.0151
0.0010 —0.0001
A 0.0415  0.0153
$,= 100153 0.1560
0.0056 —0.0262

75 = 0.2950,

—0.0001
—0.0001
0.0094

0.0010
—0.0001
0.0274

0.0056
—0.0262
0.0954
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