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Abstract

Mixture of experts (ME) is a modular neural network architecture for supervised learning. A double-loop Expectation-Maximization (EM)
algorithm has been introduced to the ME architecture for adjusting the parameters and the iteratively reweighted least squares (IRLS)
algorithm is used to perform maximization in the inner loop [Jordan, M.I., Jacobs, R.A. (1994). Hierarchical mixture of experts and the EM
algorithm,Neural Computation, 6(2), 181–214]. However, it is reported in literature that the IRLS algorithm is of instability and the ME
architecture trained by the EM algorithm, where IRLS algorithm is used in the inner loop, often produces the poor performance in multiclass
classification. In this paper, the reason of this instability is explored. We find out that due to an implicitly imposed incorrect assumption on
parameter independence in multiclass classification, an incomplete Hessian matrix is used in that IRLS algorithm. Based on this finding, we
apply the Newton–Raphson method to the inner loop of the EM algorithm in the case of multiclass classification, where the exact Hessian
matrix is adopted. To tackle the expensive computation of the Hessian matrix and its inverse, we propose an approximation to the Newton–
Raphson algorithm based on a so-called generalized Bernoulli density. The Newton–Raphson algorithm and its approximation have been
applied to synthetic data, benchmark, and real-world multiclass classification tasks. For comparison, the IRLS algorithm and a quasi-Newton
algorithm called BFGS have also been applied to the same tasks. Simulation results have shown that the use of the proposed learning
algorithms avoids the instability problem and makes the ME architecture produce good performance in multiclass classification. In particular,
our approximation algorithm leads to fast learning. In addition, the limitation of our approximation algorithm is also empirically investigated
in this paper.q 1999 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

There have recently been widespread interests in the use
of multiple models for pattern classification and regression
in statistics and neural network communities. The basic idea
underlying these methods is the application of a so-called
divide-and-conquer principle that is often used to tackle a
complex problem by dividing it into simpler problems
whose solutions can be combined to yield a final solution.
Utilizing this principle, Jacobs, Jordan, Nowlan and Hinton
(1991) proposed a modular neural network architecture
called mixture of experts (ME). It consists of several expert
networks trained on different partitions of the input space.
The ME weights the input space by using the posterior
probabilities that expert networks generated for getting the

output from the input. The outputs of expert networks are
combined by a gating network simultaneously trained in
order to stochastically select the expert that is performing
the best at solving the problem. The gating network is
realized by the multinomial logit or softmax function
(Bridle, 1989). As pointed out by Jordan and Jacobs
(1994), the gating network performs a typical multiclass
classification task. The ME architecture has been extended
to a hierarchical structure called hierarchical mixtures of
experts (HME) (Jordan & Jacobs, 1994). Moreover, Jordan
and Jacobs (1994) have introduced the Expectation-Maxi-
mization (EM) algorithm (Dempster, Laird & Rubin, 1977)
to both the ME and the HME architecture so that the
learning process is decoupled in a manner that fits well
with the modular structure. The favorable properties of the
EM algorithm have been shown by theoretical analyses
(Jordan & Xu, 1995; Xu & Jordan, 1996). In the ME archi-
tecture, the EM algorithm makes the original complicated
maximum likelihood problem decomposed into several
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separate maximum likelihood problems in the E-step and
solve these problems in the M-step (Jordan & Jacobs, 1994).
Since these optimization problems are not usually analyti-
cally solvable, the EM algorithm is a double-loop procedure
in general. To tackle these separate optimization problems
in the inner loop, Jordan and Jacobs (1994) proposed an
iteratively reweighted least squares (IRLS) algorithm for
both regression and pattern classification.

The ME architecture with the EM algorithm has already
been applied to both regression and pattern classification
(for a review see Waterhouse, 1997). However, empirical
studies indicate that the use of the IRLS algorithm in the
inner loop of the EM algorithm causes the ME architecture
to produce the instable performance. In particular, the
problem becomes rather serious in multiclass classification.
Our earlier studies show that an ME or an HME architecture
cannot reach the steady state often when the IRLS algorithm
is used to solve the maximization problems in the inner loop
of the EM algorithm. The further observation shows that
when the IRLS algorithm is used in the inner loop the-
log-likelihood corresponding to an ME architecture does
not monotonically increase during parameter estimation
(Chen, Xie & Chi, 1995, 1996b). Similar problems have
also been mentioned in the literature (Ramamurti &
Ghosh, 1996; Ramamurti & Ghosh, 1997). As a result,
Waterhouse (1993) transferred a multiclass classification
task into several binary classification subtasks for speech
recognition to implicitly avoid the instability problem.
Alternatively, Chen et al. (1996b) used a so-called general-
ized Bernoulli density as the statistical model of expert
networks for multiclass classification and applied such
ME and HME classifiers to speaker identification.

Xu and Jordan (1994), and Xu, Jordan and Hinton (1995)
have proposed an alternative ME model, where a localized
gating network is employed so that parameter estimation in
the gating network can be analytically solvable. For a
regression task, the IRLS algorithm is avoided in the alter-
native ME model so that the EM algorithm becomes a

single-loop procedure, and empirical studies show that the
alternative ME model can reach the steady state and yield
fast learning (Xu et al., 1995; Ramamurti & Ghosh, 1997). It
has also been shown that, as a special case, the alternative
ME model covers a class of radial basis function networks
such that these networks can be trained by either the batch
way or adaptive EM-like algorithm (Xu, 1996, 1998). In
principle, the alternative ME model is also applicable to a
multiclass classification task with the stable solution, as
long as each expert has a structure similar to that of the
gating network proposed by Xu and others (Xu et al.,
1995; Xu & Jordan, 1994).

Since the original ME model with the IRLS algorithm for
learning has been widely used in literature, and the reason
behind the instability of the IRLS algorithm for multiclass
classification still remains unknown, it is undoubtedly
important to investigate the intrinsic reason. In this paper,
we find out that an incorrect assumption on the parameter
independence for multiclass classification is implicitly
imposed and results in the use of an incomplete Hessian
matrix in the IRLS algorithm, which causes the aforemen-
tioned instability of learning. On the basis of the investiga-
tion, we propose a Newton–Raphson algorithm to replace
the original IRLS algorithm (Jordan & Jacobs, 1994) in the
inner loop of the EM algorithm for multiclass classification.
Using the proposed learning algorithm, we show that the use
of the exact Hessian matrix makes the ME architecture
perform well in multiclass classification. However, the use
of the exact Hessian matrix could lead to expensive compu-
tation during learning. To speed up learning, we propose an
approximation to the Newton–Raphson algorithm by intro-
ducing an approximate statistical model to expert networks
for multiclass classification. In order to demonstrate their
effectiveness, we have used the proposed learning algo-
rithms in the inner loop of the EM algorithm to perform
synthetic data, benchmark, and real-world multiclass classi-
fication tasks. Simulation results have shown that the
proposed learning algorithms make the ME architecture
produce the satisfactory performance in those multiclass
classification tasks. In particular, the proposed approxima-
tion algorithm yields significantly faster learning. For
comparison, we have also applied the IRLS algorithm and
a quasi-Newton algorithm called BFGS in the inner loop of
the EM algorithm, respectively, to train the ME architecture
for the same tasks. Comparative results show that the ME
architecture yields the poor performance when the IRLS
algorithm is used in the inner loop of the EM algorithm
and the BFGS algorithm does not yield significantly faster
learning in contrast to the proposed learning algorithms.

The remainder of this paper is organized as follows.
Section 2 briefly reviews the mixture of experts architecture
and the EM algorithm. Section 3 analyzes the reason why
the IRLS algorithm causes the ME architecture to produce
the poor performance in multiclass classification. Section 4
proposes a Newton–Raphson algorithm used in the inner
loop of the EM algorithm for multiclass classification and
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Fig. 1. The architecture of mixture of experts.



relates it to the IRLS algorithm. Section 5 presents an
approximation to the Newton–Raphson algorithm to speed
up learning. Simulation results are reported in Section 6.
Further discussions are given in Section 7, and conclusions
are drawn in the last section.

2. Mixtures of experts and EM algorithm

To make this paper self-contained, we briefly review the
ME architecture (Jacobs et al., 1991) and the EM algorithm
(Jordan & Jacobs, 1994) in this section.

As illustrated in Fig. 1, the ME architecture is composed
of a gating network and several expert networks. The gating
network receives the vectorx as input and produces scalar
outputs that are partition of unity at each point in the input
space. Each expert network produces an output vector for an
input vector. The gating network provides linear combina-
tion coefficients as veridical probabilities for expert
networks and, therefore, the final output of the ME archi-
tecture is a convex weighted sum of all the output vectors
produced by expert networks. Suppose that there areN
expert networks in the ME architecture. All the expert
networks are linear with a single output nonlinearity that
is also referred to as ‘generalized linear’ (McCullagh &
Nelder, 1983). Theith expert network produces its output
oi(x) as a generalized linear function of the inputx:

oi�x� � f �W ix�; �1�
whereW i is a weight matrix andf(·) is a fixed continuous
nonlinearity. The gating network is also generalized linear
function, and itsith output,g(x,vi), is the multinomial logit
or softmax function of intermediate variablesj i (Bridle,
1989; McCullagh & Nelder, 1983):

g�x; vi� � ejiXN
k�1

ejk

; �2�

whereji � vT
i x andvi is a weight vector. The overall output

o(x) of the ME architecture is

o�x� �
XN
k�1

g�x; vk�ok�x�: �3�

The ME architecture can be given a probabilistic inter-
pretation. For an input–output pair (x,y), the values of
g(vi,x) are interpreted as the multinomial probabilities asso-
ciated with the decision that terminates in a regressive
process that mapsx to y. Once the decision has been
made, resulting in a choice of regressive processi, the
output y is then chosen from a probability density
P�yux;Wi�, whereW i denotes the set of parameters or weight
matrix of theith expert network in the model. Therefore, the
total probability of generatingy from x is the mixture of the
probabilities of generatingy from each component
densities, where the mixing proportions are multinomial

probabilities:

P�yux;F� �
XN
k�1

g�x; vk�P�yux;Wk�; �4�

whereF is the set of all the parameters including both
expert and gating network parameters. Moreover, the prob-
abilistic component of the model is generally assumed to be
a Gaussian distribution in the case of regression, a Bernoulli
distribution in the case of binary classification, and a multi-
nomial distribution in the case of multiclass classification.

Based on the probabilistic model in Eq. (4), learning in
the ME architecture is treated as a maximum likelihood
problem. Jordan and Jacobs (1994) have proposed an EM
algorithm for adjusting the parameters of the architecture.
Suppose that the training set is given asx � { �xt; yt�} T

t�1 .
The EM algorithm consists of two steps. For thesth epoch,
the posterior probabilitiesh�t�i �i � 1;…;N�; which can be
interpreted as the probabilitiesP�iuxt; yt�; are computed in
the E-step as

h�t�i �
g�xt; v

�s�
i �P�yt uxt;W

�s�
i �XN

k�1

g�xt; v
�s�
k �P�yt uxt;W

�s�
k �

: �5�

The M-step solves the following maximization problems:

W�s11�
i � arg max

W i

XT
t�1

h�t�i log P�ytuxt;W i�; �6�

and

V�s11� � arg max
V

XT
t�1

XN
k�1

h�t�k log g�xt; vk�; �7�

where V is the set of all the parameters in the gating
network. Therefore, the EM algorithm is summarized as

EM algorithm

1. For each data pair (xt,yt), compute the posterior probabil-
ities h�t�i using the current values of the parameters.

2. For each expert networki, solve a maximization problem
in Eq. (6) with observations {�xt; yt�} T

t�1 and observation
weights {h�t�i }

T
t�1 :

3. For the gating network, solve the maximization problem
in Eq. (7) with observations {�xt;h

�t�
k �}

T
t�1 :

4. Iterate by using the updated parameter values.

3. The IRLS algorithm and its problem in multiclass
classification

3.1. The IRLS algorithm

Apparently, the performance of an EM algorithm highly
depends upon solutions to those separate maximization
problems. As pointed out by Jordan and Jacobs (1994),
the separate maximization problems in Eqs. (6) and (7)
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belong to the IRLS problem (McCullagh & Nelder, 1983).
To tackle those separate optimization problems, Jordan and
Jacobs (1994) propose an IRLS algorithm for all the gener-
alized linear models used in the ME architecture. To explore
the reason of instability of the IRLS algorithm in multiclass
classification, here we first briefly review the IRLS algo-
rithm.1

The likelihood in the generalized linear models is a
product of densities from the exponential family distribu-
tions. The general form of a density in the exponential
family is denoted as

P�y;h;f� � exp
hy 2 b�h�

f
1 c�y;f�

� �
; �8�

whereh is known as the ‘natural parameter’ andf is the
dispersion parameter. Note that the form in Eq. (8) is for
scalar-valued random variables. In a generalized linear
model, moreover, the parameterh is modeled as a linear
function of the inputx:

h � bTx;

where b is a parameter vector. For a data set
x � { �xt; yt�} T

t�1 , according to Eq. (8), the log-likelihood is

l�b; x� �
XT
t�1

bTxtyt 2 b�bTxt�
f

1 c�yt;f�
( )

: �9�

The observationsyt are assumed to be sampled indepen-
dently from densitiesP�y;ht;f�, whereht � bTxt. Based
on the log-likelihood, the link function in the generalized
linear model is defined as

f �ht� � E�yt� � b0�bTxt�; �10�
and the variance function is defined as

Var�yt� � fb00�bTxt�: �11�
As a result, the gradient of the log-likelihood is

2l�b;x�
2b

� XTWe; �12�

and the Hessian matrix of the log-likelihood is

22l�b;x�
2b2bT � 2XTWX ; �13�

wheree is the vector whose components are

et � yt 2 f �ht�
f 0�ht� ;

andX is the matrix whose rows are the input vectorxt andW
is a diagonal matrix whose diagonal elements arewt in the
following form:

wt � �f
0�ht��2

Var�yt� :

The IRLS algorithm updates the parameter estimatesb as

b�s11� � b�s� 2
22l�b;x�
2b2bT

" #21
2l�b;x�
2b

� b�s� 1 �XTWX �21XTWe: �14�

As pointed out by Jordan and Jacobs (1994), it is easy to
generalize the algorithm to allow additional fixed observa-
tion weights to be associated with the data pairs. Such
weights simply multiply the iteratively varying weightswt,
resulting in an iteratively reweighted weighted least squares
algorithm. Such a generalization is necessary for the
problems described in Eq. (6). That is, the EM algorithm
defines an observation weights in the outer loop that the
IRLS algorithm must treat as fixed during the inner loop
(Jordan & Jacobs, 1994).

For the IRLS algorithm, furthermore Jordan and Jacobs
(1994) point out that it is straightforward to generalize the
algorithm to the case of vector outputs. As a result, each row
of the weight matrix is a separate parameter vector corre-
sponding to the aforementioned parameter vectorb in the
case of vector outputs, and these row vectors are updated
independently and in parallel (Jordan & Jacobs, 1994).

3.2. Problem in multiclass classification

In this subsection, we show that the IRLS algorithm
cannot be straightforward generalized to the case of vector
outputs from the scalar valued derivation in the case of
multiclass classification.

Consider a multiclass classification problem onK vari-
ables,y1; y2;…; yK �K . 2�: A natural probabilistic model
for multiclass classification is the multinomial density as
follows,

P�y1; y2;…; yK� � M!

�y1!��y2!�…�yK!� p
y1
1 py2

2
…pyK

K ; �15�

where pk�k � 1;…;K� are the multinomial probabilities
associated with the different classes and

PK
k�1 pk � 1: As

a member of the exponential family, the multinomial
density can be written as

> P�y1; y2;…; yK� � exp
�
log

�
M!

�y1!��y2!�…�yK!�
�

1
XK
k�1

yk log pk

�
� exp

�
log

�
M!

�y1!��y2!�…�yK!�
�

1
XK 2 1

k�1

yklog
�

pk

pK

�
1 M log pK

�
: �16�

We definehk � log�pk=pK�: Due to
PK

k�1 pk � 1, eachpk in
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the multinomial logit model is expressed as

pk �

ehk

1 1
XK 2 1

i�1

ehi

k ± K;

1

1 1
XK 2 1

i�1

ehi

k � K:

8>>>>>>>>><>>>>>>>>>:
�17�

Accordingly, the link function for the multinomial logit
model2 is

f �hk� � Mpk; �18�
for all k. For multiclass classification, we usually takeM �PK

k�1 yk to equal one sinceyk �k � 1;…;K� are veridical
probabilities in this case. Therefore, the link function
becomesf �hk� � pk: Obviously, it is just the softmax func-
tion (Bridle, 1989) whenhK � 0: Accordingly, the variance
function is

Var�yk� � ff 0�hk� � fp0k: �19�
Sincef � 1 in the multinomial logit model according to Eq.
(16), we have Var�yk� � p0k: In a generalized linear model,
eachh k can be modeled as a linear function of the inputx,
i.e. hk � bT

k x; where k ± K for the multinomial logit
model. Note that the multinomial logit model merely
consists ofK 2 1 independent parameter vectors, say
b1;…;bK21; instead ofK independent variables due to the
constraint

PK
k�1 pk � 1:

Let us denote all the parameters in the multinomial logit
model asQ , i.e.Q � �b1;…;bK21�T: For a sample,xt, in a
data setx � { �xt; yt�} T

t�1 ; we rewrite pk in Eq. (17) as
gk�Q; xt� with the explicit parameter form:

gk�Q; xt� �

eb
T
k xt

1 1
XK 2 1

i�1

eb
T
i xt

k ± K;

1

1 1
XK 2 1

i�1

eb
T
i xt

k � K

:

8>>>>>>>>><>>>>>>>>>:
�20�

In multiclass classification, therefore, the probabilistic
model of an expert network is

P�yt uxt;Q� �
YK
k�1

�gk�Q; xt��ytk ; �21�

whereyt � { yt1; yt2;…; ytK} ;
PK

k�1 ytk � 1; andytk $ 0: For
the data setx , the objective function corresponding to the
maximization problem in Eq. (6) can be written as

Qe
i �Q; x� �

XT
t�1

h�t�i log P�yt uxt;Q�

�
XT
t�1

XK
k�1

h�t�i ytk log gk�Q; xt� �
XK
k�1

l ik�Q;x�; �22�

where l ik�Q; x� � PT
t�1 h�t�i ytk log gk�Q; xt�: For k ± K;

obviously,l ik�Q; x� is a part of the log-likelihoodQe
i �Q;x�

corresponding to thekth component of vector outputs.
According to Eq. (20), we observe thatl ik�Q;x� is relevant
not only to the parameterb k, i.e. thekth row vector of the
weight matrix in an expert network, but also to other para-
metrs inQ , i.e. those row vectors corresponding to other
output components. In other words, each row of weight
matrix for an expert network is not a separate parameter
vector only corresponding to the vectorb k, and these row
vectors cannot be updated independently and in parallel in
multiclass classification. Thus, the independence assump-
tion on parameter vectors, used implicitly in Jordan and
Jacobs (1994), is incorrect for multiclass classification
and, therefore, the derivation of scalar output cannot be
straightforward generalized to the case of vector outputs
though indeed the multinomial density belongs to the expo-
nential family.

Similarly, the objective function in Eq. (7), corresponding
to the maximization problem associated with the gating
network, can be also written as

Qg�v� �
XT
t�1

log
YN
k�1

�g�xt; vk��h
�t�
k

 !
; �23�

where h�t�k is the posterior probability for expert
k;
PN

i�1 h�t�k � 1; and h�t�k $ 0: If the IRLS algorithm is
used for parameter estimation in the gating network, the
same problem will occur since its statistical model is also
a multinomial logit model in the original ME architecture.

Here, we emphasize that it is this incorrect independence
assumption on parameter vectors in the IRLS algorithm that
results in an incomplete Hessian matrix used and thus
causes the aforementioned instability in learning.

4. A Newton–Raphson algorithm and its relation to the
IRLS algorithm

In this section, we first propose a learning algorithm
based on the Newton–Raphson method for use in the
inner loop of the EM algorithm, and then discuss the relation
between the IRLS algorithm and the proposed learning
algorithm. It is followed by a multiclass classification
example to demonstrate that the use of the exact Hessian
matrix makes the ME architecture perform well, while the
use of the IRLS algorithm suggested by Jordan and Jacobs
(1994) causes the ME architecture to produce the poor
performance.

K. Chen et al. / Neural Networks 12 (1999) 1229–1252 1233

2 For details, one should be referred to Appendix B (Jordan & Jacobs,
1994).



4.1. Newton–Raphson algorithm

For the multinomial logit model, here we derive a learn-
ing algorithm for the maximization problems in Eqs. (6) and
(7) based on the Newton–Raphson method. Note that the
derivation of the Newton–Raphson algorithm is merely for
those mixture components belonging to generalized linear
models. It is not difficult to extend the proposed learning
algorithm to a general case that the mixture components are
not generalized linear models3.

Let x � { �xt; yt�} T
t�1 is a given data set, whereyt �

�yt1;…; ytK�T;
PK

k�1 ytk � 1; and ytk $ 0: For the multino-
mial logit model, its log-likelihood for the data setx can
be written as

l�Q; x� �
XT
t�1

XK
k�1

ytk log gk�Q; xt�; �24�

wheregk�Q; xt� is the same as described in Eq. (20) and
Q � �b1;…;bK21�T:

Before the derivation of the Newton–Raphson algorithm,
we first introduce a set of quantitiesh tq defined by

htq � bT
qxt; q� 1;…;K 2 1: �25�

To evaluate the derivatives of the log-likelihood in Eq.
(24), the derivative of the softmax function in Eq. (20) is
useful. To facilitate the presentation, we give its calculation
method in Appendix. According to the derivative of the
softmax function, we can obtain

2�log gk�Q; xt��
2bq

� 1
gk�Q; xt�

2gk�Q; xt�
2bq

2htq

2bq

� �dkq 2 gq�Q; xt��xt; �26�
wherek � 1;2;…;Kandq� 1; 2;…;K 2 1: Therefore, the
derivatives ofl�Q; x� on bq �q� 1;…K 2 1� are

Jq�Q;x� � 2l�Q;x�
2bq

�
XT
t�1

XK
k�1

ytk
2l�log gk�Q; xt��

2bq

�
XT
t�1

XK
k�1

ytk�dkq 2 gq�Q; xt��xt

�
XT
t�1

�ytq 2 gq�Q; xt��xt: �27�

Here we have used the constraint
PK

k�1 ytk � 1 in the last
step.

In the Newton–Raphson method (Fletcher, 1987), The
Hessian matrix needs to be calculated based on a given
data set. Since there areK 2 1 parameter vectors,
b1;…;bK21; in the multinomial logit model described in
Eq. (16), the Hessian matrixH(Q,x) consists of (K 2 1) ×

(K 2 1) block matricesHqr �q; r � 1;…;K 2 1�: Based on
Eqs. (27) and (A.4) in Appendix, we achieve each block
matrix Hqr as

Hqr � 22l�Q;x�
2bT

gb
T
r
� 2

XT
t�1

2�gq�Q; xt�xt�
2bT

r

� 2
XT
t�1

gq�Q; xt��dqr 2 gr �Q; xt��xtx
T
t : �28�

We now assemble the various pieces for use in the Newton–
Raphson method. First of all, Eq. (27) is utilized to represent
the overall gradient vector ofl�Q; x� on all the parameters in
Q; J�Q; x�; as

J�Q;x� � 2l�Q;x�
2Q

� �J1�Q; x�;…; JK21�Q;x��T: �29�

Then, the Hessian matrix is denoted based on Eq. (28) as
follows:

H�Q; x� � 22l�Q; x�
2Q2QT

�

H11 H12
… H1�K21�

H21 H22
… H2�K21�

… … … …

H�K21�1 H�K21�2 … H�K21��K21�

26666664

37777775: �30�

The Newton–Raphson method (Fletcher, 1987) updates the
parameter estimatesQ as follows:

Q�S11� � Q�s� 2 aH21�Q�s�; x�J�Q�s�; x�; �31�
where a is the learning rate anda # 1. Note that the
learning rate is unnecessary in the standard Newton–Raph-
son method. Here, the learning rate is adopted to speed up
learning so thatQ�s11� can be still in the neighborhood of
Q�s� for convergence (Minoux, 1986).

Like the IRLS algorithm (Jordan & Jacobs, 1994), it is
easy to generalize the derivation to allow fixed weights to be
associated with data pairs. As mentioned before, such a
generalization is necessary for the ME architecture with
the EM algorithm since the EM algorithm defines observa-
tion weights or posterior probabilities in the outer loop that
the algorithm must treat as fixed during the inner loop. For
problems in Eq. (6), therefore, Eq. (27) becomes

2l�Q;x�
2bq

�
XT
t�1

h�t�i �ytq 2 gq�Q; xt��xt; �32�

and Eq. (28) becomes

22l�Q;x�
2bqb

T
r
� 2

XT
t�1

h�t�i gq�Q; xt��dqr 2 gr �Q; xt��xtx
T
t : �33�
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3 In this case, one may be referred to the work (Bishop, 1991, 1992) for
the exact calculation of the Hessian matrix on the parameters relevant to
hidden layers of a neural network in the multinomial logit model.



4.2. Relation between the IRLS algorithm and the Newton–
Raphson algorithm

From the derivation of the proposed learning algorithm,

furthermore we find out that for the multinomial logit model
the independence assumption on parameter vectors in the
IRLS algorithm causes the Hessian matrix of the log-like-
lihood l�Q;x� to be incomplete; that is, the diagonal block
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matrices merely remain while all off-diagonal block
matrices are treated as zero block matrices. In the sequel,
we show such a relation between the IRLS algorithm and the
proposed learning algorithm.

First, we define a set of quantitieswtq as

wtq �
2gq�Q; xt�

2bq
� g0q�Q; xt� �

�g0q�Q; xt��2
Var�ytq� ;

wheret � 1;…;T andq� 1;…;K 2 1: From Eqs. (19) and
(20), it is known that Var�ytq� � g0q�Q; xt� in the multino-
mial logit model. Therefore, we can rewrite Eq. (27) as

Jq�Q; x� �
XT
t�1

�ytq 2 gq�Q; xt��xt

�
XT
t�1

�ytq 2 gq�Q; xt��xt
wtq

g0q�Q; xt� � XTWe; �34�

whereX is the matrix whose rows are the input vectorsxt

andW is a diagonal matrix whose diagonal elements arewtq.
Heree is the vector whose components are

etq �
ytq 2 gq�Q; xt�

g0q�Q; xt�
Similarly, we rewriteHqq as

Hqq � 22l�Q;x�
2bqb

T
q
� 2

XT
t�1

gq�Q; xt��1 2 gq�Q; xt��xtx
T
t

� 2XTWX : �35�
Here we have used the fact ofg0q�Q; xt� � gq�Q; xt� �
�1 2 gq�Q; xt�� in the second step. Now we treat all off-
diagonal block matrices as zero block matrices and neglect
them. Utilizing Eqs. (34) and (35), we apply the standard
Newton–Raphson method to update parametersQ �
�b1;…;bK21�T as

b�s11�
q � b�s�q 2 �Hqq�Q�s�; x��21Jq�Q�s�; x�

� b�s�q 1 �XTWX �21XTWe; �36�
where q� 1;…;K 2 1: Obviously, Eq. (36) provides
exactly the update formula used in the IRLS algorithm
(Jordan & Jacobs, 1994).

4.3. Example: A three-category problem

In the subsection, we use both the IRLS algorithm and our
learning algorithm in the inner loop of the EM algorithm for
a synthetic three-category problem in order to illustrate the
instability problem caused by the IRLS algorithm from an
empirical perspective.

In this realistic problem, there are three categories in the
data set. As illustrated in Fig. 2(a), two small rectangles, an
ellipses, and other regions in the large rectangle constitute
three different categories denoted classes 1, 2, and 3, respec-
tively. As a training set, 950 points or 2D vectors are
produced by a uniformly distributed random number produ-
cer. Among these points, 100, 122, and 738 points belong to
classes 1, 2, and 3, respectively, indicated by different
symbols in Fig. 2(a). The task is to construct a classifier
which can distinguish among the three classes. Obviously,
the classification task is a nonlinearly separable problem and
can be used to evaluate the capability of a classifier in
nonlinear separability and generalization.

In simulations, the ME architecture consisting of 12
experts was chosen as the classifier and randomly initia-
lized. Each epoch was composed of a completeE-step and
M-step in the EM algorithm, where both the IRLS algorithm
and the Newton–Raphson algorithm were used in the inner
loop, respectively. In theM-step, the termination condition
is that either the log-likelihood reaches the steady state or
the number of iterations is above 30. In our learning algo-
rithm, the learning rate,a , used was 1.0. As pointed out by
Jordan and Jacobs (1994), the learning rate is not required in
the IRLS algorithm. The EM learning was terminated after
24 epochs. For evaluating the generalization capability, we
used a data set of 50× 50� 2500 points uniformly distrib-
uted in the large rectangle for test. As a result, Table 1
shows classification results on both the training and the
testing sets as well as the relative learning time. In addition,
we also show the evolution of log-likelihood vs. epochs in
Fig. 2(b). It is evident from simulation results that the use of
our learning algorithm in the inner loop of EM algorithm
makes the ME classifier produce the significantly better
performance. From Fig. 2(b), we observe that the log-like-
lihood monotonically increases and reaches a relatively
steady state after six epochs when our learning algorithm
is used in the inner loop of the EM algorithm, while the log-
likelihood is of an oscillatory or instable behavior when the
IRLS algorithm is used. In terms of simulation results, it is

K. Chen et al. / Neural Networks 12 (1999) 1229–12521236

Table 1
Simulation results of a synthetic three-category problem: classification results and relative learning time when the IRLS algorithm and the proposed Newton–
Raphson algorithm are used in the inner loop of the EM algorithm, respectively. Correct no. and error no. denote the number of classified and misclassified
samples, respectively, and the notation is also used in other tables

Training set Testing set
Algorithm Correct no. Error no. Correct no. Error no. Relative time

Newton–Raphson 928 22 2265 235 1.0000
IRLS algorithm 869 81 1971 529 0.3514



justified from an empirical perspective that the use of the
incomplete Hessian matrix causes the ME architecture to
produce the poor performance. From Table 1, however,
we also observe that the use of the exact Hessian matrix
results in expensive computation during learning. Basically,
the learning time taken by the Newton–Raphson algorithm
is about three times more than that of the IRLS algorithm for
the synthetic data task.

5. Fast learning algorithm

It is well known that the Newton–Raphson method
suffers from a high computational burden in general since
the second derivatives of objective function and inverse of
the Hessian matrix are necessary for updating parameters.
Our simulation results presented in Section 4 also indicates
that the expensive computation could be involved in our
learning algorithm. To tackle the expensive computation
problem in the Newton–Raphson algorithm, we propose
an approximation algorithm for the ME architecture in
this section. The basic idea underlying the approximation
algorithm is to introduce an approximate statistical model
called generalized Bernoulli density for expert networks in
multiclass classification, and then the approximate statisti-
cal model makes the Newton–Raphson algorithm simplified
in multiclass classification so that all off-diagonal block
matrices in the Hessian matrix are naturally zero matrices
without the independence assumption of parameter vectors.
In the sequel, we first present the generalized Bernoulli
density and then derive the approximation algorithm from
the Newton–Raphson algorithm on the basis of the general-
ized Bernoulli density.

5.1. Generalized Bernoulli density

We define the generalized Bernoulli density as

P�y1; y2;…; yK� �
YK
k�1

pyk
k �1 2 pk�12yk ; �37�

where yk [ {0 ;1} and pk �k � 1;…;K� are the Bernoulli
probabilities associated with the different classes. The
proposed density can be merely used for modeling the prob-
abilistic model of an expert network rather than the gating
network in the ME architecture since the problem of multi-
class classification in the gating network is a ‘soft’ classifi-
cation problem (Jacobs et al., 1991; Jordan & Jacobs, 1994).

The proposed density is a member of the exponential
family. The fact is shown as follows:

P�y1; y2;…; yK� � exp log
YK
k�1

pyk
k �1 2 pk�12yk

( )

� exp
XK
k�1

yklog
pk

1 2 pk

� �
1
XK
k�1

log�1 2 pk�
( )

: �38�

As pointed out by McCullagh and Nelder (1983), the natural

parameters in an exponential family density are those quan-
tities that appear linearly in theyk. We define

hk � log
pk

1 2 pk

� �
: �39�

Therefore, Eq. (39) can be inverted to yield

pk � ehk

1 1 ehk
: �40�

Inserting Eqs. (39) and (40) to Eq. (38), we achieve

P�y1; y2;…; yK� � exp
XK
k�1

ykhk 2
XK
k�1

log�1 1 ehk�
( )

: �41�

Let h � �h1;h2;…;hK�T: Thus Eq. (41) implies thatb(h )
should be defined as follows (cf. Eq. (8)):

b�h� �
XK
k�1

log�1 1 ehk�: �42�

Eq. (42) can be used to achieve the link function in the
following way:

f �hk� � 2b�h�
2hk

� ehk

1 1 ehk
� pk: �43�

We denote all the parameters in the generalized Bernoulli
model asQ, i.e.Q � �b1;b1;…;bK�T: Note that unlike the
multinomial density there areK independent parameter
vectors in the generalized Bernoulli density. For an input
samplext in x , we rewritepk in Eq. (43) asf �bk; xt� with the
explicit parameter form:

f �bk; xt� � eb
T
k xt

1 1 eb
T
k xt

: �44�

According to Eq. (44), the link function of generalized
Bernoulli density is a sigmoid function. Based on the gener-
alized Bernoulli density, thus, the probabilistic model of an
expert network for multiclass classification is

P�yt uxt;Q� �
YK
k�1

�f �bk; xt��ytk�1 2 f �bk; xt��12ytk ; �45�

whereyt � { yt1; yt2;…; ytK} and ytk [ {0 ; 1} :
Here we emphasize the generalize Bernoulli density is

only an approximation of the multinomial density even for
multiclass classification in expert networks. The generalized
Bernoulli density implies that all the samples in a given
multiclass classification task should be separable. It is not
always guaranteed that an expert network modeled by the
generalized Bernoulli density can produce Bayesian poster-
ior probabilities, since the summation of all thepk may not
be one when the inseparability of samples reaches some
extent. As a result, the output of expert networks in this
circumstance can be merely viewed as an approximation
to Bayesian posterior probabilities.
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5.2. Approximation to the Newton–Raphson algorithm

Using the generalized Bernoulli density, we can derive an
approximation algorithm from the Newton–Raphson algo-
rithm for expert networks in multiclass classification. For
the ith expert network, based on the generalized Bernoulli
model, its log-likelihood for the data setx can be written as

l�Qi ;x� �
XT
t�1

XK
k�1

h�t�i { ytklog�f �bk; xt��

1 �1 2 ytk�log�1 2 f �bk; xt��} ; �46�
wheref �bk; xt� is the same as described in Eq. (44) andQi �
�b1;b2;…;bK�T: For q� 1;2;…;K; the derivative of
l�Qi ;x� with respect tobq is

Jq�Qi ;x� � 2l�Qi ;x�
2bq

�
XT
t�1

h�t�i �ytq 2 f �bq; xt��xt: �47�

Accordingly, the Hessian matrixH(Qi, X) consists ofK × K
block matricesHqr �q; r � 1;2;…;K�: Based on Eq. (47),
eachHqr is

Hqr � 2l�Qi ; x�
2bq2b

T
r
� 2

XT
t�1

dqrh
�t�
i f 0�bq; xt�xtx

T
t ; �48�

wheredqr is the Kronecker delta andf 0�bq; xt� � f �bq; xt� �
�1 2 f �bq; xt��:

We now assemble the various pieces. Using Eq. (47), the
gradient vector ofl�Q; x� on all the parameters inQi is
J�Qi ; x� as follows,

J�Qi ; x� � 2l�Qi ;x�
2Qi

� �J1�Qi ;x�; J2�Qi ; x�;…; JK�Qi ; x��T:
�49�

According to Eq. (48), all the off-diagonal block matrices in
the Hessian matrix are zero matrices. Therefore, we have

H�Qi ;x� � 22l�Qi ;x�
2Qi2Q

T
i
� diag�H11;H22;…;HKK�: �50�

In this case, the update formula in the Newton–Raphson
method (Fletcher, 1987) is simplified as

b�s11�
q � b�s�q 2 a�Hqq�Qi ;x��21Jq�Qi ;x�

� b�s�q 2 a
22l�Qi ; x�
2bqb

T
q

" #21
2l�Qi ;x�
2bq

�51�

whereq� 1;…;K: It indicates that each row of the weight
matrix W i in the ith expert network is a separate parameter
vector corresponding to a vectorbq and these row vectors
will be updated independently and in parallel if the statis-
tical model of theith expert network is the generalized
Bernoulli density.

6. Simulations

In this section, we report simulation results on synthetic
data, benchmark, and real-world multiclass classification
problems using the ME architecture along with the EM
algorithm where the Newton–Raphson algorithm and its
approximation were used in the inner loop, respectively.
For comparison, the IRLS method (Jordan & Jacobs,
1994) was also used in the inner loop of the EM algorithm
to train the ME architecture for the same problems. On the
other hand, a class of methods called quasi-Newton methods
have been proposed in optimization theory to reduce
computational burden of the Newton–Raphson method
from a general perspective. The BFGS algorithm is a typical
quasi-Newton method and turns out to be one of the most
efficient quasi-Newton methods (Broyden, 1970; Fletcher,
1970; Goldfarb, 1970; Shanno, 1970; Fletcher, 1987).
Therefore, we also adopted the BFGS algorithm as another
approximation to the Newton–Raphson algorithm. As a
result, the ME architecture trained by the EM algorithm
where the BFGS algorithm was used in the inner loop was
also applied to the same problems for comparison, in parti-
cular, in computational efficiency. The purpose of simula-
tions is three-fold, i.e. evaluating the performance of our
learning algorithms, exploring the limitation of our approx-
imation algorithm, and, from an empirical perspective,
demonstrating the instability problem caused by the IRLS
algorithm as pointed out in Section 4. All simulations were
conducted in a Sun SPARC-20 workstation. Note that the
weight matrices of gating and expert networks in the ME
architecture were randomly initialized in all the simulations.

Before presenting simulation results, we first define some
measure to evaluate the performance of learning algorithms
in the ME architecture. For a data setx � { �xt; yt�} T

t�1 ; the
log-likelihood of an ME architecture consisting ofN expert
networks,L, is defined as

L � 1
T

XT
t�1

log
XN
i�1

g�vi ; xt�P�ytuxt;W i�
 !

; �52�

where all the parameters in Eq. (52) are the same as defined
before. In the EM algorithm, we define an epoch as a
completeE-step andM-step though there are several itera-
tions in anM-step on the data setx . Finally, we define the
decision rule for classification as

kp � arg max
1#k#K

Ok�x�; �53�

where O�x� � �O1�x�;O2�x�;…;OK�x��T is the output vector
of an ME classifier on the input vectorx andkp is the class
label assigned tox.

In simulations, an EM learning was terminated once the
change of log-likelihood between two consecutive epochs
was below a specified threshold,LT. In other words, the
termination condition isuL�s11� 2 L�s�u # LT; whereL(s) is
the log-likelihood defined in Eq. (52) at thesth epoch.
However, the EM algorithm was also terminated once the
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number of epochs reached a specified threshold,ET,
even though the change of log-likelihood was still
above the value ofLT in this circumstance. That is,
the EM algorithm was also terminated ifs� ET;

where s is the number of epochs. As mentioned in the
introduction, the IRLS algorithm often causes the log-
likelihood not to reach the steady state in multiclass classi-

fication. For comparison, we also terminated the currentM-
step in simulations if an algorithm was still not convergent
after the number of iterations in the inner loop was above a
pre-specified threshold,IT. All the results were achieved
based on these thresholds. Note that our approximation
algorithm is only used for training expert networks in simu-
lations, while the gating network is always trained by the
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proposed Newton–Raphson algorithm when our learning
algorithms are tested.

6.1. A four-category problem

The first problem used to test our learning algorithms is a

synthetic four-category problem. It is designed not only to
evaluate the performance of our learning algorithms in gener-
alization but also to investigate the limitation of our approx-
imation algorithm. For comparison, the IRLS algorithm and
the BFGS algorithm were also applied in the inner loop of the
EM algorithm, respectively, for the same problem. The
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programswerewritten inMATLAB. Insimulations, therefore,
learning time used in all the algorithms was measured by
floating-point operations(FPO).

The synthetic four-category data are produced by four
Gaussian distributed random number producers. The four
bivariate Gaussian distributions are defined as

P�x;mi ;S� � 1

2puSu1=2
exp{ 2

1
2
�x 2 mi�TS21�x 2 mi�} ;

i � 1;2; 3;4 �54�

where

x � �x1; x2�T and S �
1 0

0 1

" #
:

To produce the four-category data, we adopt different
mean vectors in four Gaussian distributions, i.e.m1 �
�g;g�T;m2 � �2g; g�T;m3 � �g;2g�T; and m4 �
�2g;2g�T: The smaller the value ofg is, the higher the
overlaps among the data belonging to different categories
are. So we can controlg to produce several data sets for the
aforementioned requirement. As a result, we have produced
eight data sets with eight differentg ranging from 3.0 to 0.5
as training sets. There are 400 samples (100 samples/cate-
gory) in each training set. Similarly, we randomly produced
10 data sets (4000 samples/set and 1000 samples/category in
each set) corresponding to a specificg for test. Due to
limited space, we merely report four typical cases, i.e.g �
3:0; 1.5, 0.8 and 0.5, in detail. Fig. 3 illustrates the two-
dimensional points in the training sets corresponding to
four typical cases, respectively.

We have chosen ME architecture consisting of two, three,
and four expert networks, respectively, for learning the clas-
sification task. Here we merely report results produced by
the ME classifier consisting of two expert networks in detail.
In simulations, the learning rate,a , was set as 0.2 in all the
algorithms except for the IRLS algorithm where no learning
rate is required. The thresholds used for terminating the EM
learning were chosen asLT � 1023

;ET � 25; and IT � 20;
respectively. For four different training sets, evolution of the
log-likelihood vs. epochs during learning is illustrated in
Fig. 4, and Table 2 shows classification results on training
sets corresponding to four differentg , respectively. To eval-
uate the generalization capability, we test the ME classifier
using 10 testing sets corresponding to each training set for
reliability. Table 3 lists the mean classification results on the
10 testing sets corresponding to differentg , respectively. In
addition, Fig. 5 also illustrates classification results of ME
classifiers consisting of three and four expert networks on
the testing sets corresponding to differentg , respectively.
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Table 2
Synthetic four-category problem: classification results on the training set corresponding to differentg when different learning algorithms are used in the inner
loop of the EM algorithm, respectively

Newton–Raphson Approximation BFGS IRLS
Data set Correct no. Error no. Correct no. Error no. Correct no. Error no. Correct no. Error no.

g � 3.0 400 0 400 0 400 0 397 3
g � 1.5 352 48 351 49 349 51 301 99
g � 0.8 289 111 239 161 255 145 212 188
g � 0.5 269 131 219 181 228 172 194 206

Table 3
Synthetic four-category problem: mean classification results on 10 testing sets corresponding to differentg when different algorithms are used in the inner loop
of the EM algorithm, respectively

Newton–Raphson Approximation BFGS IRLS
Data set Correct no. Error no. Correct no. Error no. Correct no. Error no. Correct no. Error no.

g � 3.0 3988.4 11.6 3987.7 12.3 3987.2 12.8 3976.3 23.7
g � 1.5 3471.5 528.5 3425.3 574.7 3431.6 568.4 3201.5 798.5
g � 0.8 2887.0 1113.0 2732.1 1267.9 2756.3 1243.7 2251.8 1748.2
g � 0.5 2628.0 1372.0 2167.7 1832.3 2231.4 1768.6 1967.2 2032.8

Fig. 6. Waveform recognition problem: three basic waveforms.



For comparison, we summarize the mean learning time
taken by the ME classifiers consisting of different numbers
of expert networks in Table 4. We observe from simulation
results that the use of the Newton–Raphson algorithm
makes the ME architecture produce the best performance
through it involves slow learning. In particular, this
proposed learning algorithm considerably outperforms its
approximation, the BFGS algorithm, and the IRLS algo-
rithm on those data sets corresponding tog # 0:8; which
is equivalent to highly inseparable problems, though all the
algorithms except for the IRLS algorithm yield similar clas-
sification rates on the data sets corresponding tog . 0:8: In
contrast to our approximation algorithm, the BFGS algo-
rithm yields the slightly better performance in general
and, however, our approximation algorithm leads to signifi-
cantly faster learning. On the other hand, the use of the IRLS
algorithm results in the poor performance in comparison
with other three algorithms for the problem. Furthermore,
we find that the performance of our approximation algo-
rithm is highly degraded as there are high overlaps among
samples belonging to different categories, while the perfor-
mance of the proposed learning algorithm is stable to a great
extent. In terms of simulation results, our approximation
algorithm is subject to limitation as it is applied to a highly
inseparable problem and, therefore, we suggest that the
Newton–Raphson algorithm should be used in this situa-
tion.

6.2. Benchmark problems

In order to extensively investigate the performance, we
have applied four different learning algorithms in the inner
loop of the EM algorithm, respectively, to train the ME
architecture for two benchmark multiclass classification
problems, i.e. classification of irises and waveform
recognition.

6.2.1. Classification of irises
The classification of irises is a famous benchmark

problem in pattern recognition. Since Fisher (1936) used
the data set in his classic paper on discriminant analysis,
the data set has become a favorite example in pattern recog-
nition (Duda & Hart, 1973). Irises are classified into three
categories: setosa, versicolor, and virginica. Each category
is composed of 50 samples. In the iris data set, four attri-
butes are associated with each sample: sepal length, sepal
width, petal length, and petal width.

In simulations, we adopted two ways to produce training
and testing sets from the iris data. One was to use all the data
as both training and testing sets to evaluate the classification
performance of a classifier, and the other was to divide the
iris data set into two disjoint subsets to evaluate the general-
ization capability. In doing so, a subset of data were
randomly chosen for learning and the remaining data were
used for test. Here the generalization capability of an ME
architecture was assessed by mean prediction error. For
reliability, we randomly selected five subsets of data as
training sets corresponding to a specific number of samples.
We chose the ME architecture consisting of three expert
networks as the classifier. The thresholds used for terminat-
ing the EM learning wereLT � 1023

;ET � 25; and IT �
10; respectively. Tables 5–7 show the classification results,
the log-likelihood after the learning is terminated, the learn-
ing time, and the relative learning time through the use of
different algorithms in the inner loop of the EM algorithm,
respectively. With respect to the problem, the performance
of multi-layered perceptron(MLP) has been reported in the
literature (Ishikawa, 1996), and the numbers of misclassified
samples using the MLP are 1.2, 4.4, and 5.2, respectively,
corresponding to training and testing sets as stated in the
caption of Tables 5–7. It is evident from simulations that the
use of either the Newton–Raphson algorithm or its approx-
imation yields satisfactory results for classification of irises
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Table 4
Synthetic four-category problem: mean learning times (unit: FPO) on eight different training sets and the mean relative learning time on the different ME
structures. The ME-N structure stands for an ME consisting ofN expert networks

Algorithms ME-2 ME-3 ME-4 Relative time
Newton–Raphson 2.78× 1007 3.92× 1007 6.36× 1007 1.0000

Approximation 1.22× 1007 1.83× 1007 2.44× 1007 0.3983
BFGS 2.58× 1007 3.99× 1007 5.37× 1007 0.8975
IRLS 1.13× 1007 1.92× 1007 2.39× 1007 0.4065

Table 5
Classification of irises: performance of ME architecture when different learning algorithms are used in the inner loop of the EM algorithm, respectively. In this
simulation, all the samples in the data set are used in training and test

Algorithm Error no. Likelihood Epochs FPO Relative time

Newton–Raphson 1 2 0.001 10 8.43× 1006 1.0000
Approximation 2 2 0.003 25 3.56× 1006 0.4223
BFGS 2 2 0.003 25 6.92× 1006 0.8205
IRLS 4 2 0.022 25 3.45× 1006 0.4093



and, in particular, our approximation algorithm results in
faster learning. In contrast, the performance of the BFGS
algorithm is satisfactory, but it still does not lead to signifi-
cantly faster learning. As for the IRLS algorithm, its perfor-
mance is quite poor for the benchmark problem in contrast
to other three algorithms.

6.2.2. Waveform recognition problem
The synthetic waveform recognition problem was first

introduced in Breiman, Friedman, Olshen and Stone
(1984) to study the behavior of decision trees. It is a
three-category problem based on the waveforms
h1�i�;h2�i�; andh3�i� depicted in Fig. 6. Thehk�k � 1;2;3�
are the shifted triangular waveforms:h1�i� � max{6 2 ui 2
11u;0} ;h2�i� � h1�i 2 4�; andh3�i� � h1�i 1 4�: Each class
is a random convex combination of two of these waveforms.
The pattern vector is obtained by sampling 21 points and
adding noises. Hence, the components of the pattern vector
are given as follows:

For class 1,

xi � uh1�i�1 �1 2 u�h2�i�1 1i ; i � 1;…;21:

For class 2,

xi � uh1�i�1 �1 2 u�h3�i�1 1i ; i � 1;…;21:

For class 3,

xi � uh2�i�1 �1 2 u�h3�i�1 1i ; i � 1;…;21:

Hereu is a uniform random variable on the interval [0,1],
and11;…; 121 are independent Gaussian random variables
with zero mean and unit variance. The three classes have
equal prior probabilities. Breiman et al. (1984) reported that
the Bayesian misclassification rate for this problem is about
14.0%, and the best performance of the MLP reported in the
literature (Guo & Gelfand, 1992) is about 14.9% misclassi-
fication rate.

For this benchmark problem, we adopted the ME

architecture consisting of 12 expert networks. The ME clas-
sifier was trained using four different learning algorithms in
the inner loop of the EM algorithm on training sets with
equal numbers of independent samples, ranging in size
from 250 to 2000 samples, respectively. An additional set
of 5000 independent samples was employed to evaluate the
generalization capability. The experimental method used
was the same as suggested by Guo and Gelfand (1992). In
simulations, the thresholds used for terminating the EM
learning wereLT � 1023

;ET � 80; and IT � 20; respec-
tively. Table 8 shows the mean learning time of the ME
classifier trained on different training sets for different learn-
ing algorithms used in the inner loop of the EM algorithm,
respectively. Fig. 7(a) depicts the log-likelihood after the
ME architecture reached the steady state or satisfied the
termination condition of the EM learning on different train-
ing sets and Fig. 7(b) illustrates classification results on the
testing set. It is evident from the simulation results that the
use of the Newton–Raphson algorithm in the EM algorithm
makes the ME architecture produce the best performance,
and the use of our approximation algorithm readily leads to
significantly faster learning. Moreover, the ME architecture
trained on the set of 2000 samples using the proposed learn-
ing algorithm achieves a classification rate close to the best
one produced by the MLP. In contrast to our approximation
algorithm, the BFGS method yields slightly better perfor-
mance in general, but it does not lead to considerably faster
learning. Our simulation results show that it needs longer
time or more epochs to make the ME architecture reach the
steady state. In comparison with other learning algorithms,
the use of the IRLS algorithm still leads to the worst perfor-
mance for the benchmark problem.

6.3. Speaker identification

Speaker identification is a real-world problem to classify
an unlabeled voice token as belonging to one of reference
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Table 6
Classification of irises: performance of the ME architecture when different learning algorithms are used in the inner loop of the EM algorithm, respectively. In
this simulations, the number of samples in training and testing sets are 90 and 60, respectively. The averaging results on five testing sets are only shown here

Algorithm Error no. Likelihood Epochs FPO Relative time

Newton–Raphson 4.0 2 0.044 8.0 5.21× 1006 1.0000
Approximation 4.2 2 0.049 19.2 1.61× 1006 0.3098
BFGS 4.2 2 0.048 23.4 4.38× 1006 0.8407
IRLS 6.8 2 0.121 25.0 1.84× 1006 0.3532

Table 7
Classification of irises: performance of the ME architecture when different learning algorithms are used in the inner loop of the EM algorithm, respectively. In this
simulation, the number of samples in training and testing sets are 60 and 90, respectively. The averaging results on five testing sets are only shown here

Algorithm Error no. Likelihood Epochs FPO Relative time

Newton–Raphson 4.4 2 0.090 9.0 2.95× 1006 1.0000
Approximation 5.0 2 0.093 18.0 6.95× 1005 0.2356
BFGS 5.2 2 0.102 23.2 2.47× 1006 0.8373
IRLS 7.4 0.213 25.0 5.88× 1005 0.1993



speakers. It is a hard learning task since a person’s voice
often changes over time. There have been extensive studies
on speaker identification (for reviews of the subject see
Campbell, 1997; Furui, 1997). Recently, connectionist

approaches have been introduced to speaker identification
systems and lead to better performance (Bennani & Galli-
nari, 1994; Chen et al., 1996a; Chen, 1998). The classifica-
tion in speaker identification is a typical multiclass
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Fig. 7. Waveform recognition problem: performance of the ME architecture trained by different learning algorithms in the inner loop of the EM algorithm. The
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Results produced by the ME architecture consisting of 12 expert networks on the testing set.



classification task since the population of reference speakers
is usually more than two. In the sequel, we utilize the real-
world problem to test different learning algorithms used in
the inner loop of the EM algorithm.

The database for simulations reported in this paper is a
subset of a standard speech database in China. The set repre-
sents 10 male speakers of the same dialect (Mandarin). The
utterances of 10 isolated digits from ‘0’ to ‘9’ were recorded
in three different sessions. For each digit, 100 utterances (10
utterances/speaker) were recorded in each session. The tech-
nical details of preprocessing are briefly as follows, (1) 16-
bit A/D-converter with 11.025 kHz sampling rate, (2)
processing the data with a pre-emphasis filterH(z) � 1 2
0.95z21, and (3) 25.6 ms Hamming window with 12.8 ms
overlapping for blocking an utterance into several feature
frames for the short-time spectral analysis. In simulations,
we adopted 19-order Mel-scaled cepstrum as the feature.
After preprocessing, feature vectors were extracted from
an utterance corresponding to one digit. In simulations,
for one digit, five utterances of each speaker recorded in
the first session were used as the training data, while the
other five utterances of each speaker recorded in the same
session were employed as the cross-validation data. All the
utterances of the digit recorded in other two sessions were
used for test. To facilitate the presentation, we refer as to
TEST-1 and TEST-2, respectively, for testing results on
utterances recorded in the second and the third sessions.
In order to evaluate the performance, we apply different
learning algorithms in the inner loop of the EM algorithm
to train both the standard ME architecture (Jacobs et al.,
1991) and a modified ME architecture proposed specially
for speaker identification (Chen et al., 1996a). In simula-
tions, the thresholds used for terminating the EM learning
were chosen asLT � 1024

;ET � 30; and IT � 20; respec-
tively. Due to the programs written C language, we would
rather use the CPU time to measure the learning time.

6.3.1. Results of mixture of experts architecture
Depending upon the fixed text (10 isolated digits), 10 ME

classifiers were used to handle 10 digits from ‘0’ to ‘9’ so
that each ME classifier corresponds to one digit, respec-
tively. We applied the two-fold cross-validation technique
for model selection and investigated eight ME structures
with different numbers of expert networks (Chen et al.,
1995). Finally, we chose the ME architecture with six expert
networks as the structure of ME classifiers. Table 9
summarizes results produced by those ME classifiers. Due
to limited space, here we merely report the averaging results
produced by 10 ME classifiers.

From simulation results, we observe that the use of the
proposed learning algorithm yields the best identification
rates in comparison with other three algorithms in general.
Its approximation yields satisfactory classification results
and fast learning. The ratio of mean relative training time
between them is about 1:0.4425. In contrast to our approx-
imation algorithm, the BFGS algorithm produces the similar
performance, but does not lead to significantly faster learn-
ing as shown in Table 9. In addition, the proposed learning
algorithm and its approximation outperform the IRLS algo-
rithm. Although we do not show the detailed result here due
to limited space, it should be mentioned that the ME classi-
fier corresponding to the digit ‘2’ cannot reach the steady
state when the IRLS algorithm was used in the inner loop of
the EM algorithm. Note that our further observation by
prolonging the learning indicates that the ME architecture
still cannot reach the steady state after 50 epochs.

6.3.2. Results of a modified mixture of experts architecture
For text-dependent speaker identification, the text in both

training and testing is the same. Thus, the utterance of a
fixed text naturally becomes a sequence consisting of
successive feature frames after preprocessing and feature
extraction. Accordingly, the problem of text-dependent
speaker identification may be viewed as a specific problem
of sequence recognition. For a single feature frame, it
conveys the instantaneous spectral information which
carries speaker related information correlated with talking
behavior and physiological structure of the vocal tracts in
additional to conveying phonetic information. On the other
hand, successive feature frames convey the transitional
information. Earlier studies have shown that both instanta-
neous and transitional spectral information is useful to
speaker identification. Furthermore, the instantaneous and
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Table 8
Waveform recognition problem: mean learning time when different learn-
ing algorithms is used in the inner-loop of the EM algorithm, respectively

Algorithm Mean epochs Mean FPO Relative time

Newton–Raphson 32.7 1.93× 1010 1.0000
Approximation 75.8 3.21× 1009 0.1663
BFGS 72.2 1.79× 1010 0.7275
IRLS 80.0 4.34× 1009 0.2249

Table 9
Speaker identification: performance of the mixture of experts trained by different learning algorithms in the inner-loop of the EM algorithm

Algorithm TEST-1 TEST-2 Log-likelihood Epochs CPU time (min)

Newton–Raphson 93.2 91.8 2 0.2090 5.8 10:58
Approximation 92.4 91.4 2 0.2127 8.3 4:51
BFGS 92.6 90.4 2 0.2172 12.0 9:39
IRLS 87.0 85.4 2 0.3484 14.2 6:38



transitional spectral information is relatively uncorrelated,
thus providing complementary information for speaker
identification. To use both transitional and instantaneous
spectral information, we previously proposed a modified
ME architecture for text-dependent speaker identification
(Chen et al., 1996a). As illustrated in Fig. 8, the original
ME architecture remains in the modified ME architecture to
deal with the instantaneous information based on each
feature frame of an utterance and a new gating network
calledS-gating is added for use of the transitional spectral
information. Accordingly, a generalized finite mixture
model is defined as follows

P�yuX;Q� �
XT
t�1

lX�xt;F�
XN
i�1

g�xt; vi�P�yuxt;W i�; �55�

whereQ is the set of all the free parameters which include
the expert network parametersW i, the gating network para-
metersvi, and theS-gating network parametersF. The
lx�xt�; for xt, in X is defined as

lX�xt� � P�xt;F�XT
s�1

P�xs;F�
; �56�

where

P�xt;F� � 1

�2p��n=2�uSu�1=2�
exp{2

1
2
�xt 2 m�TS21�xt 2 m�}

andF � �m;S�: In the architecture, all the problems of
parameter estimation in the gating and expert networks
are the same as the original ME architecture except that
the parameter estimation in theS-gating network can be
performed analytically (Chen et al., 1996a).

We have also applied the modified ME architecture to
speaker identification. In simulations, six expert networks
were used in each modified ME classifier. Table 10
summarizes the averaging results produced by 10 modified
ME classifiers. For comparison, we also adopted the IRLS
algorithm and the BFGS algorithm in the inner loop of the
EM algorithm, respectively, to train the modified ME clas-
sifiers. Simulation results are also shown in Table 10. Simu-
lation results show that the use of the proposed learning
algorithm produces the best identification rates in general.
Evidently, the use of our approximation algorithm also leads
to satisfactory identification results and fast learning. The
ratio of mean relative learning time used between the

Newton–Raphson algorithm and its approximation is
about 1:0.4026. In contrast, the performance of our approx-
imation algorithm is similar to that of the BFGS algorithm
in general, but the BFGS algorithm still does not yield
significantly faster learning as shown in Table 10. Once
again, the use of the IRLS algorithm still results in the
poor performance. In particular, the same problem
happened again; that is, when the IRLS algorithm was
used in the inner loop of the EM algorithm, the modified
ME classifier corresponding to the digit ‘2’ still cannot
reach the steady state even though the learning was
prolonged up to 50 epochs.

7. Discussion

As a realization of multinomial density for multiclass
classification, the multinomial logit or softmax function
results in mutual dependency among components of an
output vector. Due to this dependency, each row of the
weight matrix of a component network in the ME architec-
ture cannot be viewed as an independent and separable
parameter vector. Therefore, the exact evaluation of the
Hessian matrix must be performed by considering all the
parameters in the weight matrix simultaneously. As a
special case of the Fisher scoring method (McCullagh &
Nelder, 1983), the IRLS algorithm is a second-order optimal
method in which the information of the exact Hessian
matrix is still required. Unfortunately, the derivation of
the IRLS algorithm used for the ME architecture is based
on the assumption that row vectors of the weight matrix are
independent (Jordan & Jacobs, 1994). The assumption
results in an inexact evaluation of the Hessian matrix and
the instability of learning for the ME architecture in multi-
class classification. Since the gating network in the original
ME architecture (Jacobs et al., 1991; Jordan & Jacobs,
1994) is modeled as a multinomial distribution for task
allocation, the aforementioned problem always holds for
the ME architecture regardless of regression and classifica-
tion if the IRLS algorithm is employed in the inner loop of
the EM algorithm to train the gating network. As a result,
our studies in this paper have shown that the use of the
incomplete Hessian matrix in the IRLS algorithm is respon-
sible for the poor performance of the ME architecture, in
particular, in multiclass classification. Our studies indicate
that there are two ways to tackle the problem. One is to
change the architectures of gating and expert networks

K. Chen et al. / Neural Networks 12 (1999) 1229–1252 1249

Table 10
Speaker identification: performance of the modified mixture of experts trained by different learning algorithms in the inner step of the EM algorithm

Algorithm TEST-1 TEST-2 Log-likelihood epochs CPU time (min)

Newton–Raphson 94.5 93.8 2 0.1734 7.3 13:42
Approximation 93.4 93.1 2 0.1934 8.0 5:30
BFGS 93.5 91.0 2 0.2172 11.4 12:42
IRLS 88.7 86.7 2 0.2840 15.7 8:32



such that parameter estimation becomes analytically solva-
ble, which leads to the alternative ME model (Xu & Jordan,
1994; Xu et al., 1995). The other is to develop a new learn-
ing algorithm used in the inner loop of the EM algorithm
instead of the IRLS algorithm. Since the original ME model
with the IRLS algorithm for learning has been widely used
in literature, it is necessary and nontrivial to develop such an
learning algorithm to make the original ME architecture
work for multiclass classification. For this purpose, we
have proposed a second-order learning algorithm by
means of the Newton–Raphson method in this paper,
where the exact Hessian matrix is used.

In order to speed up learning, we have presented an
approximation algorithm based on the proposed statistical
model for expert networks in multiclass classification. As a
result, the proposed Newton–Raphson algorithm is still
applied to its exact form and the proposed statistical
model causes the Hessian matrix to be simplified. In
nonlinear programming, a class of quasi-Newton methods
have also been proposed to reduce the computational burden
of the Newton–Raphson method from a general perspective.
As a typical quasi-Newton method, the BFGS algorithm
also provides an alternative approximation to the proposed
Newton–Raphson algorithm. In principle, however, the two
approximation algorithms are totally distinct: The BFGS
algorithms uses a trick to avoid the calculation of inverse
of the Hessian matrix in general, while our method adopts
an approximate statistical model to simplify the calculation
of the Hessian matrix specially for the ME architecture in
multiclass classification. Simulation results indicate that our
approximation algorithm yields faster learning although the
performance of the BFGS algorithm is similar to that of our
approximation algorithm for most of problems used in this
paper. On the other hand, it could be argued that the use of
the incomplete Hessian matrix in the IRLS algorithm might
be also regarded as an approximation to the proposed

Newton–Raphson algorithm. However, both simulation
results reported in literature and our studies in this paper
have shown that the unreasonable independence assumption
on parameter vectors causes the ME architecture to produce
the poor performance in multiclass classification. In terms
of the practical performance, the IRLS algorithm cannot be
viewed as an effective approximation. For multinomial
logistic regression, other modified Newton–Raphson algo-
rithms (Neter, Wassermand & Kutner, 1985; Bo¨ning, 1993)
have been proposed to achieve reliable maximum likelihood
during parameter estimation. However, their performance is
still not clear when they are applied in the inner loop of the
EM algorithm to train the ME architecture.

Theoretically, the computational complexity of the
Hessian matrix isO�W3� whereW is the number of para-
meters. In multiclass classification withK categories, there
are �K 2 1� × n parameters in a component network in the
ME architecture wheren is the dimensionality of input
vectors, while our approximation algorithm merely needs
to calculateK Hessian matrices withn parameters instead
of the calculation of the Hessian matrix with�K 2 1� × n
parameters. From a large number of simulations, however,
we find out that the Newton–Raphson algorithm does not
yield prohibitively slow learning. Due to the elegant prop-
erty of the Hessian matrix, the Cholesky decomposition
method (Golub & Van Loan, 1989) can be used for achiev-
ing inverse of the Hessian matrix. Empirical studies indicate
that fewer iterations in the inner loop and fewer epochs in
the EM algorithm are merely needed for each component
network of the ME architecture to reach the steady state. In
contrast, our simulation results also indicate that the BFGS
algorithm does not yield significantly faster learning for
problems studied in this paper. In particular, the BFGS algo-
rithm is often sensitive to the learning rate though the high
precision linear search is not necessary theoretically
(Fletcher, 1987; Minoux, 1986). Our simulation results are
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consistent with some theoretical arguments that the quasi-
Newton methods can not be effective in practice (Fletcher,
1987; Minoux, 1986).

8. Concluding remarks

We have investigated the reason why the ME architecture
produces the poor performance in the case of multiclass
classification when the IRLS algorithm is used in the
inner loop of the EM algorithm to train the ME architecture.
We find out that an incorrect assumption on parameter inde-
pendence is implicitly imposed for multiclass classification,
which causes an incomplete Hessian matrix is used in the
second-order IRLS algorithm. The use of the incomplete
Hessian matrix is responsible for the poor performance of
the ME architecture in multiclass classification. On the basis
of the finding, we propose a learning algorithm by means of
the Newton–Raphson method to replace the IRLS algorithm
and an approximation algorithm to speed up learning. Simu-
lation results by the proposed learning algorithm readily
improves the performance of the ME architecture and our
approximation algorithm yields significantly fast learning
through it is subject to limitation for those highly insepar-
able problems.
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Appendix A

In this appendix, we give the method of calculating the
derivative of the softmax functiongk�Q; xt� defined in Eq.
(20). In order to evaluate the derivatives ofl�Q;x�; it is
necessary to consider three different cases of the derivative
of gk �Q; xt� �1 # k # K� on a parameter vectorbq in Q as
follows:

Case 1:for k ± q andk ± K;
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According to all three cases, forq� 1;…;K 2 1; we obtain

2gk�Q; xt�
2bq

� 2gk�Q; xt�
2bq

2htq

2bq

� gk�Q; xt��dkg 2 gq�Q; xt��xt �A:4�
wheredkq is the Kronecker delta.
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