Unnatural L₀ Sparse Representation for Natural Image Deblurring Supplementary Material

Li Xu Shicheng Zheng Jiaya Jia The Chinese University of Hong Kong

http://www.cse.cuhk.edu.hk/leojia/projects/10deblur/

New Sparsity Function

In this supplementary file, we provide more details about the new measure that approximates L_0 sparsity during optimization.

Given an input image z, the new sparsity measure is applied to image gradient vectors $\partial_* z$ to regularize the high frequency part, where $* \in \{h, v\}$ denoting two directions. The function is

$$\phi_0(\partial_* z) = \sum_i \phi(\partial_* z_i),\tag{1}$$

where

$$\phi(\partial_* z_i; \epsilon) = \begin{cases} \frac{1}{\epsilon^2} |\partial_* z_i|^2, & \text{if } |\partial_* z_i| \le \epsilon\\ 1, & \text{otherwise} \end{cases}$$
(2)

 $\phi(\cdot)$ is a concatenation of two functions – one is a quadratic penalty and the other is a constant. *i* indexes pixels. One example of the penalty function is shown in Fig. 1(a), with its shape very well approximating L_0 penalty when ϵ is small.

During optimization, we use another form of Eq. (2), which is defined as

$$\phi(\partial_* z_i; \epsilon) = \min_{l_{*i}} \left\{ |l_{*i}|^0 + \frac{1}{\epsilon^2} (\partial_* z_i - l_{*i})^2 \right\}, \qquad (3)$$

where $* \in \{h, v\}$. Each $l_{*i} \in \mathbb{R}$ and each $|l_{*i}|^0$ is a number with the zero power – that is, $|l_{*i}|^0 = 1$ if $l_{*i} \neq 0$ and $|l_{*i}|^0 = 0$ otherwise.

We give the closed-form solution to the problem defined in Eq. (3) in what follows and also show the equivalence between Eqs. (2) and (3).

Claim 1. The function defined in Eq. (3) taking the form $f(l_{*i}) = |l_{*i}|^0 + 1/\epsilon^2 (\partial_* z_i - l_{*i})^2$ has a closed-form solution through hard thresholding as

$$l_{*i} = \begin{cases} 0, & |\partial_* z_i| \le \epsilon; \\ \partial_* z_i, & otherwise \end{cases}$$
(4)

Figure 1. Plots of new sparsity function (a) and the hard thresholding (b).

Proof. If $|\partial_* z_i| \le \epsilon$, we compare the output from $|l_{*i}|^0$ and $\frac{1}{\epsilon^2}(\partial_* z_i - l_{*i})^2$. If l_{*i} is not 0, it must hold that

$$|l_{*i}|^0 + \frac{1}{\epsilon^2} (\partial_* z_i - l_{*i})^2 > 1.$$

If $l_{*i} = 0$,

$$|l_{*i}|^0 + \frac{1}{\epsilon^2} (\partial_* z_i - l_{*i})^2 = \frac{1}{\epsilon^2} (\partial_* z_i)^2 < 1.$$

So the minimum is reached with $l_{*i} = 0$.

Similarly, if $|\partial_* z_i| > \epsilon$, we compare the output from $|l_{*i}|^0$ and $\frac{1}{\epsilon^2}(\partial_* z_i - l_{*i})^2$. If l_{*i} is not 0, it must hold that

$$\min_{l_{*i}} |l_{*i}|^0 + \frac{1}{\epsilon^2} (\partial_* z_i - l_{*i})^2 = 1,$$

when $\partial_* z_i = l_{*i}$. If $l_{*i} = 0$,

$$|l_{*i}|^0 + \frac{1}{\epsilon^2} (\partial_* z_i - l_{*i})^2 = \frac{1}{\epsilon^2} (\partial_* z_i)^2 > 1.$$

So the minimum is reached with $\partial_* z_i = l_{*i}$ in this case.

Combining the two situations, the final closed-form solution is given by Eq. (4).

The relationship between l_{*i} and image gradient $\partial_* z_i$ is illustrated in Fig. 1(b).

Claim 2. With the optimal l_{*i} , the penalty function w.r.t. $\partial_* z_i$ defined in Eq. (3) is equivalent to the function in Eq. (2).

Proof. With the optimal value of l_{*i} yielded by the hard thresholding in Eq. (4), $\phi(\partial_* z_i; \epsilon)$ output from Eq. (3) is determined by one of the two segments (functions). Specifically, if $|\partial_* z_i| \leq \epsilon$, l_{*i} has been proved to be zero to reach the minimum in Eq. (3). Taking it into Eq. (2), we get the simplified function $\frac{1}{\epsilon^2} |\partial_* z_i|^2$. When $|\partial_* z_i| > \epsilon$, $l_{*i} = \partial_* z_i$ makes the function in (3) also be simplified to (2).

In our algorithm, we use a family of loss functions by varying ϵ and start from $\epsilon = 1$, which makes the loss function quadratic, taking the fact into consideration that each normalized $|\partial_* z_i|$ is always smaller than or equal to 1. In optimization, the penalty function evolves by decreasing ϵ , gradually but steadily heading towards the L_0 sparsity function realization. It is a really algorithmically practical, effective and useful technique whenever L_0 sparsity is required.