
Efficient Processing of Growing Temporal Graphs

Huanhuan Wu, Yunjian Zhao, James Cheng, Da Yan

Department of Computer Science and Engineering, The Chinese University of Hong Kong
{hhwu,yjzhao,jcheng,yanda}@cse.cuhk.edu.hk

Abstract—Temporal graphs are useful in modeling real-world
networks. For example, in a phone call network, people may
communicate with each other in multiple time periods, which can
be modeled as multiple temporal edges. However, the size of real-
world temporal graphs keeps increasing rapidly (e.g., considering
the number of phone calls recorded each day), which makes it
difficult to efficiently store and analyze the complete temporal
graphs. In this paper, we propose a new model, called equal-
weight damped time window model, to efficiently manage temporal
graphs. In this model, each time window is assigned a unified
weight. This model is flexible as it allows users to control the
tradeoff between the required storage space and the information
loss. It also supports efficient maintenance of the windows as new
data come in. We discuss two applications using the model for
analyzing temporal graphs and propose efficient algorithms for
these applications. Our experiments demonstrated that we can
handle massive temporal graphs efficiently with limited space
requirement.

I. INTRODUCTION
A temporal graph is a graph in which the relationship

between vertices is not just modeled by an edge between
them, but the time period when the relationship happens is
also recorded. For example, the records that two persons
A and B talked on the phone in time periods [t1, t2] and
[t3, t4] are modeled as two temporal edges, (A,B, [t1, t2]) and
(A,B, [t3, t4]). An example of a temporal graph is shown in
Figure 1(a).

Graphs are used ubiquitously to model relationships be-
tween objects in real world. However, the graph data in many
applications are actually better to be modeled as temporal
graphs. For example, in communication networks, including
online social networks, messaging networks, phone call net-
works, etc., people communicate with each other in different
time periods. Temporal graphs collected from these applica-
tions carry rich time information, and have been shown to
possess many important time-related patterns that cannot be
found from non-temporal graphs [1], [2], [3], [4], [5], [6], [7].

However, existing work overlooks one serious problem
presented by temporal graphs in real world applications, that
is, the number of temporal edges (or temporal records) can be
extremely huge so that it becomes overly expensive to store
and process a temporal graph. For example, in a temporal
graph that models phone-call records, a person may talk on
the phone many times in different time periods in a day,
where each phone call is represented by a temporal edge with
the corresponding time period. The total number of temporal
edges accumulated over time for all persons can easily become
overwhelming. Note that while the number of temporal edges
usually increases at a steady rate over time, the number of
vertices, on the other hand, does not increase too much over
time after passing the growth stage.

The problem in the above example is actually a real
problem presented to us by a telecommunications operator,

who collects phone-call and messaging records represented as
a temporal graph that becomes too large over time for them
to manage (millions to tens of millions of new temporal edges
added each day). While analyzing only a short recent window
of the data is useful, the telecom operator is also very keen in
storing and analyzing the temporal graph over a long period of
time (e.g., in recent years), and possibly the entire history, in
an efficient way. Motivated by this, we propose a new model
to efficiently manage a temporal graph.

Our new model considers the input temporal graph as a
continuous stream, which captures how the temporal graph
is collected in real-life applications (e.g., new call/messaging
records are accumulated in the order of the calling/messaging
time). Apparently, the sheer size of the stream over the entire
time history will render the analysis (and even storage) of the
original temporal graph impractical. To address this problem,
we consider a damped time window model (also called tilted
time window) [8], where a decay function is applied to depreci-
ate the importance of records in an older window. However, the
windows defined by existing damped time window models do
not have a unified weight and hence the importance of records
in different windows cannot be easily compared. For example,
it is difficult to determine which of the following patterns is
more important: a pattern that A and B communicated 10
times in a recent window (e.g., last week), or a pattern that A
and B communicated 10,000 times in an older window (e.g.,
last year)?

We design a new damped time window model that gives
a unified weight to each time window, called equal-weight
damped time window, and represents the temporal graph falling
into each window (i.e., a time period) as a weighted graph.
The weighted graphs from different time windows can then be
compared and analyzed.

The main contributions of our work are summarized as
follows:
• Our equal-weight damped time window distributes a

unified weight to each time window, which makes it
easy to compare different time windows.

• Our model can handle massive temporal graphs with
limited space requirement, and support efficient graph
analysis with little information loss.

• The equal-weight design in our model also leads to
natural and efficient update maintenance of the entire
window (within a bounded storage space) as new data
come in.

• We propose two applications of analyzing a temporal
graph under this new model, including connectivity
analysis and community finding. We devise efficient
algorithms for solving these problems. Then we ver-
ified the effectiveness and efficiency of our method
by extensive experiments on large temporal graph
datasets.



The rest of the paper is organized as follows. Section II
presents the equal-weight time window model. Section III
discusses two applications based on equal-weight time window
model. Section V reports experimental results. Section VI
discusses related work. Section VII concludes the paper.

II. EQUAL-WEIGHT DAMPED TIME WINDOW

Different window models have been proposed for pro-
cessing a data stream. Among which, the landmark window
model [9] considers the entire history of a stream without
distinguishing the importance of recent and old records, while
the sliding window model [10] focuses on the most recent
window only. Our work is motivated by application needs from
a telecom operator that requires to analyze historical data while
giving more importance to recent data. For this purpose, the
damped time window model [8] seems to suit the requirement.
We introduce our damped time window model in this section,
and discuss its difference with existing ones.

We first define the notations related to a temporal graph.
Let G = (V,E) be a temporal graph, where V is the set of
vertices and E is the set of edges in G. An edge e ∈ E is a
quadruple (u, v, [ti, tj ]), where u, v ∈ V, and [ti, tj ] is the time
that e is active. The duration of the edge e is given by tj − ti.
We focus our discussion on undirected temporal graphs, while
we note that it is not difficult to extend our method to directed
temporal graphs.

A. The Weight Function
In a damped time window model, a decaying weight

function is used to depreciate the importance of a record over
time. In the setting of a temporal graph, we use such a function
to assign weight to temporal edges in the graph. We first
present the weight density function as follows.

Definition 1 (Weight density function): Let tτ be the cur-
rent time. The weight density of a record at time t (with respect
to tτ ) is defined as

f(t) = eλ(t−tτ ),

where λ ≥ 0 is a decaying constant.
Note that t ≤ tτ , and t is a time in the past if t < tτ .
In Definition 1, f(t) is an exponentially decaying function,

which is used in the discussion throughout the paper. In
general, the class of exponentially decaying functions has been
widely adopted [11], [12], as it fits most real application
scenarios. But we note that f(t) can also be defined differ-
ently (e.g., as a linear decaying function) depending on the
application. Based on f(t), we define our weight function as
follows.

Definition 2 (Weight function): The weight of a temporal
edge (u, v, [t1, t2]) is given as the integral

F (t1, t2) =

∫ t2

t1

f(t)dt.

Let W = [tx, ty] be a given time window. With the weight
function, we represent the part of a temporal graph G = (V,E)
that falls into W as a weighted graph GW defined as follows.

Definition 3 (Weighted graph): The weighted graph of a
temporal graph G = (V,E) within a time window W = [tx, ty]
is given by GW = (VW , EW ,ΠW ), where:
• VW = V,

a

g

cb

f

[1,2] [2,3] [2,3] [4,5]

[5,6] [1,6] [7,8]

a

cb

f

[7,9]

[11,14]

(a) (b)

1 2

3

g

Figure 1. (a) a temporal graph G, and (b) the weighted graph
G[2,5]

• EW = {(u, v) : (u, v, [ti, tj ]) ∈ EW }, where EW =
{(u, v, [ti, tj ]) ∈ E : [ti, tj ] ∩ [tx, ty] 6= ∅},

• ΠW is a function that assigns each edge
e = (u, v) ∈ EW a weight ΠW (e) =∑

(u,v,[ti,tj ])∈EW F (max(ti, tx),min(tj , ty)).

The following example shows a weighted graph.
Example 1: Figure 1(a) shows a temporal graph and Fig-

ure 1(b) shows the corresponding weighted graph G[2,5] within
the time window [2, 5]. For simplicity, we assume that λ = 0
and hence f(t) = 1. Thus, the weight of edge (a, b) is
F (2, 3) = 1, the weight of edge (a, c) is F (2, 3)+F (4, 5) = 2,
and the weight of edge (c, f) is F (2, 5) = 3. The weight of
all other edges is 0.

B. The Equal-Weight Window Model
Next, we determine the size of each window in a data

stream given the weight function.
Existing damped time window model [8] usually sets the

sizes of the windows in a stream by an exponentially increasing
function (e.g., 20T , 21T , 22T , 23T , . . ., where the windows
are disjoint and the most recent window has a size 20T ), or by
the lengths of conventional time units (e.g., hour, day, month,
year, . . .). These window size settings may seem to be intuitive,
but they are primarily designed for mining frequent itemsets
from a stream and are not suitable for our problem of handling
a temporal graph stream (see more discussion in “Advantages
of the new model” at the end of this subsection). We introduce
an equal-weight scheme as follows.

Let [t0, tτ ] be the time period of the entire stream up to the
current time tτ . To limit the space requirement for handling a
large temporal graph, we divide the stream into θ windows for
a given constant number θ. We first define the equal-weight
window condition as follows.

Definition 4 (Equal-weight window condition):
Consider that the probability distribution of any edge being
active at any time follows a uniform distribution. Under
this distribution, the equal-weight condition is satisfied if the
stream is divided into θ windows such that the weighted graph
of each window is the same in expectation.

Intuitively, Definition 4 states that if the probability of any
edge being active does not change over time, then the weight
of the edge should not change in any of the θ windows.

Let the time periods of the θ windows be [t0, t1], [t1, t2],



. . ., [tθ−1, tτ ]. Then, applying Definition 4, we have∫ t1

t0

f(t)dt =

∫ t2

t1

f(t)dt = ... =

∫ tτ

tθ−1

f(t)dt =
1

θ

∫ tτ

t0

f(t)dt.

Take f(t) = eλ(t−tτ ). We first determine t1 as follows:∫ t1

t0

f(t)dt =
1

θ

∫ tτ

t0

f(t)dt

⇒ 1

λ
(eλ(t1−tτ ) − eλ(t0−tτ )) =

1

θλ
(eλ(tτ−tτ ) − eλ(t0−tτ ))

⇒ θ(eλt1 − eλt0) = eλtτ − eλt0

⇒ eλt1 =
eλtτ + (θ − 1)eλt0

θ

⇒ t1 =
1

λ
ln
eλtτ + (θ − 1)eλt0

θ
.

Similarly, we obtain ti, where 1 ≤ i ≤ θ − 1, as follows:

ti =
1

λ
ln
i× eλtτ + (θ − i)eλt0

θ
.

Based on the above analysis, we define equal-weight
damped time window model as follows.

Definition 5 (Equal-weight damped time window model):
Given a stream that spans the time period [t0, tτ ], and an
integer θ, equal-weight damped time window model divides
the stream into θ windows spanning time periods [t0, t1],
[t1, t2], . . ., [tθ−1, tτ ], where ti = 1

λ ln i×eλtτ+(θ−i)eλt0
θ , for

1 ≤ i ≤ θ − 1.
Based on Definition 5, we obtain θ weighted graphs derived

from the temporal graph that falls into each of the θ windows
in the stream. The value of θ is determined by users, which
controls the space requirement and the efficiency of graph
analysis, as well as the degree of information loss (from the
original temporal graph to the θ weighted graphs). The larger
the value of θ, the finer is the granularity of the windows
and the less is the information loss, but also the more is the
memory space needed.

Advantages of the new model. The equal-weight damped
time window model has the following advantages: (A1) it is a
generalization of existing damped time window models; (A2) it
gives equal importance to each window, which makes it easy
to compare the graphs from different windows; and (A3) it
provides a systematical way for update maintenance of the
windows.

For (A1), by defining an appropriate weight density func-
tion, we can apply our proposed equal-weight scheme to com-
pute the size of each window for existing damped time window
models. Take the logarithmic tilted-time window model as
an example, where an exponentially increasing function (e.g.,
20T , 21T , 22T , 23T , . . .) is used. Assume that the time span of
the entire stream is [0, 2θ−1], then the weight density function
is defined as follows:

f(t) =


1, 0 ≤ t < 2θ−1

2, 2θ−1 ≤ t < 2θ−1 + 2θ−2

..., ...
2θ−1, 2θ − 2 ≤ t ≤ 2θ − 1

For (A2), if the weights of an edge (u, v) in two different
windows W1 and W2 are the same, then it implies that the
probability of (u, v) being active remains the same in W1 and
W2. Now if the probability of (u, v) being active is higher in
W1, then apparently the weight of (u, v) in W1 is also higher
than that in W2. This may not be true if existing damped
time windows are used unless we define an appropriate f(t)
function for them, and apply our scheme proposed in this
section to determine the window sizes.

For (A3), we show that our model provides a systematical
way for update maintenance of the windows in the following
subsection.

C. Window Maintenance
As time goes on, new temporal edges are created and the

windows need to be updated. We devise an update scheme for
our window model as follows.

Let [t0, t1], [t1, t2], . . ., [tθ−1, tθ] denote the θ existing
windows, and [tθ, tθ+1] denote the new window. As the
current time changes from tτ = tθ to t′τ = tθ+1, the
weight density function f(t) changes from f(t) = eλ(t−tθ)

to f(t) = eλ(t−tθ+1). The following lemmas state the change
needed.

Lemma 1: If the current time changes from tτ to t′τ , for
any temporal edge whose weight w is last updated at time tτ ,
the weight should be updated as follows:

w ← w × eλ(tτ−t′τ ).

Proof: Given an edge (u, v, [ti, tj ]), its weight computed
at time tτ is

∫ tj
ti
eλ(t−tτ )dt, and its weight at time t′τ is∫ tj

ti
eλ(t−t′τ )dt =

∫ tj
ti
eλ(t−tτ )dt× eλ(tτ−t′τ ).

Lemma 2: Given a weighted graph G = (V,E,Π) of any
window, if the current time changes from tτ to t′τ , the weight
w of each edge in E which is computed at time tτ should be
updated as follows

w ← w × eλ(tτ−t′τ ).

Proof: The proof follows directly from Lemma 1.
Lemma 2 shows that it is simple to update the weighted

graphs of the existing windows as new windows are created
in the stream. However, we still need to determine at what
point a new window, i.e., [tθ, tθ+1], should be created in the
stream, which is to determine tθ+1. Following our discussion
in Section II-B, we have∫ tθ

tθ−1

f(t)dt =

∫ tθ+1

tθ

f(t)dt

⇒ eλtθ − eλtθ−1 = eλtθ+1 − eλtθ

⇒ tθ+1 =
1

λ
ln(2eλtθ − eλtθ−1).

Similarly, we can also compute the windows that are to
follow in the stream, i.e., [tθ+1, tθ+2], . . ., and so on. However,
in this way, the number of windows keeps increasing, and the
size of a new window (i.e., the time span of the window)
becomes smaller and smaller. To solve these issues, we propose
to merge windows to bound the number of windows in the
stream within the range [θ, 2θ]. Specifically, when the number
of windows reaches 2θ, we merge every two consecutive
windows into one window. In this way, every window in the



stream after merging still satisfies the equal-weight window
condition. In fact, we can also merge more than two windows
into a single window if necessary.

III. WINDOW-BASED NETWORK ANALYSIS
We now discuss network analysis based on the equal-

weight damped time window model, which we illustrate using
two applications in this section, while we remark that there
are a list of open problems that are interesting and useful for
studying and analyzing large real-world temporal graphs under
our model. We give a list of open problems in Section IV.

Let G1, G2, . . ., Gθ denote the θ weighted graphs derived
from the θ windows in the stream.

A. Connectivity Analysis
Given a weighted graph G = (V,E,Π) of a window in

the stream (defined in Definition 3, and here the window W
is omitted for simplicity), we define a measure of connectivity
between two vertices u and v in G as follows.

Definition 6 (Connectivity): Let P(u, v) = {P (u, v) :
P (u, v) is a path from u to v in G}. The connectivity of
a path P (u, v), denoted by γ(P (u, v)), is defined as the
minimum edge weight among the edges on P (u, v). The
connectivity between u and v, denoted by γ(u, v), is defined
as γ(u, v) = max{γ(P (u, v)) : P (u, v) ∈ P(u, v)}.

Since the weight of each edge in a weighted graph indicates
the strength of relationship (or interaction, communication,
etc.) between the two end points in the corresponding temporal
graph within the time span of the window, the value of γ(u, v)
reflects the connectivity between u and v within the window,
for example, the amount of information that can be passed
between u and v via any path within the time span.

Given a connectivity query γ(u, v), we can answer it using
an algorithm similar to Dijkstra’s algorithm, as shown in
Algorithm 1. Algorithm 1 uses a maximum priority queue
Q to keep the current largest connectivity value, c[x], of a
path from u to a visited vertex x ∈ V . The algorithm starts
from one of the query vertices, u, greedily grows the paths
by extending to u’s neighbors, and then further grows to the
neighbors’ neighbors until reaching the other query vertex v.
During the greedy process, the c[x] value of a vertex x is
updated whenever a larger connectivity value from u to x is
found. At each iteration, the vertex with the maximum c[.]
value is extracted from Q to update the c[.] values of its
neighbors.

The following theorem proves the correctness and com-
plexity of Algorithm 1.

Theorem 1: Algorithm 1 correctly computes the connec-
tivity value γ(u, v) in O((|E|+ |V |) log |V |) time.

Proof: If P(u, v) 6= ∅, it is easy to show that there
exists a path P = 〈u, u1, u2, . . . , uj = v〉 ∈ P such that
every prefix subpath of P , Pi = 〈u, u1, u2, . . . , ui〉, gives the
correct connectivity value γ(u, ui), i.e., γ(u, ui) = γ(P (u, v)),
for 1 ≤ i ≤ j. The correctness follows from (proof by
induction on i) that Algorithm 1 computes c[ui] = γ(u, ui),
for 1 ≤ i ≤ j.

The complexity is the same as Dijkstra’s algorithm.
The complexity of Algorithm 1, even if Fibonacci heap

is used, is too high to process a connectivity query on-
line. One may pre-compute the connectivity values for all
pairs of vertices. However, the space complexity of this
method is O(|V |2), and the pre-computation requires O((|E|+

Algorithm 1: Compute γ(u, v)

Input : A weighted graph G = (V,E,Π), two query
vertices u and v

Output : γ(u, v)

1 Initialize c[u]←∞, c[x]← 0 for every vertex x ∈ V \ {u};
2 Let Q be a maximum priority queue, where an element of Q

is a pair (x, c[x]) and c[x] being the key;
3 Initialize Q by inserting a single element (u, c[u]);
4 while Q is not empty do
5 (x, c[x])← Extract-Max(Q);
6 if x = v then
7 Goto Line 12;

8 foreach neighbor vertex, y, of x do
9 if c[y] < min(c[x],Π(x, y)) then

10 c[y]← min(c[x],Π(x, y));
11 If y is not in Q, push (y, c[y]) into Q; otherwise,

update c[y] in Q;

12 return γ(u, v) = c[v];

|V |)|V | log |V |) time, both of which are impractical for han-
dling a large graph. We propose a more efficient way to process
connectivity queries, with linear index space.

First, we compute a maximum spanning tree, denoted by
MaxST, of the weighted graph G. Without loss of generality,
we assume G is connected. If not, we can consider each
connected component of G separately. A MaxST has the cut
property. A cut is a partition of the vertex set of a graph into
two disjoint subsets. We say that an edge crosses the cut if
it has one endpoint in each subset of the partition. The cut
property states that for any cut C in the graph, if the weight
of an edge e crossing C is larger than the weights of all the
other edges crossing C, then e must be contained in every
MaxST.

Given a MaxST, T , there is a unique path connecting any
two vertices in T . Let γT (u, v) denote the connectivity value
between u and v in the MaxST T . Based on the cut property,
we have the following lemma.

Lemma 3: Given a MaxST T of a weighted graph G,
γ(u, v) = γT (u, v), for any pair of vertices u and v in G.

Proof: For any pair of vertices u and v, there is a unique
path PT (u, v) connecting u and v in T . Let e be the edge with
minimum weight among the edges on PT (u, v). If we remove
e, the tree T will be divided into two disjoint components T1

and T2. Let V1 (V2) be the set of vertices in T1 (T2). By the cut
property, among the edges crossing the cut (V1, V2), e is the
one with the largest weight, since if there exists another edge e′
in the cut (V1, V2) with larger weight than e, then e′ should be
included in the MaxST instead of e. Thus, γ(u, v) ≤ Π(e) =
γT (u, v). Also, by Definition 6, we have γ(u, v) ≥ γT (u, v)
since PT (u, v) ∈ P(u, v). Thus, γ(u, v) = γT (u, v).

Based on Lemma 3, a connectivity query γ(u, v) can be
answered by first finding the unique path between u and v in
the MaxST T , and then returning the minimum edge weight
on the path. The query time complexity is O(|V |), which is
much better than that of Algorithm 1. Next, we show that we
can further reduce the querying time complexity to O(1) time.

We first introduce the concept of Cartesian tree [13], which
is a binary tree derived from a sequence of numbers. Given
an array A of n numbers (A[0] to A[n − 1]), the root of



a

g

c

86

12

b

f

( b )( a ) 

4

9 5

8

a

g

c

86

12

b

f

9

Figure 2. (a) a weighted graph G, and (b) a MaxST T

(a,b,6)

(a,c,8)

a c

(b,g,9)

(b,f,12)g

b f

Figure 3. The Cartesian tree CT of T in Figure 2(b)

the Cartesian tree is the minimum number among all the n
numbers. Let A[i] be the minimum number, i.e., the root. Then,
its left subtree is computed recursively on the numbers A[0]
to A[i− 1], while its right subtree is computed recursively on
the numbers A[i+ 1] to A[n− 1].

We construct a Cartesian tree, CT , based on a MaxST T .
The root node of CT is the edge with the minimum weight
among all the edges in T . Then, by removing this edge, T will
be partitioned into two subtrees. Following a similar procedure,
we can recursively construct the left and right subtrees of the
root node. When removing an edge (u, v), if u (and/or v) is
not an end point of any remaining edges in T , then we also
create a leaf node u (and/or v) as the child of the node (u, v)
in CT . Thus, the set of leaf nodes in the tree CT corresponds
to the set of vertices in T .

Based on the Cartesian tree CT , given a connectivity query
γ(u, v), we can first find the lowest common ancestor (LCA)
of the two leaves u and v in CT , and then return the weight
of the edge in T that corresponds to the LCA.

The following example demonstrates the concepts of
MaxST, Cartesian tree, and how to answer a connectivity
query.

Example 2: Figure 2(a) shows a weighted graph G and
Figure 2(b) shows a MaxST T of G. It is easy to verify
γ(u, v) = γT (u, v). For example, γ(c, f) = 6 in G and
γT (c, f) = 6 in T . Figure 3 shows the Cartesian tree CT
of T . The root node of CT is the edge (a, b, 6), since this
edge is the one with the minimum weight in T . Removing
(a, b, 6) partitions T into two components {a, c} and {b, f, g}.
Following a similar procedure recursively, we obtain CT .
The leaves of CT are the vertices in T . Then, to find the
connectivity value between any two vertices, we find the LCA
of these two vertices in CT . For example, given a connectivity
query γ(f, g), we find that the edge (b, g, 9) is the LCA of
the leaves f and g in CT . Thus, we return 9 as the answer for

γ(f, g). It is easy to verify that the answer is correct.
Now, we give the complexity of processing a connectivity

query and of constructing the index.
Theorem 2: A connectivity query γ(u, v) can be answered

in O(1) time with an index using O(|V |) space, and the index
construction time is O((|E|+ |V |) log |V |).

Proof: According to [14], an LCA query can be answered
in O(1) time with an index that has linear size and can be con-
structed in linear time. According to [15], if the edge weights
of T are sorted, the Cartesian tree CT can be constructed
in linear time. Thus, the overall time complexity for index
construction is bounded by the computation of MaxST, which
is O((|E|+ |V |) log |V |). Since both the MaxST and the index
for answering LCA queries have O(|V |) size, the overall index
space is O(|V |).

Given the θ weighted graphs G1, G2, . . ., Gθ from
the θ windows in the stream, we define the connectivity
between u and v in the entire θ windows as Γ(u, v) =
min{γ1(u, v), . . . , γθ(u, v)}, where γi(u, v) is the connectivity
value γ(u, v) in the weighted graph Gi, for 1 ≤ i ≤ θ. Since
θ is a constant, the query Γ(u, v) can be answered in constant
time with indexes of size linear to the number of vertices.

B. Core Community
Let H be an induced subgraph of a weighted graph G =

(V,E,Π). The weight of H , denoted by Π(H), is defined as
the sum of the weight of the edges in H . Let den(H) denote
the density of H , defined as den(H) = Π(H)

|H| .
Density has been used to define communities in a graph

such as densest subgraphs of a graph [16], [17]. However, it
is possible that within a community, some vertices are loosely
connected to other vertices, while the density of the community
is still high. To make sure that every vertex in the community
is well connected, we give the definition of η-community as
follows.

Let Π(v,G) denote the weight of a vertex v ∈ V in G,
which is defined as the sum of the weights of the edges that
are incident to v, that is, Π(v,G) =

∑
(u,v)∈E Π(u, v). Let

G[S] be the subgraph of G induced by S ⊆ V .
Definition 7 (η-community): Given a weighted graph G =

(V,E,Π) and a number η > 0, we say that a set of vertices
S ⊆ V forms a η-community, if Π(v,G[S]) ≥ η for every
v ∈ S.

Intuitively, Definition 7 makes sure that every vertex in
a community should actively interact with their neighboring
vertices. The number η serves as a threshold value to control
the level of interaction between a vertex with its neighbors.

Given a value η, an η-community query is to find the largest
η-community.

A naive solution to answer an η-community query is to
enumerate all the vertex subset of V , and check whether it
satisfies Definition 7. Apparently, the naive solution is not
practical. We propose an efficient solution to answer an η-
community query for any given η as follows.

Our solution is based on the concept of weighted k-core. A
subgraph H of G is a weighted k-core [18], [19] if for every
vertex v in H , Π(v,H) ≥ k. Note that if H is a weighted k′-
core, where k′ > k, then H is also a weighted k-core (since
Π(v,H) ≥ k′ > k). The weighted core number of a vertex
v, denoted by φ(v), is defined as φ(v) = k such that v is
in a weighted k-core and v is not contained in any weighted



Algorithm 2: Weighted core decomposition
Input : An undirected weighted graph G = (V,E,Π)
Output : The weighted core number, φ(v), of each v ∈ V

1 Initialize w(v)← Π(v,G) for each v ∈ V ;
2 Sort the vertices in V in ascending order of w(.) value;
3 foreach v ∈ V in sorted order do
4 φ(v)← w(v);
5 foreach neighbor vertex, u, of v do
6 if w(u) > w(v) then
7 w(u)← max{w(u)−Π(u, v), w(v)};
8 Re-order u in V ;

9 Remove v from V ;

k′-core, where k′ > k. Clearly, an η-community is a weighted
η-core.

Weighted core decomposition in a weighted graph G is
to compute the largest non-empty weighted k-core of G for
every k > 0. Alternatively, we can compute φ(v) for every
vertex v ∈ V , since the largest weighted k-core is simply the
subgraph of G induced by the vertex set {v : v ∈ V, φ(v) ≥ k}.

The algorithm for weighted core decomposition is simple,
as shown in Algorithm 2. The idea is to recursively remove
from G the vertex with the lowest weight. When a vertex v
is removed, its incident edges should also be removed, and
hence the weight of its neighbors is updated as in Line 7 if
the neighbor vertex has larger weight than v. The weighted
core number of a vertex v is simply its weight at the time
when v is removed, since the weight of every vertex in G is
larger than or equal to v at that time, and v cannot be contained
in any weighted core with a larger core number.

The following theorem gives the complexity of Algo-
rithm 2.

Theorem 3: Algorithm 2 correctly computes φ(v) for each
vertex v ∈ V in a weighted graph G = (V,E,Π) using
O((|V |+ |E|) log |V |) time.

Proof: The correctness is easy to see from the definition
of weighted core number. The time complexity is bounded by
Line 2 and 8 of Algorithm 2, which take O((|V |+|E|) log |V |)
time.

Then, given an η-community query, the query answer is
simply the set of vertices S such that ∀v ∈ S, φ(v) ≥ η.

Given the θ weighted graphs G1, G2, . . ., Gθ from the θ
windows in the stream, we want to find the largest common
η-community in all the θ weighted graphs. We call this query a
(θ, η)-community query. To answer this query, we first define
(θ, η)-community as follows.

Definition 8 ((θ, η)-community): Given θ weighted graphs
G1 = (V,E1,Π1), G2 = (V,E2,Π2), . . ., Gθ = (V,Eθ,Πθ),
a set of vertices S ⊆ V is a (θ, η)-community, if ∀i ∈ [1..θ],
Gi[S] is an η-community of Gi.

Similar to weighted core number, we define the θ-weighted
core number of a vertex v, denoted by Φ(v), as Φ(v) = k such
that v is in a (θ, k)-community and v is not in any (θ, k′)-
community where k′ > k.

Example 3: Figures 4(a) and (b) show two weighted
graphs G1 and G2. In this case, θ = 2. The set {a, b, c} is
a (2, 6)-community since {a, b, c} is a 6-community in both
G1 and G2. The θ-weighted core number of vertex b is 6 since
there is no (2, k)-community containing b, where k > 6. On

a

g

c

33

9

b

f

( b )( a ) 

3

1

a

g

c

33

1

b

f

9

3

Figure 4. (a) a weighted graph G1, and (b) a weighted graph G2

Algorithm 3: θ-weighted core number computation
Input : θ weighted graphs: G1 = (V,E1,Π1),

G2 = (V,E2,Π2), . . ., Gk = (V,Eθ,Πθ)
Output : The θ-weighted core number, Φ(v), of each v ∈ V

1 For each v ∈ V , initialize wi(v)← Π(v,Gi), for 1 ≤ i ≤ θ;
set w(v)← min{w1(v), w2(v), . . . , wθ(v)};

2 Sort the vertices in V in ascending order of w(.) value;
3 foreach v ∈ V in sorted order do
4 Φ(v)← w(v);
5 Let U be the union of the set of neighbor vertices of v in

Gi, for 1 ≤ i ≤ θ;
6 foreach vertex u ∈ U do
7 if w(u) > w(v) then
8 wi(u)← max{wi(u)−Πi(u, v), w(v)}, for

1 ≤ i ≤ θ;
9 w(u)← min{w1(u), w2(u), . . . , wθ(u)};

10 Re-order u in V ;

11 Remove v from V ;

the contrary, we can find the weighted core number of b is 9
in both G1 and G2, which is larger than 6.

According to Definition 8, a simple algorithm to compute
Φ(v) is to find a (θ, k)-community that gives the maximum
value of k to Φ(v) as follows. For each subset of V that
contains v, compute the maximum k for each such subset S
such that Gi[S] is an η-community of each Gi for 1 ≤ i ≤ θ.
Then among all these subsets, assign Φ(v) as the maximum
value of k obtained.

Apparently, the above-described algorithm is infeasible
since there are 2|V \{v}| subsets of V that contains v. We
propose an efficient solution as shown in Algorithm 3.

The algorithm uses a similar recursive procedure as in
Algorithm 2, but it is not trivial to see the correctness, which
we prove in the following theorem.

Theorem 4: Given θ weighted graphs, G1 = (V,E1,Π1),
G2 = (V,E2,Π2), . . ., Gθ = (V,Eθ,Πθ), Algorithm 3
correctly computes Φ(v) for each vertex v ∈ V in O((|V | +∑

1≤i≤θ |Ei|) log |V |) time.
Proof: We first prove the correctness. In

Algorithm 3, w(v) keeps the minimum value among
{w1(v), w2(v), . . . , wθ(v)}, for each vertex v ∈ V . The
vertices are sorted in ascending order of their w(.) value.
When a vertex v is removed, w(v) is the minimum among
the remaining vertices in V , which indicates that v is in
a (θ, w(v))-community. On the other hand, v cannot be in
any (θ, k)-community with k > w(v). Thus, Algorithm 3



correctly computes Φ(v) for every vertex v ∈ V .
The time complexity is bounded by Lines 2

and 10 of Algorithm 3, which take O(|V | log |V |) and
O((

∑
1≤i≤θ |Ei|) log |V |) time, respectively.

Then, given a (θ, η)-community query, the query answer is
simply the set of vertices S such that ∀v ∈ S, Φ(v) ≥ η.

C. Queries on a Random Window
Besides the need of analysis on a temporal graph in the

whole time window, users may also be interested in analyzing
the graph in any time period. For example, user A is interested
in time window [1, 20], while user B is interested in time range
[10, 40]. To satisfy each user’s need, the naive way is to store
the complete temporal graph and extract the temporal subgraph
from the required time range, which is not practical due to
the massive size of the complete graph. We discuss how to
efficiently obtain a weighted graph of any time period based
on the equal-weight damped time window model.

Given a random window W = [tx, ty], we are required to
return GW = (V,EW ,ΠW ). Given θ weighted graphs, G1 =
(V,E1,Π1), G2 = (V,E2,Π2), . . ., Gθ = (V,Eθ,Πθ), we
return an approximate weighted graph G′W of GW as follows.

Let ti < tx ≤ ti+1 and tj ≤ ty < tj+1. First, we
return an approximate weighted graph G′[tx,ti+1] of G[tx,ti+1].
G′[tx,ti+1] = (V,E′[tx,ti+1],Π

′
[tx,ti+1]) is computed as follows:

• E′[tx,ti+1] = Ei+1,

• Π′[tx,ti+1](e) = Πi+1(e) ×
∫ ti+1
tx

f(t)dt∫ ti+1
ti

f(t)dt
, for each e ∈

E′[tx,ti+1].

In other words, G′[tx,ti+1] is computed based on Gi+1 =

(V,Ei+1, Πi+1) in expectation. Similarly, we compute an
approximate weighted graph G′[tj ,ty ] of G[tj ,ty ]. Then, we have
G′W = (V,E′W ,Π

′
W ) as follows:

• E′W = E′[tx,ti+1] ∪ Ei+2 ∪ . . . ∪ E′[tj ,ty ],
• Π′W (e) = Π′[tx,ti+1](e) + Πi+2(e) + . . . + Π′[tj ,ty ](e),

for each e ∈ E′W .
Next, let us consider the two applications discussed in Sec-

tions III-A and III-B, by focusing on a random time window
W = [tx, ty]. For example, if we query for the connectivity
between u and v in GW , or the weighted core number of a
vertex v in GW , we can first compute an approximate graph
G′W of GW , and then apply online search to answer the
queries. However, the query time of this approach is expensive,
and there is no bound on the quality of the query answer. We
present a better way to answer the queries for a random time
window W = [tx, ty] as follows.

First, we discuss the connectivity query. Let us first assume
that tx and ty are chosen from {t0, t1, . . . , tθ}. In this case, the
window [tx, ty] may consist of multiple consecutive windows
or a single window of the θ windows. Since θ is normally
a small number, we can construct indexes as described in
Section III-A for each weighted graph of the window [ti, tj ],
where 0 ≤ i < j ≤ θ. The index size is O(θ2|V |), which is
acceptable for small θ. Then, we can answer any connectivity
query for any consecutive windows in constant time.

Next, we consider the case that tx and/or ty is not chosen
from {t0, t1, . . . , tθ}. In this case, we can find a minimal
window W1 = [ti1 , tj1 ] to cover [tx, ty], and a maximal
window W2 = [ti2 , tj2 ] that is covered by [tx, ty], where

0 ≤ i1 ≤ j1 ≤ θ and 0 ≤ i2 ≤ j2 ≤ θ. Then, we can
obtain a upper bound and a lower bound on the query answer
based on the existing indexes on W1 and W2, which can be
answered in constant time.

If θ is not so small, we can construct indexes for
less number of weighted graphs of consecutive windows.
For example, we can construct indexes for weighted
graphs of each single window, every two consecutive win-
dows ({[t0, t1], [t2, t3], . . .}), every four consecutive windows
({[t0, t4], [t4, t8], . . .}), and so on. In this way, the total index
size is O(θ|V |), and we can also find a lower bound and a
upper bound for any connectivity query. Similarly, we can also
efficiently handle the query of the weighted core number of a
vertex in a random window.

IV. OPEN PROBLEMS
In this section, we discuss a list of open problems based on

the equal-weight damped time window model, each of them
has important applications.

A. Densest Community
Dense subgraphs are useful in detecting communities,

finding compressed representations of graphs, etc. [20], [21],
[22].

Given a weighted graph G = (V,E,Π), let H be an
induced subgraph of G. The densest subgraph problem in G
is to find an induced subgraph H which has the maximum
density, den(H), among all the induced subgraphs of G, where
den(H) is defined in Section III-B.

Next, we extend to the definition of densest θ-weighted
community.

Definition 9 (Densest θ-weighted community): Given θ
weighted graphs G1 = (V,E1,Π1), G2 = (V,E2,Π2),
. . ., Gθ = (V,Eθ,Πθ), define the θ-weighted density of
a set of vertices S ⊆ V as Den(S) = min{den(H1),
den(H2), . . . , den(Hθ)}, where Hi = Gi[S] for 1 ≤ i ≤ θ.
The densest θ-weighted community is the subset of V that
has the maximum θ-weighted density among all the vertex
subsets of V .

The definition can also be extended to at-least-k or at-most-
k densest θ-weighted community, for which we require the size
of the subset to contain at least k or at most k vertices. These
problems are all NP-hard, but approximation solutions can be
studied. For example, there is an efficient 1/2-approximation
algorithm for the densest subgraph problem [23], and k-core
has been applied to obtain an efficient 1/3-approximation
solution for the at least k densest subgraph problem [16].

B. Subgraph Matching
Subgraph matching is a fundamental operation in subgraph

mining, network analysis, etc. [24], [25].
The subgraph matching problem is to find the subgraphs

of a data graph that are isomorphic to a given query graph.
For subgraph matching in a weighted graph, we not only
require isomorphism between the query graph and a matching
subgraph, but also set a constraint on the matching of the edge
weights, as we define below.

Definition 10 (θ-weighted subgraph matching): Given θ
weighted graphs G1 = (V,E1,Π1), G2 = (V,E2,Π2), . . .,
Gθ = (V,Eθ,Πθ), a query graph Gq = (Vq, Eq), and an edge
weight constraint ce, the problem of θ-weighted subgraph
matching is to find all the vertex mapping from a subset of



Table I. REAL TEMPORAL GRAPHS (K = 103)

Dataset |V| |E| davg(v,G) |TG|
phone 1,237 338,008,540 273,248.62 3,369
arxiv 28,094 9,193,606 327.24 2,337
elec 8,298 214,028 25.79 101,063
enron 87,274 2,282,904 26.16 220,364
facebook 46,953 1,730,624 36.86 867,939
lastfm 174,078 38,254,660 219.76 17,498,009
email 168 164,613 979.84 57,842
conflict 118,101 5,903,522 49.99 312,457

vertices to Vq , let map(v) denote the mapping vertex in V of
a vertex v ∈ Vq , which satisfies:
• map(v) ∈ V , for each v ∈ Vq;
• (map(v1),map(v2)) ∈ Ei, for each e = (v1, v2) ∈

Eq , 1 ≤ i ≤ θ;
• Each edge (map(v1),map(v2)) satisfies weight con-

straint ce, for each e = (v1, v2) ∈ Eq , 1 ≤ i ≤ θ.
The edge weight constraint ce is defined by an application,

for example, it can be a threshold on the weight so that every
matching edge must have weight above the threshold.

C. Shortest Path
The shortest path problem is a fundamental problem with

numerous applications, and also serves as a building block
of many algorithms. Given an undirected weighted graph, a
shortest path between vertex u and v is a path with minimum
total weight among all the paths between u and v. We extend
the definition to the case when we have θ weighted graphs as
follows.

Definition 11 (θ-weighted shortest path): Given θ
weighted graphs G1 = (V,E1,Π1), G2 = (V,E2,Π2),
. . ., Gθ = (V,Eθ,Πθ), for any two vertices u, v ∈ V , we
say that a path P is a θ-weighted shortest path between u
and v if len(P ) = max{len1(P ), len2(P ), . . . , lenθ(P )} is
the minimum among all the paths between u and v, where
leni(P ) is the total weight of the edges of P in Gi, for
1 ≤ i ≤ θ.

Note that for the problem of θ-weighted shortest path, the
weight function Πi of each graph Gi is different from the
setting in Section III-A. Here, the smaller leni(P ) value, the
closer is the relationship between u and v in Gi, for 1 ≤ i ≤ θ.

D. Minimum Cut
Minimum cut is a classical problem in both graph theory

and real applications. A cut is a partition of the vertices into
two disjoint subsets by removing a set of edges. A minimum
cut in a weighted graph is a cut that has the smallest sum of
weights of the cut edges. We extend the definition to the case
when we have θ weighted graphs as follows.

Definition 12 (θ-weighted minimum cut): Given θ
weighted graphs G1 = (V,E1,Π1), G2 = (V,E2,Π2),
. . ., Gθ = (V,Eθ,Πθ), let Πi(C) be the total weight of the
edges of a cut C in Gi, where 1 ≤ i ≤ θ. For any two vertices
s, t ∈ V , we say that a cut C is a θ-weighted minimum s-t cut
if max{Π1(C),Π2(C), . . . , Πθ(C)} is the minimum among
all the cuts that put s and t into two different subsets.

V. EXPERIMENTAL RESULTS
We evaluated the usefulness of our equal-weight window

model by showing the quality of the θ weighted graphs

obtained based on the model, and the efficiency and quality
of graph analysis based on these weighted graphs. We also
verified the efficiency of dynamic update maintenance and the
scalability of our method. All the experiments were run on a
Linux machine with an Intel 3.3GHz CPU and 16GB RAM.
All the programs were implemented in C++ and complied
using G++ 4.8.2.

We used 8 real temporal graphs for our experiments, as
shown in Table I, where we list the number of vertices and
edges in each graph G, the average degree in G (denoted by
davg(v,G)), and the number of distinct time instances in G
(denoted by |TG|). The phone graph consists of call records
in Ivory Coast [26], where the call records were collected
over a span of 150 days. The other 7 graphs were obtained
from the Koblenz Large Network Collection (http://konect.uni-
koblenz.de/), where one large temporal graph was selected
from each of the following 7 categories: arxiv-HepPh
(arxiv) from the arxiv networks; elec from the network
of English Wikipedia; enron from the email networks;
facebook-links (facebook) from the facebook net-
work; lastfm-band (lastfm) from the music website
last.fm; radoslaw-email (email) from the internal email
communication network between employees of a mid-sized
manufacturing company; wikiconflict (conflict) in-
dicating conflicts between users of Wikipedia.

A. Results on Weighted Graph Construction
In this experiment, we evaluated the space requirement and

the construction time of the θ weighted graphs for each of
the temporal graphs, and then we measured the quality of the
weighted graphs. We tested θ from 10 to 50. We set the value of
λ = 10−x for the weight density function given in Definition 1,
where 10x ≤ |TG| < 10x+1, that is, λ = 10−blog10 |TG|c. For
example, for the phone graph, λ = 10−3.

Space requirement. We first report the space requirement for
the θ weighted graphs, as a percentage of the original temporal
graph shown in Figure 5. As the value of θ increases, the total
size of the θ weighted graphs also increases. However, the rate
of increase is slow. For graphs with high average degree, the
total size of the θ weighted graphs is only a small percentage
of the original temporal graph. For example, for the phone
graph, even the total size of 50 weighted graphs is less than
10 percentage of the original temporal graph. We emphasize
that for temporal graphs, the set of vertices remains relatively
stable while the number of temporal edges grows linearly over
time, and thus the result verifies that our method can handle
large temporal graphs as they grow over time, with small space
requirement.

Construction time. Table II reports the time taken to read the
temporal graphs from disk and construct the corresponding θ
weighted graphs, for different values of θ. The construction
is fast for all graphs as we only need to scan the graphs
once, regardless of the value of θ. The construction time
increases as θ increases because more weighted graphs need
to be constructed, but the rate of increase is slow as scanning
the original temporal graph dominates the cost.

Quality of results. Next, we examine the quality of the
weighted graphs. To do this, we constructed a weighted graph,
GW , directly from the original temporal graph within a time
window W , as defined in Definition 3. We also constructed an



20

40

60

80

100

phone arxiv elec enron facebook lastfm email conflict

P
er

ce
nt

ag
e

Θ=10 Θ=20 Θ=30 Θ=40 Θ=50

Figure 5. The total size of the θ weighted graphs compared with the original temporal graph G

0.2

0.4

0.6

0.8

1.0

phone arxiv elec enron facebook lastfm email conflict

P
C

C

Θ=10 Θ=20 Θ=30 Θ=40 Θ=50

Figure 6. PCC between G′
W and GW for different θ

0.2

0.4

0.6

0.8

1.0

phone arxiv elec enron facebook lastfm email conflict

P
C

C

0.6X 0.8X 1.0X 1.2X 1.4X

Figure 7. PCC between G′
W and GW for different λ (θ = 30)

0.2

0.4

0.6

0.8

1.0

phone arxiv elec enron facebook lastfm email conflict

P
C

C

Θ=10 Θ=20 Θ=30 Θ=40 Θ=50

Figure 8. PCC between the connectivity computed from G′
W and that computed from GW

Table II. CONSTRUCTION TIME OF θ WEIGHTED GRAPHS (IN SECONDS)

Dataset θ = 10 θ = 20 θ = 30 θ = 40 θ = 50

phone 130.3067 137.6559 143.6432 148.6535 153.1762
arxiv 4.0591 4.2070 4.3718 4.4772 4.5788
elec 0.1110 0.1168 0.1229 0.1266 0.1292
enron 0.8419 0.9031 0.9600 1.0041 1.0473
facebook 0.6245 0.6743 0.6996 0.7325 0.7581
lastfm 12.6525 13.2842 14.0147 14.6400 15.5061
email 0.0511 0.0548 0.0575 0.0607 0.0617
conflict 2.8762 2.9693 3.0447 3.1341 3.2189

approximate weighted graph G′W of GW from the θ weighted
graphs as discussed in Section III-C. Then, we compared GW
and G′W .

We computed GW and G′W for 100 randomly generated
windows, W = [tx, ty], where we ensured that W is a valid
window by ensuring tx < ty . We use Pearson correlation
coefficient (PCC) to measure the degree of linear correlation
between G′W and GW , and report the results in Figure 6.

The result shows that we obtain high PCC values in most
of the cases, which implies that analysis conducted on the
approximate graph G′W shares similar patterns/trends with that



0.2

0.4

0.6

0.8

1.0

phone arxiv elec enron facebook lastfm email conflict

P
C

C

Θ=10 Θ=20 Θ=30 Θ=40 Θ=50

Figure 9. PCC between weighted core numbers computed from G′
W and that computed from GW

conducted on the exact graph GW (we will further verify this
point in Figures 8 and 9). As θ increases from 10 to 50, the
PCC values also increase, verifying that a larger θ leads to less
information loss and hence higher correlation between G′W and
GW . For a number of graphs, the PCC values are close to 1.
The results are particularly impressive for the phone graph1,
for which the space requirement is also very small as shown
in Figure 5.

Next, we tested the effect of different values of λ. In all
the other experiments, we set λ = 10−blog10 |TG|c as default.
In this experiment, we tested λ at 0.6, 0.8, 1.0, 1.2, and 1.4
of its default value, and fixed θ = 30. The result, as reported
in Figure 7, shows that the PCC values are not much affected
by the change in λ, and in all cases the PCC values are high.

We further evaluated the quality of using the approximate
graph G′W for graph analysis, compared with the results
obtained from the exact graph GW . We first processed 1000
randomly generated connectivity queries in each G′W and GW .
We computed the PCC between the connectivity computed
from G′W and that computed from GW . Figure 8 reports the
result, which shows a high PCC value between the results
computed from G′W and GW . The result reveals that the
mutual relationship between pairs of vertices is similar in G′W
and GW ; in other words, given a vertex v, the vertices closely
connected to v are similar in G′W and GW .

Then, we computed the weighted core number of each
vertex in each G′W and GW . We report the PCC between the
set of weighted core numbers computed from G′W and that
computed from GW in Figure 9. For all datasets, the PCC
between the results computed from G′W and GW is very high,
indicating that the rank or the importance of each vertex in
G′W is similar to that in GW .

B. Efficiency of Graph Analysis
In this experiment, we evaluated the efficiency of using

the θ weighted graphs for connectivity analysis and core
community analysis. We varied θ from 10 to 50.

We first tested 1000 randomly generated connectivity
queries. We used the index presented in Section III-A to answer
the queries, and compared with the online algorithm given
in Algorithm 1. We denote these two methods by Index and
Online, respectively. Table III reports the average processing

1This is actually one of the main reasons why our telecom collaborator
is interested in our work (see motivation in Section I). Our method is more
effective on their dataset because their dataset is much larger, and hence the
total size of the θ weighted graphs is much smaller than the size of the original
temporal graph, while accurate analytic results can be obtained based on the
θ weighted graphs. We cannot use their dataset in this paper as it involves the
privacy of customers.

Table IV. COMPUTATION TIME FOR θ-WEIGHTED CORE
DECOMPOSITION (IN SECONDS)

Dataset θ = 10 θ = 20 θ = 30 θ = 40 θ = 50

phone 1.9543 3.4277 4.6500 5.7795 6.7841
arxiv 1.4948 1.5417 1.5895 1.6313 1.6693
elec 0.0462 0.0494 0.0550 0.0591 0.0633
enron 0.2712 0.3384 0.4045 0.4573 0.5024
facebook 0.1561 0.1805 0.2143 0.2404 0.2659
lastfm 1.1827 1.5900 1.8855 2.1598 2.3740
email 0.0043 0.0058 0.0068 0.0066 0.0084
conflict 0.9882 1.0630 1.1235 1.1807 1.2394

time per query. The result shows that Index is more than 3
orders of magnitude faster than Online, verifying the efficiency
of our method. The index construction time and the index size
are also small, which are linear to the number of vertices (as
shown Table I).

Next, we computed the θ-weighted core number of each
vertex from the θ weighted graphs. We report the total running
time in Table IV. The result shows that our algorithm is very
efficient. Even when θ = 50, the total running time is only a
few seconds for all the datasets. The running time increases
slowly as θ increases. This is because the total size of the θ
weighted graphs increases slowly as θ, as shown in Figure 5.

C. Performance on Dynamic Updating
In this experiment, we evaluated the performance of dy-

namic update maintenance of the θ weighted graphs in our
equal-weight window model. We set θ = 15. Since our update
scheme keeps the number of windows in the stream within
the range of [θ, 2θ], we started with 15 windows initially
and increased the number of windows as new temporal edges
come in. As shown in the first row of Table V, the number
of windows increases from 16 to 30. When the number
of windows reached 30, we merged every two consecutive
windows to reduce the number of windows back to 15.

Table V reports the average updating time for each edge
insertion during the period from the creation of a new window
to the creation of the next window. The average updating time
also includes the time for constructing the weighted graph of
the new window, as well as the time for updating the existing
weighted graphs. In other words, the average updating time
is the amortized cost per edge insertion. When θ reaches 30,
the time for merging every two windows is also included in
the updating time. The last column, denoted by “whole”, is
the amortized updating time over the whole period when the
number of windows increases from 15 to 30 and then merged
(back to 15 windows).

From Table V, we can see that the updating time is very
short and stable over the entire cycle when the number of



Table III. AVERAGE QUERY PROCESSING TIME OF CONNECTIVITY QUERIES (IN MILLISECONDS)

θ = 10 θ = 20 θ = 30 θ = 40 θ = 50
Index Online Index Online Index Online Index Online Index Online

phone 0.0041 24.0973 0.0059 42.0291 0.0082 56.7214 0.0095 71.6784 0.0116 85.7897
arxiv 0.0045 21.6051 0.0081 19.8686 0.0127 18.9631 0.0160 18.3361 0.0188 17.8703
elec 0.0029 0.5434 0.0057 0.5460 0.0083 0.6127 0.0108 0.6866 0.0140 0.7909
enron 0.0049 5.6191 0.0103 6.2276 0.0132 6.8081 0.0186 7.7741 0.0230 8.7257
facebook 0.0052 5.7762 0.0095 5.5650 0.0141 5.6486 0.0185 5.9857 0.0231 6.4586
lastfm 0.0062 31.5103 0.0122 34.3018 0.0201 40.0901 0.0249 43.6900 0.0331 46.0317
email 0.0004 0.1239 0.0008 0.1856 0.0016 0.2295 0.0022 0.2649 0.0030 0.3012
conflict 0.0052 15.5628 0.0098 14.3276 0.0149 13.6799 0.0195 14.3760 0.0255 15.2124

Table V. AVERAGE UPDATING TIME (IN MILLISECONDS)

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 whole
phone 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0011 0.0011 0.0011 0.0013 0.0011 0.0012 0.0015 0.0012 0.0018 0.0012
arxiv 0.0007 0.0006 0.0006 0.0006 0.0006 0.0007 0.0007 0.0007 0.0006 0.0007 0.0008 0.0008 0.0009 0.0008 0.0007 0.0007
elec 0.0011 0.0009 0.0010 0.0011 0.0011 0.0013 0.0013 0.0013 0.0014 0.0014 0.0015 0.0015 0.0017 0.0017 0.0053 0.0017
enron 0.0010 0.0009 0.0010 0.0012 0.0011 0.0013 0.0015 0.0014 0.0014 0.0015 0.0017 0.0014 0.0014 0.0016 0.0052 0.0018
facebook 0.0016 0.0017 0.0018 0.0020 0.0022 0.0022 0.0023 0.0024 0.0025 0.0028 0.0029 0.0030 0.0031 0.0032 0.0074 0.0025
lastfm 0.0007 0.0006 0.0006 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0008 0.0008 0.0008 0.0008 0.0008 0.0015 0.0008
email 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0016 0.0007
conflict 0.0014 0.0011 0.0011 0.0014 0.0012 0.0013 0.0015 0.0024 0.0020 0.0018 0.0018 0.0018 0.0019 0.0017 0.0050 0.0023

windows increases from θ to 2θ, and merged to become θ
windows again. The result demonstrates that our equal-weight
window model is suitable and efficient for update maintenance.

D. Scalability
In this experiment, we tested the scalability of our method.

We generated two datasets, one from the phone graph and the
other by a graph generator.

Synthetic phone graphs. We first generated synthetic phone
call datasets based on the phone graph. The phone graph
covers a span of 150 days, and we generated 5 synthetic graphs
based on the statistics of the phone graph to cover 300, 450,
600, 750, and 900 days. For the synthetic graphs, we used the
first 150 days as in the original phone graph, and for each day
starting the 151-st day and 900-th day, we randomly replicated
the records of one day taken from the original phone graph.

We computed the θ weighted graphs from the phone graph
and the 5 synthetic phone graphs, by varying θ from 10 to
50. Figure 10 reports the construction time of the θ weighted
graphs, which increases linearly as the size of temporal graph
increases. The increase in the value of θ only increases the
construction time slightly.

Figure 11 shows the space requirement for the θ weighted
graphs for the 6 phone graphs. The result shows that the total
size of the θ weighted graphs is only a small percentage
of the size of the original temporal phone graph, and the
percentage further decreases for larger original phone graphs.
This result shows that our model can be an effective concise
representation of a temporal graph as its size increases over
time. The information loss of our method is also small, which
is very similar to the results of the phone graph reported in
Figures 6, 8 and 9.

We also computed the θ-weighted core number of each
vertex in the graphs. Figure 12 reports the total running time,
which again shows good scalability as the sizes of the graphs
increase.

Synthetic power-law graphs. We used a synthetic power-law
graph generator [27] to generator 2 sets of temporal graphs.
The first set varies the average vertex degree davg(v,G) from

0

250

500

750

1000

1250

1500

150 300 450 600 750 900R
un

ni
ng

 ti
m

e 
(i

n 
se

co
nd

s)

Θ=10
Θ=20
Θ=30
Θ=40
Θ=50

Figure 10. Construction time of θ weighted graphs for synthetic phone graphs

0.01

0.1

1

10

100

150 300 450 600 750 900

Pe
rc

en
ta

ge

Θ=10
Θ=20
Θ=30
Θ=40
Θ=50

Figure 11. The total size of the θ weighted graphs compared with the original
synthetic phone graphs

0

5

10

15

20

25

30

150 300 450 600 750 900R
un

ni
ng

 ti
m

e 
(i

n 
se

co
nd

s)

Θ=10
Θ=20
Θ=30
Θ=40
Θ=50

Figure 12. Computation time for θ-weighted core decomposition for synthetic
phone graphs

100 to 400, while fixing TG = 100, 000. The second set varies
the number of time instances TG from 50,000 to 400,000, while
fixing davg(v,G) = 200. We set |V| = 200,000.



20

40

60

80

100

100 200 300 400R
un

ni
ng

 ti
m

e 
(i

n 
se

co
nd

s)

Θ=10
Θ=20
Θ=30
Θ=40
Θ=50

(a) Effect of davg (v,G)

10

20

30

40

50

50000 100000 200000 400000R
un

ni
ng

 ti
m

e 
(i

n 
se

co
nd

s)

Θ=10
Θ=20
Θ=30
Θ=40
Θ=50

(b) Effect of TG

Figure 13. Construction time of θ weighted graphs for synthetic power-law
graphs

0.6

0.7

0.8

0.9

1.0

100 200 300 400

PC
C

Graph
Connectivity
Core number

(a) Effect of davg (v,G)

0.6

0.7

0.8

0.9

1.0

50000 100000 200000 400000

PC
C

Graph
Connectivity
Core number

(b) Effect of TG

Figure 14. PCC between G′
W and GW for synthetic power-law graphs

(θ = 30)

2

4

6

8

100 200 300 400R
un

ni
ng

 ti
m

e 
(i

n 
se

co
nd

s)

Θ=10
Θ=20
Θ=30
Θ=40
Θ=50

(a) Effect of davg (v,G)

2

4

6

8

50000 100000 200000 400000R
un

ni
ng

 ti
m

e 
(i

n 
se

co
nd

s)

Θ=10
Θ=20
Θ=30
Θ=40
Θ=50

(b) Effect of TG

Figure 15. Computation time for θ-weighted core decomposition for synthetic
power-law graphs

Figure 13 shows that the time taken to construct the θ
weighted graphs, for θ from 10 to 50. The construction time
increases linearly as the number of edges in the temporal graph
increases, while the effect of different values of TG on the
construction time shows no clear pattern.

We also computed GW and G′W for 100 randomly gener-
ated windows as in the experiment in Section V-A. We also
computed the PCC values for the following: (1) between G′W
and GW , (2) between the connectivity computed from G′W
and that computed from GW , and (3) between weighted core
numbers computed from G′W and that computed from GW .
We report the PCC values in Figure 14. The result shows that
all the above three types of PCC values are high, which further
confirms the conclusions drawn from the results in Section V-A
and verifies that our method is scalable.

We also computed the θ-weighted core number of each
vertex in the graphs. Figure 15(a) shows that when davg(v,G)
increases, the running time increases sub-linearly. Figure 15(b)
shows that the value of TG does not affect the running time
significantly. When TG increases from 100,000 to 400,000,
the running time even decreases, mainly because the graphs
become more sparse in each window as TG increases.

VI. RELATED WORK

In this section, we discuss related work on temporal graphs
and classical window models.

A. Temporal Graphs
Many works have been done on temporal graphs, also

called time-varying graphs, or timetable graphs. Most of
them [28], [2], [3], [29], [4], [30], [31], [32], [7], [6] are
related to temporal paths. Temporal paths have been applied
to study the connectivity of a temporal graph [2], the in-
formation latency in a temporal network [3], small-world
behavior [5], and to find temporal connected components [33],
[32]. Temporal paths have also been used to define metrics
for temporal network analysis, such as temporal efficiency
and temporal clustering coefficient [31], [32], and temporal
betweenness [30] and closeness [4], [30]. Most of the existing
works were focused on concepts and measures for studying
temporal graphs, while computational issues were ignored.
Among these works, only [6], [7] discussed algorithms for
computing temporal paths. In [34], an index technique was
proposed to answer temporal path queries, but the indexing
method is not scalable and its efficiency was only verified
on small datasets. In [35], minimum spanning tree is defined
in temporal graphs. In [36], temporal graphs are used to
model users’ long-term and short-term preferences, which is
useful for recommendation. Readers can also refer to more
comprehensive surveys on temporal graphs [28], [1], [37].

There are also some works on storing temporal graphs in
a compact way [38], [39], [40]. In [38], a compressed suffix
array strategy was proposed to store temporal graphs. In [39],
two data structures, compact adjacency sequence and compact
events ordered by time, were proposed to represent temporal
graphs. However, all these methods need to store each temporal
edge. The performance of these methods is not better than the
gzip compression.

B. Window Models
Various window models [8], [10], [9] were proposed for

mining frequent patterns from data streams. There are three
types of time window models: landmark window model, sliding
window model, and damped window model. In the landmark
window model [9], there is a specific time point called land-
mark point. The analysis is done on the window between the
landmark point and the present. When there is no landmark
point, the analysis is on the complete window. In the sliding
window model [10], the size of the window is fixed. Let sw
denote the size of the sliding window, tτ denote the current
time. Then, the analysis is on the window [tτ−sw, tτ ], and the
window slides as time goes on. Data that are older than time
(tτ − sw) are discarded. In the damped time window model
(also called titled window model) [8], the more recent windows
are at a finer granularity, while the older windows are at a
coarser granularity. It is based on the assumption that recent
data are more valuable than older ones, and the importance
of data decreases exponentially as time goes on. Our window
model is also a damped time window model.

VII. CONCLUSIONS

We proposed a novel time window model, called equal-
weight damped time window, for processing massive growing
temporal graphs. Our model allows users to set the number
of windows to trade off between the required space and the



information loss. Based on this model, we presented two appli-
cations, connectivity analysis and core community, to analyze
the temporal graph. We conducted comprehensive experiments
to verify the usefulness and efficiency of our method for
analyzing large temporal graphs. We also showed that our
method supports efficient dynamic update maintenance.

REFERENCES

[1] P. Holme and J. Saramäki, “Temporal networks,” CoRR, vol.
abs/1108.1780, 2011.

[2] D. Kempe, J. M. Kleinberg, and A. Kumar, “Connectivity and inference
problems for temporal networks,” J. Comput. Syst. Sci., vol. 64, no. 4,
pp. 820–842, 2002.

[3] G. Kossinets, J. M. Kleinberg, and D. J. Watts, “The structure of
information pathways in a social communication network,” in KDD,
2008, pp. 435–443.

[4] R. K. Pan and J. Saramäki, “Path lengths, correlations, and centrality
in temporal networks,” Phys. Rev. E, vol. 84, p. 016105, 2011.

[5] J. Tang, S. Scellato, M. Musolesi, C. Mascolo, and V. Latora, “Small-
world behavior in time-varying graphs,” Physical Review E, vol. 81,
no. 5, p. 055101, 2010.

[6] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu, “Path problems
in temporal graphs,” PVLDB, vol. 7, no. 9, pp. 721–732, 2014.

[7] B.-M. B. Xuan, A. Ferreira, and A. Jarry, “Computing shortest, fastest,
and foremost journeys in dynamic networks,” Int. J. Found. Comput.
Sci., vol. 14, no. 2, pp. 267–285, 2003.

[8] Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang, “Multi-dimensional
regression analysis of time-series data streams,” in VLDB, 2002, pp.
323–334.

[9] C. Perng, H. Wang, S. R. Zhang, and D. S. P. Jr., “Landmarks: a new
model for similarity-based pattern querying in time series databases,”
in ICDE, 2000, pp. 33–42.

[10] M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining stream
statistics over sliding windows,” SIAM J. Comput., vol. 31, no. 6, pp.
1794–1813, 2002.

[11] J. Lai, C. Wang, and P. S. Yu, “Dynamic community detection in
weighted graph streams,” in SDM, 2013, pp. 151–161.

[12] W. Xie, Y. Tian, Y. Sismanis, A. Balmin, and P. J. Haas, “Dynamic
interaction graphs with probabilistic edge decay,” in ICDE, 2015, pp.
1143–1154.

[13] J. Vuillemin, “A unifying look at data structures,” Commun. ACM,
vol. 23, no. 4, pp. 229–239, 1980.

[14] M. A. Bender and M. Farach-Colton, “The LCA problem revisited,” in
LATIN, 2000, pp. 88–94.

[15] E. D. Demaine, G. M. Landau, and O. Weimann, “On cartesian trees
and range minimum queries,” Algorithmica, vol. 68, no. 3, pp. 610–625,
2014.

[16] R. Andersen and K. Chellapilla, “Finding dense subgraphs with size
bounds,” in WAW, 2009, pp. 25–37.

[17] S. Khuller and B. Saha, “On finding dense subgraphs,” in ICALP, 2009,
pp. 597–608.

[18] M. Eidsaa and E. Almaas, “s-core network decomposition: A general-
ization of k-core analysis to weighted networks,” Physical Review E,
vol. 88, no. 6, p. 062819, 2013.

[19] A. Garas, F. Schweitzer, and S. Havlin, “A k-shell decomposition
method for weighted networks,” CoRR, vol. abs/1205.3720, 2012.

[20] Y. Dourisboure, F. Geraci, and M. Pellegrini, “Extraction and classifi-
cation of dense implicit communities in the web graph,” TWEB, vol. 3,
no. 2, 2009.

[21] D. Gibson, R. Kumar, and A. Tomkins, “Discovering large dense
subgraphs in massive graphs,” in VLDB, 2005, pp. 721–732.

[22] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, “Trawling the
web for emerging cyber-communities,” Computer Networks, vol. 31, no.
11-16, pp. 1481–1493, 1999.

[23] G. Kortsarz and D. Peleg, “Generating sparse 2-spanners,” J.
Algorithms, vol. 17, no. 2, pp. 222–236, 1994. [Online]. Available:
http://dx.doi.org/10.1006/jagm.1994.1032

[24] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li, “Efficient subgraph
matching on billion node graphs,” PVLDB, vol. 5, no. 9, pp. 788–799,
2012.

[25] Y. Shao, B. Cui, L. Chen, L. Ma, J. Yao, and N. Xu, “Parallel subgraph
listing in a large-scale graph,” in SIGMOD, 2014, pp. 625–636.

[26] V. D. Blondel, M. Esch, C. Chan, F. Clérot, P. Deville, E. Huens,
F. Morlot, Z. Smoreda, and C. Ziemlicki, “Data for development: the
D4D challenge on mobile phone data,” CoRR, vol. abs/1210.0137, 2012.

[27] D. A. Bader and K. Madduri, “GTgraph: A synthetic graph generator
suite,” Atlanta, GA, February, 2006.

[28] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro, “Time-
varying graphs and dynamic networks,” International Journal of Par-
allel, Emergent and Distributed Systems, vol. 27, no. 5, pp. 387–408,
2012.

[29] V. Kostakos, “Temporal graphs,” Physica A: Statistical Mechanics and
its Applications, vol. 388, no. 6, pp. 1007–1023, 2009.

[30] N. Santoro, W. Quattrociocchi, P. Flocchini, A. Casteigts, and F. Am-
blard, “Time-varying graphs and social network analysis: Temporal
indicators and metrics,” CoRR, vol. abs/1102.0629, 2011.

[31] J. Tang, M. Musolesi, C. Mascolo, and V. Latora, “Temporal distance
metrics for social network analysis,” in WOSN, 2009, pp. 31–36.

[32] ——, “Characterising temporal distance and reachability in mobile and
online social networks,” Computer Communication Review, vol. 40,
no. 1, pp. 118–124, 2010.

[33] V. Nicosia, J. Tang, M. Musolesi, G. Russo, C. Mascolo, and V. Latora,
“Components in time-varying graphs,” CoRR, vol. abs/1106.2134, 2011.

[34] S. Wang, W. Lin, Y. Yang, X. Xiao, and S. Zhou, “Efficient route
planning on public transportation networks: A labelling approach,” in
SIGMOD, 2015, pp. 967–982.

[35] S. Huang, A. W. Fu, and R. Liu, “Minimum spanning trees in temporal
graphs,” in SIGMOD, 2015, pp. 419–430.

[36] L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang, and
J. Sun, “Temporal recommendation on graphs via long- and short-term
preference fusion,” in KDD, 2010, pp. 723–732.

[37] M. Müller-Hannemann, F. Schulz, D. Wagner, and C. D. Zaroliagis,
“Timetable information: Models and algorithms,” in ATMOS, 2004, pp.
67–90.

[38] N. R. Brisaboa, D. Caro, A. Fariña, and M. A. Rodrı́guez, “A com-
pressed suffix-array strategy for temporal-graph indexing,” in SPIRE,
2014, pp. 77–88.

[39] D. Caro, M. A. Rodrı́guez, and N. R. Brisaboa, “Data structures for
temporal graphs based on compact sequence representations,” Inf. Syst.,
vol. 51, pp. 1–26, 2015.

[40] G. de Bernardo, N. R. Brisaboa, D. Caro, and M. A. Rodrı́guez,
“Compact data structures for temporal graphs,” in DCC, 2013, p. 477.


