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(a) Input sketch (b) Our simplified sketch (c) [Barla et al. 2005] ( =7)ε

Figure 1: “Girl”. (a) An input sketch where the large-scale hairs are depicted by coarse strokes and the small-scale necklace is depicted by
fine strokes. (b) In aware of closure, our method groups the coarse strokes and preserves the fine details in the same sketch. The input sketch
contains 240 input strokes and 1173 initial regions. 50 stroke groups and 19 perceptual regions are obtained after simplification. The whole
simplification process takes 3.8 minutes. (c) The existing methods that rely on absolute inter-stroke properties either over-group the details
or leave the coarse strokes ungrouped.

Abstract

In this paper, we propose a novel approach to simplify sketch
drawings. The core problem is how to group sketchy strokes
meaningfully, and this depends on how humans understand the
sketches. The existing methods mainly rely on thresholding
low-level geometric properties among the strokes, such as
proximity, continuity and parallelism. However, it is not
uncommon to have strokes with equal geometric properties but
different semantics. The lack of semantic analysis will lead to
the inability in differentiating the above semantically different
scenarios. In this paper, we point out that, due to the gestalt
phenomenon of closure, the grouping of strokes is actually highly
influenced by the interpretation of regions. On the other hand, the
interpretation of regions is also influenced by the interpretation of
strokes since regions are formed and depicted by strokes. This
is actually a chicken-or-the-egg dilemma and we solve it by an
iterative cyclic refinement approach. Once the formed stroke
groups are stabilized, we can simplify the sketchy strokes by
replacing each stroke group with a smooth curve. We evaluate our
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method on a wide range of different sketch styles and semantically
meaningful simplification results can be obtained in all test cases.

CR Categories: J.5 [Computer Application]: Arts and
Humanities—Fine Arts;

Keywords: sketch simplification, gestalt analysis, law of closure

1 Introduction

Sketching is usually the very first stage for presenting and
communicating ideas in various domains, e.g. artwork drawing,
product design, storyboard creation, etc. It allows artists to focus
on the overall design instead of drawing the fine details. But
the trade-off is the untidiness, since it is natural for artists to use
several short strokes to depict a long curve (e.g. Figure 2(a)).
Therefore, once the sketch designs are finalized, artists further need
to transform the sketchy strokes into simplified clean drawings. In
aid of the drawing process, some pen-based digital design tools
have become accessible (e.g. Adobe Illustrator, CorelDRAW).
With these tools, artists can directly draw on computers via tablets
and digital pens. But it is still natural for artists to sketch first and
then transform sketches into simplified clean drawings. To simplify
a sketch drawing, the artist usually repetitively traces the sketchy
strokes and replaces them with the clean ones. As one may imagine,
this manual tracing process is quite tedious and time-consuming.

In this paper, we aim at converting a rough sketch drawing into a
simplified clean drawing automatically. However, even if the input
sketch is composed of digital strokes, this task remains challenging.
This is mainly because higher-level semantic understanding is
required in understanding the semantics of the rough strokes.
To simplify a sketch drawing, the key is to understand which
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(a) (b) (d) (e)(c)

Figure 2: (a) Input strokes. (b) A perceptual stroke that can
represent the rough strokes in (a). (c) The simplified result of (a)
via stroke reduction. (d) Inter-stroke proximity. (e) Inter-stroke
continuity.

input strokes semantically refer to the same perceptual stroke, and
therefore can be grouped together. For example, in Figure 2(a),
humans can easily observe that all the four strokes refer to the
same perceptual stroke as shown in Figure 2(b), but this is not
easy for the computer. To evaluate whether two input strokes
refer to the same perceptual stroke, the existing methods only
rely on low-level geometric properties among the strokes, such
as inter-stroke distances (Figure 2(d)) and angular differences
(Figure 2(e)). But in reality, the artists tend to use coarser strokes
to depict large shapes (red square in Figure 1(a)) while finer
strokes to depict fine details (blue square in Figure 1(a)). In other
words, it is possible to have strokes that are geometrically the
same but semantically different, as illustrated in Figure 3. Due to
the lack of semantic analysis, the existing methods are unable to
distinguish the semantic differences among the pairs of red strokes
in Figures 3(a)-(d) since they are all geometrically the same. In
comparison, we propose a sketch simplification method that can
correctly distinguish and group the four pairs of red strokes by
analyzing higher-level semantics (Figures 3(e)-(h)).

The grouping of strokes can actually be explained by the gestalt
phenomena of human visual perception [Wertheimer 1923], which
are mostly studied qualitatively in psychology. Theoretically
speaking, the existing computational methods that group strokes
based on inter-stroke distances and angular differences can be
regarded as modeling two forms of gestalts, the law of proximity
and the law of continuity, respectively. However, in this paper, we
point out that these two laws alone are not sufficient to understand
the semantics needed in stroke grouping. An important gestalt law
is missed – the law of closure. This law suggests that humans tend
to perceptually group elements (strokes in our case) together if they
form a closed shape. Hence, the notion of regions formed by strokes
plays an important role in the semantic analysis of sketchy strokes.
For example, in Figure 3(b), the two red strokes depict the same
part of the rectangle region, so they refer to the same perceptual
stroke. In contrast, the two red strokes in Figure 3(c) depict two
different rectangle regions, and the two red strokes in Figure 3(d)
depict different parts of the slim region, so both stroke pairs do
not refer to a single perceptual stroke. Based on this observation,
if we could identify the regions first, we could better interpret the
semantics of the strokes. Here, by saying stroke interpretation, we
mean to interpret which strokes refer to the same perceptual stroke
and therefore belong to the same stroke group.

However, extracting regions from a sketch drawing is an open
problem due to the sketchiness of the strokes. Without knowing
the semantics of the strokes, it would be quite difficult to
correctly identify the regions. So this is actually a dilemma of
chicken-or-the-egg, as regions are formed by strokes, and strokes
are in turn interpreted by regions. To resolve this dilemma, we
propose to resolve region identification and stroke grouping by an
iterative cyclic approach. Given the input strokes, we first extract an
initial set of the potential regions. With the initial regions, we can
group the input strokes based on not only proximity and continuity,
but also closure. The grouping of the strokes further influences the

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: (a)-(d) The four pairs of red strokes are geometrically
the same but semantically different. (e)-(h) The simplified results
generated by our method.

identification of the regions, and the refined regions will influence
the grouping of the strokes in the next iteration. This iterative
cyclic refinement process continues until there is no more change
in the formed stroke groups. Comparing to existing methods that
only rely on lower-level inter-stroke properties (Figure 1(c)), our
method accomplishes higher-level semantic analysis by accounting
for closure (Figure 1(b)). Hence, our method can distinguish
the semantic differences in Figures 3(a)-(d). We demonstrate the
effectiveness of our method on various types of sketches. Our
contributions can be summarized as followed.

• We make the first attempt in incorporating the law of closure
into the semantic analysis of the sketches.

• We propose an iterative cyclic refinement approach to resolve
the mutual influence of regions and strokes.

2 Related Work
The key of sketch simplification is to replace the sketchy strokes
with a set of clean strokes and at the same time preserve visual
contents. The existing methods related to sketch simplification can
be roughly classified into three categories: progressive drawing,
stroke reduction and stroke grouping.
Progressive Drawing During sketching, an artist usually
incrementally modifies a sketch by drawing new strokes on top
of the existing ones. Several interactive drawing systems are
proposed so that artists may modify digital sketches naturally [Bae
et al. 2008; Grimm and Joshi 2012]. In particular, Baudel [1994]
proposed an interactive stroke editing system to mimic the natural
modification process. To edit the existing digital strokes, instead
of adjusting the control points, users can naturally draw on top
of the existing strokes, and the system will update the existing
strokes to match the user input. Kara et al. [2006] further proposed
to modify 3D strokes by dragging the existing 3D stroke points
towards the input 2D strokes. However, the progressive drawing
systems still require the artists to focus on drawing the details
instead of sketching the overall design. Besides, these methods
generally rely on stroke ordering information, while our method
does not.

Stroke Reduction To simplify a sketch drawing, attempts have
also been made in removing the strokes one by one until the
drawing is simple enough. In general, the strokes are first sorted
according to their significance values, then the stroke with the least
significance is removed. When measuring the significance value of
a stroke in the 2D space, position, local density, and line length are
usually analyzed [Preim and Strothotte 1995]. When the strokes are
rendered from 3D inputs, depth and silhouette information are also
studied in addition to the 2D properties [Deussen and Strothotte
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Figure 4: System overview.

2000; Wilson and Ma 2004; Grabli et al. 2004]. The stroke
reduction methods are quite useful in the LOD representation of
2D and 3D line drawings. However, these methods only simplify
sketch drawings by removing existing strokes in the original sketch,
and no new stroke is created. But in reality, the artists may draw
dozens of short strokes to depict a long curve. In other words, there
could be no single stroke that can represent the whole curve, and
the resultant drawing may remain sketchy (e.g. Figure 2(c)).

Stroke Grouping The technique that is mostly related to our
application is stroke grouping. Several automatic/semi-automatic
methods have been proposed to group strokes in a bottom-up
manner based on inter-stroke proximity, continuity, and parallelism
[Pavlidis and Wyk 1985; Rosin 1994; Lindlbauer et al. 2013].
In particular, Barla et al. [2005a; 2005b] proposed to group
strokes based on the overlapping zone, i.e. the proportions where
the two strokes are at a distance less than a fixed threshold
ε. Fu et al. [2011] followed Barla’s method in stroke grouping
for animating the line drawings. Shesh and Chen [2008] also
studied the extent of overlapping as a criterion for stroke grouping.
Orbay and Kara [2011] further introduced a learning-based stroke
grouping system based on similar inter-stroke properties. Noris
et al. [2012] developed an interactive stroke editing system which
groups the strokes based on both inter-stroke properties and user
inputs. Recently, Chien et al. [2014] proposed to group strokes by
analyzing the pairing of stroke ends, which is similar to the extent
of overlapping. Different from the above bottom-up methods,
Pusch et al. [2007] proposed to simplify sketch drawings in a
top-down manner by box subdivision. However, all the above
methods analyze inter-stroke properties only in an absolute sense
without considering closure. That is, two strokes are grouped
together if their distance, angular difference, and other geometric
properties are within certain absolute thresholds. Relying on these
absolute inter-stroke properties, the existing methods are unable
to distinguish the stroke pairs that are geometrically the same but
semantically different. In contrast, by accounting for the gestalt
phenomenon of closure, our method measures the inter-stroke
properties in a relative sense (relative to the regions they formed).
With this formulation, even if two pairs of strokes are geometrically
the same, our method can still distinguish their semantic difference
according to the formed regions.

The gestalt phenomenon of closure is also studied in stroke
selection [Saund and Moran 1994] and architectural drawing
abstraction [Nan et al. 2011]. However, these methods model
closure independently and do not consider how closure influences
proximity and continuity. Therefore, these methods still cannot
distinguish the stroke pairs that are geometrically the same but
semantically different. Chen et al. [2013] further proposed to
simplify raster sketch images via an image processing approach.

(a) (c) (d)(b)
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Figure 5: (a) A discontinuous stroke. (b) A sharp change in
the drawing direction. (c) The breaking points. (d) The smooth
segments.

3 Overview
Our system flow is presented in Figure 4. The input of our
system is a set of digital strokes drawn by the user via a tablet
and a stylus. For raster input, one may consider vectorizing
the raster sketch image as a preprocessing step using existing
line vectorization techniques [Noris et al. 2013]. Each stroke s
is represented by a sequence of densely sampled stroke points
{ps

1,p
s
2, . . . }. Here, ps

i is the 2D position of the i-th stroke point
on s. Since complex strokes may complicate the subsequent stroke
grouping (Figure 5(a)), we first break each stroke into multiple
stroke segments where each stroke segment is a smooth curve
(Figure 5(d)). To determine the breaking points, we measure if
there is a sharp change in the drawing direction at each stroke
point (Figure 5(b)). By breaking each stroke at all breaking points
(Figure 5(c)), we obtain a set of smooth stroke segments as the
initial strokes (Figure 5(d)&Figure 4(a)). In the rest of this paper,
all the strokes we discussed are assumed smooth.

With the initial strokes, we can already group the strokes based
on inter-stroke proximity and continuity in an absolute sense.
However, to measure the influence of closure, we need to first
identify the regions formed by strokes. But region detection
in hand-drawn sketches is an open problem. Since the input
strokes are sketchy, the commonly used flood-fill method may
cause the leaking problem. To extract regions from rough sketches,
leak-proof region extraction methods may be adopted [Qu et al.
2006; Zhang et al. 2009; Sýkora et al. 2009; Noris et al. 2012]. In
particular, we adopt the trapped-ball method [Zhang et al. 2009] to
extract all potential regions (the maximal trapped-ball radius is set
to 8 pixels). We regard the extracted regions as the initial regions.

Note that the initial regions may not be consistent with the
perceptual regions that humans perceive. Since the initial region
map is over-segmented, multiple initial regions may together
represent one perceptual region. Furthermore, some initial regions
are formed due to the sketchiness of the strokes but do not even
perceptually exist. We need to further interpret which initial
regions belong to the same perceptual region, and which initial
regions do not perceptually exist. This interpretation of the initial
regions is called region interpretation. To correctly interpret
the regions, we need to first interpret the strokes as regions are
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Figure 6: (a)&(b) The relative distances of the two pairs of red
strokes are similar with respect to the nearby regions. (c)&(d) The
width of the boundary band of a region is positively related to the
scale of this region.

formed by strokes. But correctly interpreting the strokes is our
original purpose. To resolve this chicken-or-the-egg dilemma, we
propose an iterative approach which resolves stroke interpretation
and region interpretation cyclically. During each iteration, we first
fix the region interpretation and interpret the strokes with respect
to the regions by accounting for closure (Figure 4(c) & Section 4).
Then we fix the stroke interpretation and identify the perceptual
regions based on the current grouping of strokes (Figure 4(d) &
Section 5). This mutual refinement process continues until there is
no more change in the formed stroke groups (Section 6). Finally,
the strokes that represent the same perceptual stroke are replaced
by a single smooth Bézier curve (Figures 4(e) & Section 4).

4 Stroke Interpretation
In this section, we explain how to interpret the strokes with respect
to a set of perceptual regions by accounting for closure. In the rest
of this section, all regions we discussed are actually the perceptual
regions obtained in the previous iteration. In order to tell whether
two initial strokes are the same perceptual stroke, we also analyze
inter-stroke properties, but with respect to the regions. Based on
these properties, we group the strokes into a set of stroke groups
where strokes that semantically refer to the same perceptual stroke
should be grouped together.

4.1 Closure-aware Inter-stroke Properties
Like the existing methods, we also analyze inter-stroke proximity,
continuity, and parallelism in order to judge whether two strokes
are the same perceptual stroke. But unlike the existing works that
measure these properties in an absolute sense, we analyze them in
a relative sense with respect to the regions.

Closure-aware Proximity Proximity refers to the closeness
among the strokes. If two strokes are quite close to each other,
it is more likely that they are in the same stroke group. The existing
methods measure inter-stroke proximity in an absolute sense. That
is, two strokes s and t are considered near if their geometric
distance

D(s, t) = min
i,j

∥ps
i − pt

j∥ (1)

is smaller than a fixed threshold. But in reality, artists tend to use
coarser strokes to depict large shapes and finer strokes to depict fine
details. So a fixed threshold either over-groups the fine strokes or
leaves the coarse strokes ungrouped. In comparison, we measure
inter-stroke proximity in a relative sense with respect to the nearby
regions.

The intuition of our relative proximity is that, if the two strokes are
the boundaries of a larger region, their relative distance with respect
to this region should be smaller (Figure 6(a)). On the contrary,
if the two strokes are the boundaries of a smaller region, their
relative distance should be larger (Figure 6(b)). For example, in
Figures 6(a)&(b), though the absolute distance between the two red
strokes in (a) is larger than that in (b), the relative distances of the
two pairs are similar since the strokes in (a) are the boundaries of a
larger region. Therefore, for every two strokes s and t that border

(a) (b) (c) (d)

r1

r2

Figure 7: (a)&(b) The two pairs of red strokes are geometrically
the same, but the pair in (a) is relatively continuous while the pair
in (b) is not. (c)&(d) With respect to different regions, the relative
continuity between two strokes may be different.

a region r, we can formulate the relative distance between s and t
with respect to r as

D̃r(s, t) =
D(s, t)

lr
(2)

where lr is the scale of r which suggests the potential coarseness of
the boundary strokes that surround region r. We observe that lr is
positively related to mr which is the radius of the largest disc that
can be placed inside r (Figures 6(a)&(b)), and we formulate it as

lr = αmβ
r (3)

where α and β are scaling factors and set to 5 and 0.4 empirically
in our experiments. In Figures 6(c)&(d), we visualize the scales
of the regions as the widths of the boundary bands surrounding
the regions. Intuitively, the boundary strokes of a region should
be mostly inside this boundary band.

To calculate the relative distance between two strokes with respect
to the nearby regions, we need to first identify which regions are
nearby. We define that, if a stroke s is inside or partially inside the
boundary band of region r, then r is a nearby region of s and s
is a potential boundary stroke of r. With respect to all the nearby
regions, we formulate the relative distance between two strokes s
and t as

D̃(s, t) = min
r

D̃r(s, t) ∀r nearby s, t (4)

Through this formulation, we link inter-stroke proximity to the
interpretation of regions.
Closure-aware Continuity Continuity measures whether two
strokes have similar directions. If so, it is very likely that they refer
to the same perceptual stroke. Note that the direction of a stroke
here does not mean the drawing direction by the user. It is a kind of
intepretation with respect to the current region of interest (explained
shortly). Typically, two strokes s and t are considered continuous
if their angular difference in either direction

A(s, t) = 1−
∣∣θ(ps

i∗) · θ(p
t
j∗)

∣∣ (5)
is smaller than a fixed threshold. Here,

{i∗, j∗} = argmin
i,j

∥ps
i − pt

j∥ (6)

are the indices of the nearest stroke points on s and t respectively.

θ(ps
i ) =

ps
i+1 − ps

i

∥ps
i+1 − ps

i∥
(7)

is the unit tangent vector at stroke point ps
i . However, this absolute

angular difference is insufficient to distinguish the two pairs of
red strokes in Figures 7(a)&(b) which have the same angular
difference but different continuities. To distinguish the semantic
difference in continuity between these two pairs, we propose to
analyze inter-stroke continuity in a relative sense with respect to
the nearby regions. For example, in Figure 7(a), with respect to the
rectangular region, the two strokes are also relatively continuous.
But in Figure 7(b), with respect to the bubble region, there is a sharp
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Figure 8: (a)&(b) The two pairs of strokes are both near and
continuous, but both pair do not refer to a single perceptual stroke.
(c) Each stroke is broken into two segments (d)&(e) The deviations
between the paired stroke segments.

change in the direction between the two strokes, and therefore they
are not relatively continuous.

In fact, the tangent vector at a stroke point may point either
forward or backward along the drawing direction. With respect
to a nearby region, the tangent direction may point either along
the clockwise direction or along the anticlockwise direction. To
calculate the relative angular difference between two strokes with
respect to a region, the tangent directions of the two strokes used for
comparison should be along the same direction of the region (either
clockwise or anticlockwise). For example, the relative tangent
directions of the red strokes are visualized in Figures 7(a)&(b)
where we adopt the clockwise direction without loss of generality.
Now we can formally write the relative angular difference between
two strokes s and t with respect to region r as

Ãr(s, t) = 1− θ̃r(p
s
i∗) · θ̃r(p

t
j∗) (8)

where θ̃r(p
s
i∗) is the unit tangent vector at stroke point ps

i∗ along
the clockwise direction of r. With respect to all the nearby regions,
the relative angular difference between two strokes s and t is set to

Ã(s, t) = max
r

Ãr(s, t) ∀r nearby s, t (9)

Intuitively, if two strokes are not continuous with respect to any one
of the nearby regions, then they are not relatively continuous.
Closure-aware Parallelism Parallelism measures how well two
strokes are aligned. If two strokes refer to the same perceptual
stroke, they must not deviate too much from each other at the
corresponding stroke points. For example, Figures 8(a)&(b) show
two pairs of strokes that are both near and continuous, but neither of
them refer to a single perceptual stroke due to the large deviations.

In practice, to measure the largest deviation between two strokes
s and t, we first break each stroke into two stroke segments at the
nearest stroke points (Figure 8(c)). Assume that s is broken into s1
and s2, and t is broken into t1 and t2. The obtained stroke segments
could be paired up according to the relative continuity between s
and t. Without loss of generality, we assume s1 corresponds to
t1 and s2 corresponds to t2. Now we can observe that, if s and t
refer to the same perceptual stroke, the largest deviation between
the corresponding stroke segments (s1 and t1, s2 and t2) must
be small. To measure the largest deviation between two stroke
segments sk and tk (k = 1, 2), we could simply check whether all
the stroke points on one stroke segment (sk or tk) are close to the
other segment (tk or sk). We formally write the maximal distance
from the stroke points on sk to tk (Figure 8(d)) as

B(sk → tk) = max
i

min
j

∥psk
i − ptk

j ∥ (10)

Intuitively, if B(sk → tk) is small, it suggests that all the stroke
points on sk are close to tk, and therefore sk can be represented by
tk. The maximal distance from tk to sk can be defined similarly
(Figure 8(e)). Then the largest deviation between two stroke
segments sk and tk can be calculated as

B(sk, tk) = min {B(sk → tk), B(tk → sk)} (11)

(a) (b) (c) (d) (e) (f) (g)

Figure 9: (a)-(d) The stroke grouping process. (e)-(g) The proxy
stroke is computed by smoothly interpolating the corresponding
stroke points of the two strokes.

The largest deviation between two strokes s and t is formulated as
the larger deviation between the corresponding segment:

B(s, t) = max
k={1,2}

B(sk, tk) (12)

Note that the measurement of deviation is based on the
measurement of distance, so it also relies on the scales of the
regions they depict. That is, we actually measure the largest
deviation between two strokes s and t with respect to the nearby
regions as

B̃(s, t) = min
r

B(s, t)

lr
∀r nearby s, t (13)

Recall that lr is the scale of region r. In this way, we link
inter-stroke parallelism to the regions as well.

4.2 Stroke Grouping
With the defined closure-aware proximity, continuity and
parallelism, we then group the strokes in a bottom-up greedy way.
To do so, we first form a stroke pair for every two strokes in the
sketch, and sort all the stroke pairs in an ascending order based
on proximity, continuity, and parallelism. Here, proximity is first
compared, and then continuity and parallelism. Then we check if
the two strokes in the first pair is relatively near, continuous, and
parallel, i.e.

D̃(s, t) < TD ∧ Ã(s, t) < TA ∧ B̃(s, t) < TB (14)

where TD , TA, and TB are thresholds, and set to 1, 0.2, 2
empirically. Note that the constraint on proximity is tighter than
the constraint on parallelism. The tight constraint on proximity
ensures that strokes referring to the same perceptual stroke must
be quite close at some point. The loose constraint on parallelism
allows certain degree of sketchiness of a stroke group. If the first
stroke pair satisfies this criterion, we mark the two strokes as the
same perceptual stroke and replace them with a proxy stroke that
can represent both strokes (Figures 9(a)&(b)). If not, we simply
skip to the next pair. This process is repeated until no stroke pair can
be grouped together (Figures 9(a)-(d)). Note that when measuring
inter-stroke properties between the two strokes in a stroke pair, we
actually make use of the proxy strokes if the strokes are already
replaced by proxy strokes. Figures 9(e)-(g) visualizes how a proxy
stroke is formed by smoothly interpolating the corresponding stroke
points between two strokes with a Bézier spline.

Figure 4(c) visualizes our computed stroke groups by color-coding
strokes in the same group with the same color. By incorporating
the law of closure, we successfully group coarse strokes and at the
same time preserve fine strokes. We also want to point out that with
different region interpretations, the relative inter-stroke properties
are different, and the formed stroke groups are also different. This
is why our computed stroke groups can be iteratively refined during
cyclic refinement.

5 Region Interpretation
In this section, we present how we interpret regions based on a
stroke interpretation. To interpret regions, we intend to merge
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Figure 10: (a)&(b) The yellow region in (a) is a perceptual
region surrounded by complete boundary strokes, while the yellow
region in (b) is a non-perceptual region surrounded by partial
strokes. (c)&(d) The yellow region in (c) is a perceptual region
intentionally formed by the artist, while the yellow region in (d) is a
non-perceptual region accidentally formed when creating the large
square shape. (e)&(f) Both pairs of regions are more completed if
merged together. But the two regions in (e) form one perceptual
region, while the two regions in (f) do not.

regions that belong to the same perceptual region and distinguish
perceptual regions from non-perceptual ones. To do so, we first
analyze the characteristics of perceptual regions. Then we show
how to form perceptual regions from the initial regions.

5.1 Perceptual Region vs. Non-perceptual Region
To distinguish perceptual regions from non-perceptual regions, we
propose to analyze from two aspects: region completeness and
region independence.
Region Completeness Region completeness measures whether
a region is a perceptual region with respect to the surrounding
strokes. If a region is a perceptual region, it should be intentionally
drawn by the artist. Therefore, it is very likely that the strokes
that form this region are drawn to fully depict this region. That
is, the whole stroke should be attached to the region’s boundary
(e.g. Figure 10(a)). In contrast, if the region is not a perceptual
region, the boundary strokes that form this region are actually
drawn to depict other regions. So it is very likely that only parts
of the boundary strokes are attached to this unintended region (e.g.
Figure 10(b)). Through analyzing whether a region is surrounded
by complete boundary strokes, we could measure whether a region
is likely to be a perceptual region or a non-perceptual region. We
call this concept as region completeness.

When measuring the completeness of the boundary strokes in
depicting a region, we actually measure the completeness of the
stroke groups since multiple short strokes may form one long
perceptual stroke. In particular, we compute the completeness of
a boundary stroke group g in depicting the region r as

V (g, r) =

∑
s∈g

∑
p∈s (Glr ∗Or)p∑
s∈g Ns

(15)

where Ns is the number of stroke points on stroke s, Or is a binary
image where the boundary pixels of r are set to 1, Glr is a Gaussian
filter with standard deviation lr , and ∗ is the convolution operator.
Intuitively, if V (g, r) is large, it means that stroke group g is quite
attached to the boundary of region r, and there is a high probability
that the strokes in g are intentionally drawn to depict r.

The completeness of a region is high if the whole shape is formed
by stroke groups that are intentionally drawn to depict this region.
Therefore, for each boundary pixel b of region r, we select the
maximal completeness of the surrounding stroke groups as the
completeness value of this boundary point, i.e.

C(b) = max
g

(Glr ∗ Ig)b V (g, r) (16)

where Ig is a binary image where the pixels of the strokes in stroke
group g are set to 1. Now we can define the completeness of
the region r as the average completeness value of all its boundary
points as

(a) (b) (c) (d)

Figure 11: (a) Initial regions. (b) Merged regions. (c) Perceptual
likelihoods. (d) Perceptual regions.

C(r) =
1

|Γr|
∑
b∈Γr

C(b) (17)

Here, Γr is the set of boundary points of r. Intuitively, the
completeness of a region tells the completeness degrees of the
surrounding stroke groups in depicting this region. With this
formulation, the region in Figure 10(a) has a much higher
completeness value than the region in Figure 10(b) according to the
completeness degrees of the surrounding boundary strokes. Note
that the completeness of a region will change if the surrounding
stroke groups change, and the changes of the completeness values
will directly influence the formed perceptual regions.
Region Independence Region completeness alone may
be insufficient to distinguish the two yellow regions in
Figures 10(c)&(d) since both regions have high completeness
values. However, while the region in (c) is a perceptual
region intentionally formed by the artist, the region in (d) is a
non-perceptual region unintentionally formed when creating the
large rectangular shape. From these two cases, we observe that
whether a region is a perceptual region highly depends on its
neighboring regions. Therefore, we propose to analyze whether
a region is independently formed or is a side-effect of the other
regions. We call this feature as region independence. In particular,
we measure the independence degree of region r by computing
the average distance from the pixels inside r to the nearby regions
Ω(r) as

P (r) = 1− 1

|Nr|
max

r′∈Ω(r)

∑
p∈r

(
Glr′ ∗ Ir′

)
p

(18)

where Nr is the number of pixels inside region r. Note that the
distance between r and r′ is also related with the scale lr′ of r′.
Intuitively, if all the pixels inside a region are close to any one of
the nearby regions, the independence value of this region should be
low, and it is very likely that this region is a non-perceptual region.

5.2 Perceptual Region Formation
Based on the formulated region completeness and region
independence, we now may form perceptual regions from the initial
regions through two steps – merging and classification.
Region Merging Since the initial regions are over-segmented, we
first merge the regions to avoid misclassification in the next step.
We merge two spatially neighboring regions r and r′ if they do not
have a shared boundary (stroke group) and the merged region has a
higher completeness value, i.e.

̸ ∃g s.t. (V (g, r) > TL) ∧ (V (g, r′) > TL) (19)

and 2C(r ∪ r′)− C(r)− C(r′) > TM (20)
Here TL and TM are empirically set to 0.9 and 0.05 respectively
in our experiments. The reason we adopt the shared boundary
criterion is to differentiate the two cases in Figures 10(e)&(f) where
the merged region has a higher completeness value in both cases.
Then we merge the regions in a bottom-up greedy way. To do so,
we first form a region pair for any two neighboring regions, and sort
the region pairs based on the increments of completeness values in
merging in a descending order. Then we sequentially check if each
region pair satisfies the above two criteria. If so, the two regions are
merged together into one region. The completeness of this merged
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(b) Iteration 1 (c) Iteration 2(a) Initial (d) Result

Figure 12: The iterative cyclic refinement process.

region is re-calculated in order to check if it can be further merged
with the other regions. This merging process repeats until no more
merging can take place. Figure 11(b) shows the merged regions
computed from the initial regions in Figure 11(a).

Region Classification After region merging, we further classify
the merged regions into perceptual regions and non-perceptual
regions. A perceptual region should be both completed and
independent, i.e.

C(r)P (r)γ > TC (21)

Here, TC is set to 0.5. γ is a weighting factor and set to 0.2 in
our experiments. The regions that fail this criterion are regarded as
non-perceptual regions and discarded. Figure 11(c) visualizes the
probabilities of the regions being perceptual regions. Figure 11(d)
shows the classified perceptual regions based on Figure 11(c).

6 Cyclic Refinement
As we have discussed above, region interpretation and stroke
interpretation are mutually influenced by each other. So any method
that resolves the interpretations sequentially may fail in correctly
interpreting the semantics. Instead, we propose a novel iterative
refinement system which interprets strokes and regions cyclically.
During each iteration, we first fix stroke interpretation and form
perceptual regions. Then we fix region interpretation and form
stroke groups. The iterative refinement process stops when there
is no more change on the formed stroke groups.

Figure 12 illustrates our iterative cyclic refinement process. There
are five initial strokes and three initial regions in this sketch
(Figure 12(a)). Then we start our cyclic refinement process by
first interpreting the regions. In the first iteration (Figure 12(b)),
each initial stroke is regarded as a single stroke group, and we
interpret the regions based on this stroke interpretation. We can
observe that the blue region in the dashed red box is identified as
a non-perceptual region and discarded due to its low completeness
and low independence. But the yellow region in the dashed blue
box has relatively high completeness and is preserved. Then, based
on this region interpretation, we group the five initial strokes into
two stroke groups. In the second iteration (Figure 12(c)), with
the refined stroke groups, the completeness of the yellow region
becomes rather low, and therefore is identified as a non-perceptual
region. With the refined region interpretation, all the initial strokes
are grouped together into one stroke group in this iteration. The
refinement process terminates in the third iteration since no more
change can take place (Figure 12(d)). In our experiments, this
refinement process usually takes 3 ∼ 5 rounds to converge.

As the system progressively forms the stroke groups, it also
constructs smooth proxy strokes that can represent the stroke
groups. In other words, the proxy strokes after convergence are
actually the simplified strokes (Figure 4(e)).

7 Results and Discussions
To validate the effectiveness of our method, we apply our method
on sketches with various styles, including two illustrative sketches

(Figure 3&16), a Japanese-style manga sketch (Figure 1), a
portrait sketch (Figure 13), an architectural sketch (Figure 14), an
object sketch (Figure 15), and two western-style cartoon sketches
(Figures 17&18). We also compare our closure-aware sketch
simplification method with the existing methods which are all based
on absolute properties (Figures 1, 14, 15, 16, and 17). With the
iterative cyclic refinement system, our method can simplify strokes
and extract perceptual regions simultaneously. The data statistics of
each figure is reported in the corresponding caption. More results
and comparisons can be found in the supplementary materials.

Figures 3(e)-(h) show our simplified results of the sketches
presented in Figures 3(a)-(d). Here, the four pairs of red strokes
in (a)-(d) are geometrically the same but semantically different.
The strokes in (a) are not grouped together since there is no region
nearby and the absolute proximity between the two strokes is low.
In contrast, the two red strokes in (b) are grouped together due to
the nearby large square region. In (c), the two regions are both
in small-scale, hence the two strokes are relatively further apart
and not grouped together. In (d), the two strokes are relatively
discontinuous with respect to the slim region in between them, and
hence are not grouped together.

Figure 1 shows a sketch of a girl where the large-scale hairs
are depicted by coarse strokes and the small-scale necklace is
depicted by fine strokes. Comparing to [Barla et al. 2005a] that
relies on absolute inter-stroke properties, our method successfully
groups the large-scale coarse strokes and at the same time
preserves the fine details. We further present three challenging
examples in Figures 13-15 where coarse-scale rough strokes and
small-scale fine strokes exist in the same sketch. Our method
achieves meaningful simplified results in all these cases. While
the parameters in our system are generally fixed, changing the
parameters (TD , TA, TB , and TC ) may change stroke interpretation
and region interpretation as well. In Figure 13(c), increasing TC

results in a tighter constraint in perceptual region classification and
marks the mouth region as a non-perceptual region, so the strokes
around the mouth region are grouped together. In Figure 15(d),
decreasing TD and TB results in tighter constraints in stroke
grouping and hence the sketch is simplified less aggressively. We
also compare our results with the results generated by [Barla
et al. 2005a] and [Shesh and Chen 2008] in Figures 1, 14, and
15. When facing these challenging sketches, the existing methods
generally either leave coarse-scale strokes ungrouped or over-group
fine-scale strokes. This is because that the existing methods
only analyze inter-stroke properties in an absolute sense without
considering closure. In contrast, our method achieves higher
degree of simplicity while preserving details by accounting for
closure. Figure 16 shows an illustrative example where the input
strokes are quite rough, but our method can still successfully
identify the perceptual regions and group the strokes. Though
the method proposed by [Noris et al. 2012] could achieve similar
stroke grouping result, their method requires manual labeling
before stroke grouping. In comparison, our method interprets the
semantics of the strokes fully automatically. We further present a
comparison in Figure 17. While our goal is to analyze how likely a
sketchy stroke belongs to a perceptual stroke with closure in mind,
Noris et al.’s method [2012] serves a different purpose that tries to
group the strokes belonging to the same higher-level logical part
(not necessarily a region) of the drawing. Since a region or even
a logical part could be depicted by multiple perceptual strokes,
our grouping is less aggressive than that of Noris et al.’s method.
For further evaluation, we invited a user to manually group these
sketchy strokes according to our goal. The comparison is shown in
Figure 17(d).

We also demonstrate a potential application of our interpretations in
Figure 18. With the computed region interpretation, we can recover
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(a) Input sketch

Perceptual regions Simplified strokes Perceptual regions Simplified strokes

(b) Simplification result 1 (T =0.5)C (c) Simplification result 2 (T =0.6)C

Figure 13: “Grandpa”. The input sketch contains 194 input strokes and 1499 initial regions. 58 stroke groups and 21 perceptual regions are
obtained after simplification. The whole simplification process takes 1.7 minutes. Here, (b) is generated using the default parameters.

(a) Input sketch (d) [Barla et al. 2005] ( =12)ε(b) Stroke groups (c) Simplified strokes

Figure 14: “House”. The input sketch contains 187 input strokes and 827 initial regions. 71 stroke groups and 23 perceptual regions are
obtained after simplification. The whole simplification process takes 2.3 minutes.

(a) Input sketch (b) Perceptual regions (c) Stroke groups (d) Simplified strokes
(T =0.4,T =0.6)D B

(f) [Shesh and Chen
2008]

(e) Simplified strokes
(T =1.0,T =2.0)D B

Figure 15: “Clock”. (a)-(e) The input sketch is re-traced from [Shesh and Chen 2008] and contains 820 input strokes and 425 initial
regions. Our simplification process takes 9.9 minutes and obtains 246 stroke groups and 198 perceptual regions. Here, (e) is generated using
the default parameters. (f) Result from [Shesh and Chen 2008] produced from their original input.

a 2.5D layer map for the input sketch by analyzing occlusion
relationships among the regions [Dimiccoli and Salembier 2009b;
Dimiccoli and Salembier 2009a; Liu et al. 2013]. Our simplified
result is presented in (b), and the identified perceptual regions are
extended in (c). By analyzing the T-junctions, we can construct
a region ordering graph that represents the occlusion relationships
among the regions. Finally, by topologically sorting the ordering
graph, we obtain a layer map (a rough depth map) in (d) that can be
further used for 3D geometry recovery, or stereoscopic rendering.

Timing statistics All our experiments are conducted on PC with
3.1GHz CPU, 32 GB system memory. The total computational
time for each sketch is reported in the corresponding caption. We

observe that the computational time highly depends on the number
of the input strokes and the number of the initial regions. Currently,
the whole system is implemented with Matlab. The code is not
optimized and no GPU is used.

Limitations Our assumption that important strokes like
silhouettes and suggestive contours constitute the boundaries of
closed regions may be violated. That is, there might be strokes
that do no depict any region. Under this circumstance, we can
only analyze inter-stroke properties in an absolute sense. This
may lead to similar over-grouping or under-grouping problems
as resulted in the existing closure-unaware methods. Moreover,
when a small-scale perceptual region is depicted by very coarse
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(a) Input sketch (b) Simplified strokes (e) [Noris et al. 2011](c)  Stroke groups (d) Manual labeling

Figure 17: “Waiter”. (a)-(c) The input sketch is re-traced from [Noris et al. 2011] and contains 126 input strokes and 93 initial regions.
Our simplification process takes 0.9 minutes and obtains 85 stroke groups and 36 perceptual regions. (d) Manually labeled stroke groups.
(e) Result from [Noris et al. 2011] produced from their original input. The small image on the left shows their manual label. c⃝Walt Disney
Animation Studios.

(a) Input (b) Simplified strokes (c) Extended perceptual regions (d) Layer map

Figure 18: “Duck”. The input sketch contains 167 input strokes and 1271 initial regions. 31 stroke groups and 14 perceptual regions are
obtained after simplification. The whole simplification process takes 2.0 minutes. In the layer map, darker pixels are nearer to the view point
while brighter pixels are further away.

(a) (d)(b) (c) (e)

Figure 16: “Spiral”. (a) Input sketch re-traced from [Noris et al.
2011]. (b) Perceptual regions. (c) Stroke groups. (d) Simplified
strokes. (e) Result from [Noris et al. 2011], and the small image
on the left shows the manual label. The input sketch contains 12
input strokes and 44 initial regions. Our simplification process
takes 0.5 minutes and obtains 2 stroke groups and 3 perceptual
regions. c⃝Walt Disney Animation Studios.

strokes, we may misclassify this region as a non-perceptual region
and over-group the surrounding strokes. Besides, our current
implementation does not incorporate user control. Nevertheless,
it is feasible to incorporate such control by regarding the user
input as hard constraints during the iterations. Finally, we do not

explicitly handle closed curves in the current implementation. We
may further study whether the curves are closed based on our
region interpretation.

8 Conclusion

In this paper, we present a novel closure-aware sketch simplification
method that converts rough sketches into clean line drawings. Our
key contribution is the introduction of closure in the semantic
analysis of sketches. While the grouping of strokes is influenced by
the perceptual regions, regions are in turn formed and influenced
by the perceptual strokes. So we further propose a novel
iterative cyclic refinement system to resolve this chicken-or-the-egg
problem. Comparing to the existing methods that only rely on
lower-level inter-stroke properties in an absolute sense, our method
accomplishes stroke grouping in a higher-level semantic sensible
fashion.

While our current method does not explicitly handle decorative
strokes and closed strokes, we shall study how to unify decorative
strokes and closed strokes into our framework. Further study
is needed for identifying such user intention. Also, the
determined region interpretation may be more meaningful for other
applications such as segmentation and colorization.
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