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Abstract. In this paper, we aim at introducing how one of the recently developed statis-

tical learning techniques, temporal factor analysis (TFA), which is originally devoted for

further study of the arbitrage pricing theory (APT), could be exploited in financial data

mining to determine weights in portfolio optimization problem. Furthermore, we study

several variants of the APT-based Sharpe ratio maximization technique that utilize the

concepts of portfolio downside risk and upside volatility tailored-made for the need of

risk-averse as well as aggressive profit-seeking investors.

1 Introduction

A typical task in modern financial data mining is dynamic portfolio optimization. Ever since

the inception of Markowitz’s modern portfolio theory in 1952, the finance community was

overwhelmed by the possibility of first constructing and subsequently investing in the so-called

mean-variance efficient portfolios. Prior to that, however, mean-variance portfolio optimization

was hardly a practice. Instead, investment practitioners focused on spotting securities with high

expected returns. Meanwhile, theoretical research on investments concentrated on modelling

expected returns [1], with empirical research focused on testing such equilibrium models, or

documenting patterns in stock returns that appear to be inconsistent with these models.

Even though portfolio optimization has been shown to be theoretically feasible, its real-

ization is often constrained to the static stage. That is, the optimal portfolio weights deter-

mined based on historical data could not change within the same investment horizon. The situ-

ation could be contrasted with dynamic portfolio optimization by which the optimal portfolio

weights were to be determined over time according to the most up-to-date price movement

information in the market.

Unarguably, dynamic portfolio management was more appealing than static portfolio man-

agement due to today’s shortened execution time for each transaction and given the tremen-

dous volume of transactions occurred every day. Nonetheless, dynamic portfolio optimization

typically increases the computational load. Recall that the most natural technique for solving

dynamic portfolio optimization problems is stochastic dynamic programming. However, this

approach is often compromised by several factors such as the curse of dimensionality when

too many state variables are involved [2] . In general, practical considerations such as taxes,

transactions costs increase the number of state variables in the objective function.
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Just like other basic problems in financial analysis, the optimal portfolio selection problem

was resilient to the onslaught of researchers from the disciplines of artificial neural networks

and machine learning [3–6]. Using the neural networks approach requires optimal parameters

to be adaptively learned over time. Consequently, we use the term adaptive portfolio manage-

ment to refer to solving the traditional portfolio optimization problem with the help of artificial

neural networks. On the other hand, since trading based on training a trading system on labelled

data usually yields suboptimal results [7], adaptive portfolio management via maximizing the

well-known Sharpe ratio [8, 9] was studied in [7, 3]. However, such approaches are still far

from perfect because they either explicitly treat the weights as constants or depend directly on

the security returns, which may not be an optimal solution.

Recently, a new technique called temporal factor analysis (TFA) was proposed in [10] with

an aim at providing an alternative way for implementing the classical financial APT model.

In this paper, we investigate how the APT-based gaussian TFA model can be used for adap-

tive portfolio management. Our analysis consists of mainly two aspects. First, we examine

this APT-based model from the perspective of mining temporal structure of stock returns and

make numerous comparisons with other closely related techniques. Second, we consider some

variants of the approach, especially for risk-averse and aggressive profit-oriented investors.

The rest of the paper is organized in the following way. Sections 2 and 3 briefly review

the APT and the gaussian TFA models respectively. Section 4 illustrates, with algorithms,

how to implement the APT-based gaussian TFA learning for adaptive portfolio management.

Three variants of the APT-based Sharpe ratio maximization technique are studied in section 5.

Section 6 concludes the paper.

2 Review on Arbitrage Pricing Theory

The APT begins with the assumption that then× 1 vector of asset returns,Rt, is generated by

a linear stochastic process withk factors [11–13]:

Rt = R̄ + Aft + et (1)

whereft is thek×1 vector of realizations ofk common factors,A is then×k matrix of factor

weights or loadings, andet is an× 1 vector of asset-specific risks. It is assumed thatft andet

have zero expected values so thatR̄ is then× 1 vector of mean returns.

3 Overview of Temporal Factor Analysis

Suppose the relationship between a stateyt ∈ Rk and an observationxt ∈ Rd is described by

the first-order state-space equations as follows [10, 14]:

yt = Byt−1 + εt, (2)

xt = Ayt + et, t = 1, 2, . . . , N. (3)



whereεt andet are mutually independent zero-mean white noises withE(εiεj
T ) = Σεδij ,

E(eiej
T ) = Σeδij , E(εiej

T ) = 0, Σε andΣe are diagonal matrices, andδij is the Kronecker

delta function:

δij =





1, if i = j,

0, otherwise.
(4)

We callεt driving noise upon the fact that it drives the source process over time. Similarly,

et is called measurement noise because it happens to be there during measurement. The above

model is generally referred to as the TFA model.

In the context of APT analysis, (1) can be obtained from equation (3) by substituting (R̃t−
R̄) for xt and ft for yt. The only difference between the APT model and the TFA model

is the added equation (2) for modelling temporal relation of each factor. The added equation

represents the factor seriesy = {yt}T
t=1 in a multi-channel auto-regressive process, driven by

an i.i.d. noise series{εt}T
t=1 that are independent of bothyt−1 andet. This can also be viewed

as one way of mining the temporal structures of stock returns. Specifically, it is assumed that

εt is gaussian distributed. Moreover, TFA is defined such that thek sourcesy(1)
t , y

(2)
t , . . . , y

(k)
t

in this state-space model are statistically independent. The objective of TFA is to estimate the

sequence ofyt’s with unknown model parametersΘ = {A,B,Σε,Σe} through available

observations. In implementation, we adopt an adaptive algorithm in [14].

4 Gaussian TFA for Adaptive Portfolio Management

When the APT-based gaussian TFA model is adopted for portfolio management, portfolio

weights adjustment can be made under the control of independent hidden factors that affect

the portfolio. In the sequel, we illustrate how this can be achieved under the following four

scenarios:

Transaction Cost Short Sale Permission

Scenario I No No

Scenario II Yes No

Scenario III No Yes

Scenario IV Yes Yes

4.1 Scenario I: NO Transaction Cost and Short Sale NOT Permitted

The assumptions underlying this scenario are no transaction cost and short sale not permitted.

Consequently, we consider the return of a typical portfolio which is given by [14]

Rt = (1− αt)rf + αt

m∑

j=1

β
(j)
t x

(j)
t , subject to





αt > 0,

0 ≤ βt ≤ 1,∑m
j=1 β

(j)
t = 1.

(5)



whererf denotes the risk-free rate of return,xt denotes returns of risky securities,αt the

proportion of total capital to be invested in risky securities andβ
(j)
t the proportion ofαt to be

invested in thejth risky asset.

Instead of focussing on the mean-variance efficient frontier, we seek to optimize the port-

folio Sharpe ratio [15]Sp = M(RT )/
√

V (RT ) by [14]:

max
ψ,φ

Sp =
M(RT )√
V (RT )

subject to





αt = exp (ζt),

ζt = g(yt, ψ),

β
(j)
t = exp (ξ(j)

t )/
∑m

r=1 exp (ξ(r)
t ),

ξt = f(yt, φ).

(6)

whereM(RT ) = 1
T

∑T
t=1 Rt is expected return andV (RT ) = 1

T

∑T
t=1[Rt − M(RT )]2 is

a measure of risk or volatility,{yt}N
t=1 is the time series of independent hidden factors that

drives the observed return series{xt}N
t=1, g(yt, ψ) andf(yt, φ) are some nonlinear functions

that mapyt to respectivelyζt andξt which in turn adjusts the portfolio weightsαt andβ
(j)
t

respectively.

Maximizing the portfolio Sharpe ratio in effect balances the tradeoff between maximizing

the expected return and at the same time minimizing the risk. In implementation, we can simply

use the gradient ascent approach. The time series{yt}N
t=1 can be estimated via the gaussian

TFA algorithm in [14]. Although the functionsg(yt, ψ) andf(yt, φ) are not knowna priori,

it may be approximated via the adaptive extended normalized radial basis function (ENRBF)

algorithm in [16].

Like radial basis function (RBF) network, ENRBF is one of the popular models adopted

for function approximation. The general form of RBF is

fk(x) =
k∑

j=1

wjϕ([x− µj]T Σj
−1[x− µj]) (7)

ENRBF is an improved modification of RBF by replacingwj with a linear vector function

WT
j x + cj and dividing the termϕ([x− µj]T Σj

−1[x− µj]) over the aggregate of all terms

to arrive at

fk(x) =

∑k
j=1(Wj

T x + cj)ϕ([x− µj]T Σj
−1[x− µj])∑k

j=1 ϕ([x− µj]T Σj
−1[x− µj])

(8)

whereWj is a parameter matrix.

Basically, eachWT
j x + cj represents a local linear segment. The ENRBF network approx-

imates a globally nonlinear function by smoothly joining all piecewise linear segments. The

set of parameters to be estimated isΘ = {µj,Σj,Wj, cj}k
j=1.

Specifically,g(yt, ψ) andf(yt, φ) can be modelled by the ENRBF shown below.

g(yt, ψ) =
k∑

p=1

(WT
p yt + cp)ϕ(µp,Σp, k) (9)

f(yt, φ) =
k̂∑

p=1

(ŴT
p yt + ĉp)ϕ(µ̂p, Σ̂p, k̂) (10)



whereϕ(µp,Σp, k) = exp (−0.5(yt−µp)T Σp
−1(yt−µp))Pk

r=1 exp (−0.5(yt−µr)T Σp
−1(yt−µr))

.

The set of parameters in (9) and (10) to be estimated isΘ whereΘ = ψ ∪ φ, ψ =

{µp,Σp,Wp, cp}k
p=1 andφ = {µ̂p, Σ̂p,Ŵp, ĉp}k̂

p=1. In general, for eachθ ∈ Θ, updat-

ing takes place adaptively in the following form:

θnew = θold + η0∇θSp (11)

whereη0 is the learning step size,∇θSp denotes the gradient with respect toθ in the ascent

direction ofSp. Typically, the adaptive algorithm [17] shown in Table 1 can be adopted for

implementation.

Table 1.An adaptive algorithm for implementation of the APT-based portfolio management

Updating rules for the parameter setψ

µp
new = µp

old + η(∇ζT Sp)ϕ(µp,Σp, k)τ(µp,Σp,Wp, cp, k)(yT − µp)

Σp
new = Σp

old + η(∇ζT Sp)ϕ(µp,Σp, k)τ(µp,Σp,Wp, cp, k)κ(µp,Σp)

Wnew
p = Wold

p + η(∇ζT Sp)yTϕ(µp,Σp, k)

cnew
p = cold

p + η(∇ζT Sp)ϕ(µp,Σp, k)

Updating rules for the parameter setφ

µ̂new
p = µ̂old

p + η̂(∇
ξ
(j)
T

Sp)(yT − µ̂p)ϕ(µ̂p, Σ̂p, k̂)χ(µ̂p, Σ̂p,Ŵp,q, ĉp,q, k̂)

Σ̂new
p = Σ̂old

p + η̂(∇
ξ
(j)
T

Sp)κ(µ̂p, Σ̂p)ϕ(µ̂p, Σ̂p, k̂)χ(µ̂p, Σ̂p,Ŵp,q, ĉp,q, k̂)

Ŵnew
p,q = Ŵold

p,q + η̂(∇
ξ
(j)
T

Sp)yTϕ(µ̂p, Σ̂p, k̂)

ĉnew
p,r = ĉold

p,r + η̂(∇
ξ
(j)
T

Sp)ϕ(µ̂p, Σ̂p, k̂)

whereη andη̂ are learning rates,

M(RT ) = 1
T

PT
t=1 Rt, V (RT ) = 1

T

PT
t=1[Rt −M(RT )]2

∇ζT Sp =

�
V (RT )−M(RT )

�
RT−M(RT )− 1

T

PT
t=1(Rt−M(Rt))

��
T
√

[V (RT )]3

 Pm
r=1 exp (ξ

(r)
T

)x(r)
TPm

r=1 exp (ξ
(r)
T

)
− rf

!
exp (ζT ),

∇
ξ
(j)
T

Sp =

�
V (RT )−M(RT )

�
RT−M(RT )− 1

T

PT
t=1(Rt−M(Rt))

��
exp (ζT )x(j)

T

�Pm
r=1 exp (ξ

(r)
T

)−exp (ξ
(j)
T

)
�

exp (ξ
(j)
T

)

T
√

[V (RT )]3
�Pm

r=1 exp (ξ
(r)
T

)
�2 ,

ϕ(µp,Σp, k) =
exp(−0.5(y

T
−µp)T Σp

−1(y
T
−µp))Pk

r=1 exp(−0.5(y
T
−µr)T Σr

−1(y
T
−µr))

,

κ(µp,Σp) = Σp
−1(yT − µp)(yT − µp)T Σp

−1 − 0.5diag[Σp
−1(yT − µp)(yT − µp)T Σp

−1],

τ(µp,Σp,Wp, cp, k) =
(Wp

T y
T

+cp)−Pk
r=1(Wr

T y
T

+cr)ϕ(µr,Σr,k)Pk
r=1 exp(−0.5(y

T
−µr)T Σr

−1(y
T
−µr))

,

χ(µp,Σp,Wp,q, cp,q, k) =
(Wp,q

T y
T

+cp,q)−Pk
r=1(Wp,r

T y
T

+cr)ϕ(µr,Σr,k)Pk
r=1 exp(−0.5(y

T
−µr)T Σr

−1(y
T
−µr))

,

Wp,q denotes thep-th row of theq-th matrix,

diag[M ] denotes a diagonal matrix that takes the diagonal part of a matrixM ,

ζT = g(yT , ψ) as defined in (6) andξ(j)
T is thej-th output off(yT , φ) as defined in (7).

4.2 Simulation

Data Considerations All simulations in this paper are based on the past average fixed deposit

interest rate, stock and index data of Hong Kong. Daily closing prices of the 1-week bank aver-



age interest rate, 3 major stock indices as well as 86 actively trading stocks covering the period

from January 1, 1998 to December 31, 1999 are used. The number of trading days throughout

this period is 522. The three major stock indices are respectively Hang Seng Index (HSI), Hang

Seng China-Affiliated Corporations Index (HSCCI) and Hang Seng China Enterprises Index

(HSCEI). Of the 86 equities, 30 of them are HSI constituents, 32 are HSCCI constituents and

the remaining 24 are HSCEI constituents. The index data are directly used for adaptive portfo-

lio management while the stock prices are used by gaussian TFA for recovering independent

hidden factorsyt.

Methodology We consider the task of managing a portfolio which consists of four securi-

ties, the average fixed deposit interest rate and the three major stock indices in Hong Kong.

The fixed deposit interest rate is used as the proxy for the risk-free rate of returnrf . The

first 400 samples are used for training and the last 121 samples for testing. Both training and

test are carried out in an adaptive fashion. The APT-based algorithm in Table 1 is adopted

that uses hidden independent factors for controlling portfolio weights. We refer to this ap-

proach APT-based portfolio management. For eachyt under test, we can adaptively getζt =

g(yt, ψ) and ξt = f(yt, φt) and then the portfolio weightsαt = exp (ζt) and β
(j)
t =

exp (ξ(j)
t )/

∑m
r=1 exp (ξ(r)

t ). Finally, returns can be computed via (5). For the sake of com-

parison, we also implement a traditional approach that directly uses stock returnsxt instead

of hidden factorsyt [15]. We refer to this approach return-based portfolio management. Daily

risk-return statistics of the portfolios are given in Table 2.

Table 2.Daily risk-return statistics of constituents of portfolios

Component Name Mean Return Risk

Average interest rate 0.0148% 0.00%

HSI 0.18% 1.48%

HSCCI 0.03% 2.51%

HSCEI -0.20% 2.55%

Simulation Graphical comparison of profit gain between the two approaches using test data

is shown in Fig. 1(a) while daily risk-return statistics of the portfolios are given in Table 3(a).

4.3 Scenario II: HAS Transaction Cost but Short Sale NOT Permitted

Scenario II differs from Scenario I in taking into account the effect of transaction cost. Since

any change onβ(j)
t leads to a transaction that incurs a cost on returnct given by

ct = −αt

m∑

j=1

rc|β(j)
t − β

(j)
t−1|p(j)

t /p
(j)
t−1 = −αt

m∑

j=1

rc|β(j)
t − β

(j)
t−1|(1 + x

(j)
t ) (12)



whererc is a constant denoting the rate of transaction cost. Consequently, we consider the

portfolio return adjusted for transaction cost given by [14]

Rt = (1− αt)rf + αt

m∑

j=1

[
β

(j)
t x

(j)
t − rc|β(j)

t − β
(j)
t−1|(1 + x

(j)
t )

]
, (13)

subject to





αt > 0,

0 ≤ βt ≤ 1,∑m
j=1 β

(j)
t = 1.

The APT-based algorithm in Table 1 could still be adopted in this case except that the two

terms∇ζT
Sp and∇

ξ
(j)
T

Sp become respectively

∇ζT
Sp =

[
V (RT )−M(RT )

(
RT−M(RT )− 1

T

PT
t=1(Rt−M(Rt))

)]
T
√

[V (RT )]3

·
( ∑m

j=1

[ exp (ξ
(j)
T )x

(j)
TPm

r=1 exp (ξ
(r)
T )

− rc| exp (ξ
(j)
T )Pm

r=1 exp (ξ
(r)
T )

− exp (ξ
(j)
T−1)Pm

r=1 exp (ξ
(r)
T−1)

|(1 + x
(j)
T )

]− rf

)

· exp (ζT ),

∇
ξ
(j)
T

Sp =
[
V (RT )−M(RT )

(
RT −M(RT )− 1

T

∑T
t=1(Rt −M(Rt))

)]

· exp (ζT )
[
x(j)

T
− rcsign

(
exp (ξ(j)

T )− exp (ξ(j−1)
T )

)]

·[ ∑m
r=1 exp (ξ(r)

T )− exp (ξ(j)
T )

]
exp (ξ(j)

T )
/[

T
√

[V (RT )]3
(∑m

r=1 exp (ξ(r)
T )

)2
]

Simulation For the purpose of simulation we fix the rate of transaction cost atrc = 0.1%.

Graphical comparison of profit gain between the two approaches using test data is shown in

Fig. 1(b) while daily risk-return statistics of the portfolios are given in Table 3(b).

4.4 Scenario III: NO Transaction Cost but Short Sale IS Permitted

Scenario III differs from Scenario I in that short sale is now permitted. By removing the non-

negative constraints onαt andβt in (5), we get

Rt = (1−αt)rf +αt

m∑

j=1

β
(j)
t x

(j)
t −rc|β(j)

t −β
(j)
t−1|(1+x

(j)
t ) subject to

m∑

j=1

β
(j)
t = 1 (14)

and the new objective function

max
ψ,φ

Sp =
M(RT )√
V (RT )

subject to





αt = ζt = g(yt, ψ),

β
(j)
t = ξ

(j)
t /

∑m
r=1 ξ

(r)
t ,

ξt = f(yt, φ).

(15)

In implementation, the algorithm in Table 1 could be adopted except the two terms∇ζT
Sp

and∇
ξ
(j)
T

Sp become respectively

∇ζT
Sp =

[
V (RT )−M(RT )

(
RT−M(RT )− 1

T

PT
t=1(Rt−M(Rt))

)]
T
√

[V (RT )]3

·
( ∑m

j=1

[ ξ
(j)
T x

(j)
TPm

r=1 ξ
(r)
T

− rc| ξ
(j)
TPm

r=1 ξ
(r)
T

− ξ
(j)
T−1Pm

r=1 ξ
(r)
T−1

|(1 + x
(j)
T )

]− rf

)

∇
ξ
(j)
T

Sp =
[
V (RT )−M(RT )

(
RT−M(RT )− 1

T

PT
t=1(Rt−M(Rt))

)]
ζT x(j)

T

(Pm
r=1 ξ

(r)
T −ξ

(j)
T

)

T
√

[V (RT )]3
(Pm

r=1 ξ
(r)
T

)2



Simulation For the purpose of simulation we fix the rate of transaction cost atrc = 0.1%

and short selling is not applicable to the return-based approach. Graphical comparison of profit

gain between the two approaches using test data is shown in Fig. 1(c) while daily risk-return

statistics of the portfolios are given in Table 3(c).
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Fig. 1. Comparative profit gain of APT-based and return-based portfolios for different scenarios

4.5 Scenario IV: HAS Transaction Cost and Short Sale IS Permitted

Scenario IV differs from Scenario I in that the effects of both transaction cost and short sale on

portfolio selection have to be treated appropriately. As a result, we have

Rt = (1− αt)rf + αt

∑m
j=1

[
β

(j)
t x

(j)
t − rc|β(j)

t − β
(j)
t−1|(1 + x

(j)
t )

]
, (16)

subject to
∑m

j=1 β
(j)
t = 1

Here we have the objective function same as (15). The APT-based algorithm in Table 1 could

still be adopted in this case except that the two terms∇ζT Sp and∇
ξ
(j)
T

Sp become respectively

∇ζT
Sp =

[
V (RT )−M(RT )

(
RT−M(RT )− 1

T

PT
t=1(Rt−M(Rt))

)]
T
√

[V (RT )]3

(Pm
j=1 ξ

(j)
T x(j)

TPm
j=1 ξ

(j)
T

− rf

)
,

∇
ξ
(j)
T

Sp =
[
V (RT )−M(RT )

(
RT −M(RT )− 1

T

∑T
t=1(Rt −M(Rt))

)]

·ζT

[
x(j)

T
− rcsign

(
ξ
(j)
T − ξ

(j−1)
T

)]

·[ ∑m
r=1 ξ

(r)
T − ξ

(j)
T

]/[
T

√
[V (RT )]3

(∑m
r=1 ξ

(r)
T

)2
]



Table 3.Daily risk-return statistics of the portfolio for different scenarios

(a) Scenario I

Return-based Portfolio APT-based Portfolio Change inSp

Mean Return 0.06% 0.14% –

Risk 0.48% 0.81% –

Sp 0.1250 0.1728 ↑ 38.24%

(b) Scenario II

Return-based Portfolio APT-based Portfolio Change inSp

Mean Return 0.04% 0.12% –

Risk 0.42% 0.73% –

Sp 0.0952 0.1644 ↑ 72.69%

(c) Scenario III

Return-based Portfolio APT-based Portfolio Change inSp

Mean Return 0.06% 0.19% –

Risk 0.48% 0.92% –

Sp 0.1250 0.2065 ↑ 65.20%

(d) Scenario IV

Return-based Portfolio APT-based Portfolio Change inSp

Mean Return 0.04% 0.16% –

Risk 0.42% 0.88% –

Sp 0.0952 0.1818 ↑ 90.97%

Simulation In simulation short selling is not applicable to the return-based approach. Graphi-

cal comparison of profit gain between the two approaches using test data is shown in Fig. 1(d)

while daily risk-return statistics of the portfolios are given in Table 3(d).

4.6 Performance Evaluation

To summarize the experimental results of the above four scenarios, we have noted the follow-

ing two phenomena. First, the APT-based portfolio in general performs better than the return-

based portfolio if the scope of comparison is limited to within each scenario, as evidenced by

higherSp attained in Table 3. It should be noted that higherSp may arise as a consequence

of one of the following situations: i) higher expected return, lower overall volatility; ii) higher

expected return, same overall volatility; iii) same expected return, lower overall volatility; iv)

both expected return increase or decrease, with expected return increases (decreases) at a faster

(lower) rate than overall volatility. Second, if we compare the performance of APT-based port-

folios across all the four scenarios, especially the portfolio Sharpe ratio of scenario III against

I (↑ 19.50%) and scenario IV against II (↑ 10.58%), we may conclude that performance may

be further improved whenever short sale is permitted.

The first phenomenon reveals the fact that independent hidden factors may be more effec-

tive in controlling portfolio weights. Possible rationales include dimensionality reduction as



there are usually only a few hidden factors for a large number of securities. What seems to be

a more important revelation is that the classical APT [11] model is still helpful here.

Although short selling is expensive for individual investors and not generally permissible

for most institutional investors [1] in many markets, relevant experimental results reveal the hy-

pothetical potential benefit such facility might add to the portfolio returns. The benefit mainly

arises from the exploitation of downside trend in market price in addition to upward movement.

This in turn reduces the chance that the fund is left idle due to declining stock prices for most

stocks, which is more or less a phenomenon when the general market atmosphere is gloomy.

5 APT-Based Portfolio Management by Modified Portfolio Sharpe Ratio

In this section, we consider three variants of the portfolio Sharpe Ratio. After the Sharpe ratio

was proposed [8] in 1966, many researchers realized that variance was not an appropriate

measure of risk since it counted positive returns as risk. Specifically, Fishburn in [18] used the

Lower Partial Moment (LPM) of returns called downside risk to replace the traditional variance

measure. Similar approach had been extended in [15] to include portfolios. Specifically, we

consider portfolio expected downside riskV −
T which is represented by

V −
T = 1

T
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whereβi andxi denote the portfolio weight and return of thei-th risky security respectively,

andD
(i,j)
t is a constant.

In addition to considering the downside risk, the so-called portfolio expected upside volatil-

ity V +
T can be defined similarly as

V +
T = 1

T
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whereβi andxi denote the portfolio weight and return of thei-th risky security respectively,

andU
(i,j)
t is a constant.

5.1 Modified Sharpe Ratio with Minimum Downside Risk and Maximum Upside

Volatility

Given that portfolio variance can be broken down into portfolio downside risk and upside

volatility, it is desirable to consider the maximization of the upside volatility and minimization

of the downside risk at the same time in calculating the optimal portfolio. In other words, we

can consider maximization of the following improved Sharpe ratioS
′
p

max
ψ,φ

S
′
p =

M(RT ) + V +
T

V −
T

subject to





αt = exp (ζt),

ζt = g(yt, ψ),

β
(j)
t = exp (ξ(j)

t )/
∑m

r=1 exp (ξ(r)
t ),

ξt = f(yt, φ).

(17)

In implementation, the algorithm in Table 1 could be adopted except the two terms∇ζT Sp

and∇
ξ
(j)
T

Sp become respectively
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Simulation We implement the modified Sharpe ratio simulation using the same set of data

described before and the APT-based approach in Scenario I as benchmark for comparison.

Graphical comparison of profit gain between the two approaches using test data is shown in

Fig. 2(a) while daily risk-return statistics of the portfolios are given in Table 4.

Table 4.Daily Risk-return statistics of portfolio under original and modified Sharpe ratio

Original Sharpe ratio Modified Sharpe ratio

Mean Return 0.14% 0.24%

Risk 0.81% 1.13%

Upside Volatility – 0.43%

Downside Risk – 0.35%

Sp 0.1728 1.9143

5.2 Risk Minimization with Control of Expected Return

Some conservative investors are more concerned about risk than return. Therefore, a more

appropriate investment strategy may be to minimize risk while controlling the expected return.

Particularly, this can be achieved by setting the expected return in (25) to be a constant specified

by the investor and the optimization essentially becomes a minimization of downside risk and

a maximization of upside volatility.

max
ψ,φ

S
′
p =

r + V +
T

V −
T

subject to





αt = exp (ζt),

ζt = g(yt, ψ),

β
(j)
t = exp (ξ(j)

t )/
∑m

r=1 exp (ξ(r)
t ),

ξt = f(yt, φ),

M(RT ) = r.

(18)

To solve the above optimization problem with equality constraints, we adopt the augmented

Lagrangian method. Specifically, for the equality constrained problem

maximize f(x) with respect tox

subject to h(x) = 0, (19)



the augmented Lagrangian function can be written as

L(x, λ) = f(x)− λh(x)− 1
2
c[h(x)]2 (20)

whereλ is the Lagrange multiplier,c is the penalty parameter. Then a sequence of minimiza-

tions of the form

maximize Lck
(x, λk) with respect tox

subject to x ∈ Rn (21)

is performed where{ck} is a sequence of positive penalty parameters sequence with

0 < ck < ck+1 ∀k
ck →∞ as k →∞. (22)

The multiplier sequence{λk} is generated by the iteration

{λk+1} = λk + ckh(x̂) (23)

wherex̂ is the solution of (21).

Here the augmented Lagrangian is given by

L =
r + 1
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In implementation, the algorithm in Table 1 could be adopted except the two terms∇ζT Sp

and∇
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T
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Simulation We simulate the modified Sharpe ratio with control of expected return approach

and use the modified Sharpe ratio approach in the previous subsection as benchmark. The

predetermined expected return used for the simulation isr = 0.15%. Graphical comparison

of profit gain between the two approaches using test data is shown in Fig. 2(b) while daily

risk-return statistics of the portfolios are given in Table 5.

5.3 Return Maximization with Control of Expected Downside Risk

Some aggressive investors are more concerned about return than risk. Therefore, a strategy

that may better serve them is to maximize the expected return while controlling the expected
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Fig. 2. Comparative profit gain of portfolio under modified Sharpe ratio and with control of expected

return and risk

Table 5.Risk-return statistics of portfolio with control of expected return

Modified Sharpe ratio Modified Sharpe ratio with

control of expected return

Mean Return 0.24% 0.17%

Risk 1.13% 0.79%

Upside Volatility 0.43% 0.30%

Downside Risk 0.35% 0.23%

Sp 1.9143 2.0435

downside risk. In particular, this can be achieved by setting the expected downside risk in

(25) to be a constant specified by the investor and the optimization essentially becomes a

maximization of expected return and upside volatility.

max
ψ,φ

S
′
p =

M(RT ) + V +
T

v
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In implementation, the algorithm in Table 1 could be adopted except the two terms∇ζT Sp

and∇
ξ
(j)
T

Sp are replaced by∇ζT
L and∇
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(j)
T

L respectively, where
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Simulation We simulate the modified Sharpe ratio with control of expected downside risk

approach and use the modified Sharpe ratio approach in the previous subsection as benchmark.

The predetermined expected downside risk used for the simulation isv = 0.20%. Graphical

comparison of profit gain between the two approaches using test data is shown in Fig. 2(c)

while daily risk-return statistics of the portfolios are given in Table 6.

Table 6.Risk-return statistics of portfolio with control of expected downside risk

Modified Sharpe ratio Modified Sharpe ratio with

control of downside risk

Mean Return 0.24% 0.15%

Risk 1.13% 0.71%

Upside Volatility 0.43% 0.23%

Downside Risk 0.35% 0.19%

Sp 1.9143 0.2000

5.4 Performance Evaluation

The investment strategy with control of expected return is well-suited for risk-averse investors.

By comparing the statistics shown in Table 5 with that of Table 4, we can see that not only is

the expected return under control, but also is risk lowered. As a result,Sp remains more or less

constant. The phenomenon is consistent with the intuition that risk and return go hand-in-hand

in the same direction due to the nonexistence of free lunch. Similar reasoning could also be

extended to include the case of aggressive profit-seeking investors, by comparing the statistics

shown in Table 6 with that of Table 4.

6 Conclusion

In this paper, we introduce how the gaussian TFA model originally devoted for further study

of the APT could be utilized for adaptive portfolio management. Furthermore, we study three

variants of the APT-based Sharpe ratio maximization technique that utilize the concept of

portfolio downside risk and upside volatility tailored-made for the special need of risk-averse as

well as aggressive profit-seeking investors. Simulation results reveal that APT-based portfolio

management in general excels return-based portfolio management and portfolio returns may



be somehow enhanced by short selling, especially when the general market climate is not that

favorable.
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