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The Rhombic Dodecahedron Map: An Efficient
Scheme for Encoding Panoramic Video
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Abstract—Omnidirectional videos are usually mapped to pla-
nar domain for encoding with off-the-shelf video compression
standards. However, existing work typically neglects the effect of
the sphere-to-plane mapping. In this paper, we show that by care-
fully designing the mapping, we can improve the visual quality,
stability and compression efficiency of encoding omnidirectional
videos. Here we propose a novel mapping scheme, known as the
rhombic dodecahedron map (RD map) to represent data over the
spherical domain. By using a family of skew great circles as the
subdivision kernel, the RD map not only produces a sampling
pattern with very low discrepancy, it can also support a highly
efficient data indexing mechanism over the spherical domain.
Since the proposed map is quad-based, geodesic-aligned, and
of very low area and shape distortion, we can reliably apply
2D wavelet-based and DCT-based encoding methods that are
originally designated to planar perspective videos. At the end, we
perform a series of analysis and experiments to investigate and
verify the effectiveness of the proposed method; with its ultra-fast
data indexing capability, we show that we can playback omnidi-
rectional videos with very high frame rates on conventional PCs
with GPU support.

Index Terms—Spherical mapping, rhombic dodecahedron,
panoramic video, omnidirectional video, video encoding, graphics
processing unit (GPU)

I. INTRODUCTION

Panoramic video, or omnidirectional video [1]–[5], repre-
sents time-varying 360o environments. It can be played back
via wide field-of-view or immersive VR displays [6]–[11],
and presents the captured environment in a highly immersive
and dynamic fashion. Large immersive display applications
require high resolution of video frames in order to maintain
reasonable visual quality. Hence efficient representation of
omnidirectional video without wasting pixels (or storage) is
crucial. Existing video formats are, however, mostly designed
for planar perspective videos, while omnidirectional videos are
spherical in nature. Therefore spherical parameterization [12]
(or sphere-to-plane mapping) is needed to map the spherical
video frames to the planar domain in order to facilitate
video compression methods originally designed for rectangu-
lar videos. Typical mapping schemes that researchers have
explored so far include cylindrical projection [13]–[16] and
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Cube-map projection [17]. Cylindrical projection unfolds the
video frames using a longitude and latitude grid, whereas the
Cube-map projects the video frames onto the six faces of an
enclosing cube. In this way, we can warp each video frame into
a single 2D image (cylindrical projection) or six 2D square
images (Cube-map projection), stack them up, and pass the
image sequence(s) to standard video encoders like MPEG.

However, the efficiency of these mapping schemes has not
been studied in depth. Most previous research simply ignores
the effect of mapping on coding efficiency. Inappropriate map-
ping schemes may excessively and/or insufficiently sample the
omnidirectional video frames and lead to waste and/or aliasing.
In this paper, we focus on the study of mapping schemes with
respect to omnidirectional video encoding, and propose a novel
mapping scheme, called the rhombic dodecahedron map (RD
map). It is based on the rhombic dodecahedron model [18],
[19]. Compared with existing mapping schemes, this novel
mapping scheme offers the following advantages:

Uniform Distribution: The RD map offers a uniformly
distributed sampling pattern. Each pixel in the RD
map spans almost the same solid angle and hence
importance. It offers an efficient and unbiased plat-
form, without oversampling nor undersampling, for
DCT-based and wavelet-based [20], [21] video en-
coding. This improves the compression efficiency as
compared to the Cube-map based video encoding.

Small Distortion: The shape distortions of subdivided pixels
are small and very similar. This is important to
achieve high-quality playback of the video frames.

Fast Retrieval: The geodesic property of RD map offers an
ultra-fast data indexing and retrieval algorithm. It can
be realized and implemented on GPUs in ordinary
PCs. The fast indexing algorithm allows a high-speed
playback of omnidirectional video.

The paper is organized as follow: First of all, Section II re-
views the existing works in applying various spherical maps to
encode omnidirectional videos. Then, Section III presents the
detail of our proposed rhombic dodecahedron map, whereas
Section IV derives the mathematics for fast indexing on the
map. Next, Section V contains three parts: 1) the implementa-
tion of our omnidirectional video system (including capturing,
encoding, decoding, and playback) based on the rhombic
dodecahedron map; 2) three quantitative analysis to compare
the efficiency of the rhombic dodecahedron map against other
mapping schemes; and 3) a series of experiments to verify
the effectiveness of our proposed mapping scheme. Finally,
Section VI draws the conclusion.
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II. RELATED WORK

Omnidirectional Images and Videos

Chen [22] developed the QuickTime VR system, which
models a 3D environment in the form of a 360-degree cylindri-
cal or cubical panoramic image. Users can pan, zoom in/out,
and link to different sites through the hotspots in the image.
Szeliski and Shum [23] later proposed a warping and stitching
algorithm to combine multiple perspective images into a single
panoramic image. Shum et al. [24], [25] further extended
the idea and proposed the concentric mosaic model to make
panoramic images navigatable. Wong et al. [26] incorporated
image-based relighting techniques into panoramic images and
make the panoramic images relightable in real-time. Agarwala
et al. [27] developed an efficient algorithm to create panoramic
video textures so that we can add persistent motions over static
panoramic images.

Majumder et al. [6] developed a teleconferencing system us-
ing panoramic videos; images were captured from a cluster of
video cameras, and registered and blended to form a panoramic
view of the environment. Other teleconferencing applications
that involve panoramic videos include [13] and [28]. Rather
than using a large projection surface for presenting panoramic
videos, Neumann et al. [7] employed a head-mounted display
(HMD), in which the renderings change naturally with the
users’ head. Foote [8] developed a practical and inexpensive
capturing system called the FlyCam [10], and applied it to
create spatially-indexed panoramic videos [9]. Tang et al. [11]
developed a video-based tele-immersive system, called the
Immersive Cockpit. The proposed system displays streamed
and stitched video sequences on a hemispherical display. Other
than using camera clusters, omnidirectional cameras [3], [5]
that make use of fisheye lens or hyperboloidal mirror reflec-
tion provide another efficient mean for capturing panoramic
videos [15], [29], [30] without image stitching.

Mapping for Omnidirectional Videos

Bauermann et al. [15] were among the first who investi-
gated the problems in encoding omnidirectional videos. Rather
than directly encoding a raw omnidirectional video freshly
captured through a fisheye lens or a hyperboloidal mirror,
they first warped and re-sampled the raw video through a
cylindrical projection before the encoding. More specifically,
Smolić and McCutchen [16] studied some mapping schemes
in cartography and employed equal-area cylindrical projection
rather than a basic cylindrical map to further enhance the
encoding efficiency. Other than cylindrical maps, Ng et al. [17]
employed the Cube-map projection to encode omnidirectional
videos. They dissected an omnidirectional video frame into six
Cube-based tiles for their specially-designed MPEG encoding.

Problems with Existing Mappings

Except [15], [16], which explored area ratio in the mapping
according to encoding efficiency, in all the other previous work
we noticed, the purpose of mapping is simply to warp the
captured video into encodable form, where the compression
efficiency of the mapping are ignored.

As pointed out in [15], standard video encoding schemes
such as MPEG are originally designed for sequence of images

that are planar perspective in nature. The motion estimation
and compensation mechanism assume translational motion of
small image blocks in 2D rectangular domain. Omnidirec-
tional videos are, however, non-rectangular in nature. Hence,
the encoding assumptions in MPEG may no longer valid.
Therefore, Bauermann et al. [15] applied cylindrical projection
to warp omnidirectional videos into cylindrical form before
the encoding. Though this warping improves the encoding
efficiency for MPEG, the top and bottom areas around the
poles, however, have to be ignored.

Fig. 1. Equal-area cylindrical map (left) and Cube-map (right).

Owing to the need to setup a mapping for video encoding,
Smolić and McCutchen [16] employed the equal-area cylin-
drical projection, which brought in an equal-area projection
from the spherical domain to the warped cylindrical surface.
Though the mapped pixels on the sphere all have equal area,
this mapping fails to address sampling uniformity and stretch
distortion (aspect ratio or shape) on pixels, which in turn could
heavily distort moving objects in the warped videos. This
problem is especially severe around the poles or high latitude
areas because pixels in these areas are largely stretched, see
Figure 1(left). Other than driven by the equal-area objective,
the Cube-map approach [17] gets rid of the pole problem
in the mapping by having six planar perspective projections,
each corresponding to a cube face. However, pixels near the
center of cube faces occupy relatively larger solid angles
(spherical areas) as compared to pixels near the face corners
(Figure 1(right)). Moreover, pixels near the face corners are
heavily distorted. Hence, objects moving in the scene could
appear to have different sizes and shapes in the image space
even they move at a fixed distance from the camera. In existing
methods, the (pixel) sampling uniformity in the spherical
domain is ignored, even it is a crucial factor in the encoding.

III. THE RHOMBIC DODECAHEDRON MAP

This paper presents a novel mapping scheme aiming at
low area, shape, and stretch distortion, highly uniform pixel
sample distribution, as well as fast data indexing on the
spherical domain. The base geometric model employed in the
mapping is a rhombic dodecahedron. In this section, part A
first describes the geometric model, and part B presents the
basic great circle subdivision scheme for mapping creation.
Then, part C introduces the normal curve idea, which forms
the basis for the skew subdivision scheme proposed in part D.

A. Rhombic Dodecahedron

A rhombic dodecahedron is a convex polyhedron with
twelve identical rhombi on its surface. Figure 2 presents one
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Fig. 2. The geometric structure of a rhombic dodecahedron.

typical way to construct its geometry. First, we inscribe a
cube in an octahedron with the cube’s edges just touching
the edge mid-points of the octahedron. Then, we can join the
cube’s eight vertices with the octahedron’s six vertices in a
way shown in the second sub-figure, so that 3×8 = 24 edges
are created to form the twelve identical rhombi in the rhombic
dodecahedron. Next, if we project these rhombi onto a sphere
surface using a gnomic projection, we can create a spherical
rhombic dodecahedron model with twelve identical spherical
rhombi, all with equal area on the sphere. Note that the 4π
sphere surface is now segmented into twelve identical regions,
where the segmented boundaries are the geodesic edges from
the spherical rhombic dodecahedron model.

Furthermore, it is worth to note that not all kinds of geo-
metric model supports efficient signal processing. The given
model has to be quad-based in nature so that off-the-shelf
signal processing techniques can be directly employed. Other
than the longitude-latitude grid and the Cube-map, rhombic
dodecahedron also satisfies this criteria.

B. Great Circle Subdivision Scheme

After segmenting the sphere surface using a spherical rhom-
bic dodecahedron, our next task is to subdivide each spherical
rhombus so that we can create pixel areas on the sphere surface
and map the 4π spherical domain into 2D rectilinear grids. The
very first strategy we applied here is great circle subdivision.

Fig. 3. The great circle subdivision scheme.

Figure 3 illustrates our great circle subdivision scheme on a
spherical rhombus with on-sphere vertices v0, v1, v2, and v3.
Since edges of spherical rhombi are geodesics on sphere, we
can construct great circles to pass through them, see the middle
sub-figure: The two constructed great circles through v0v1 and
v3v2 intersect at two opposite points on sphere, where these
two points can form a rotational axis that turns the great circle
through v0v1 to the great circle through v3v2. By applying a
uniform speed rotation about this axis, we can create a family
of great circles to partition the spherical rhombus into vertical
strips. Then, by repeating this process for the other pair of
opposite edges of the rhombus, we can partition the rhombus

into a grid of spherical areas (pixels) as shown in the right
sub-figure. Since all the twelve spherical rhombi are identical
in size and shape, this subdivision method can be applied to
all of them to create the same subdivision.

C. Normal Curve

Though the great circle subdivision looks straightforward,
it indeed implicitly embeds an interesting geometric structure,
which in turn enables us to explore more efficient subdivision
schemes. In essence, given any great circle on sphere, we can
uniquely define an axis through the sphere center in such a way
that the axis is perpendicular to the plane containing the great
circle. If we specify a certain spinning direction to the great
circle, we can uniquely define a normal vector perpendicular
to the great circle plane according to the right-hand rule. As
an example, we could compute v̂0 × v̂1 and v̂3 × v̂2 (see
Figures 3 and 4) to obtain two normal vectors, n̂01 and n̂32,
for the rhombus edges, v0v1 and v3v2, respectively. Just like
vertices of the spherical rhombus, these normal vectors are
also points on the sphere. In addition, note also that we have
taken v̂0 to v̂1 and v̂3 to v̂2 as the common spinning direction
for the two great circles through v0v1 and v3v2, respectively.

Fig. 4. A normal curve defines a subdivision scheme.

Since normal vectors and great circles are one-to-one cor-
respondence, we can interpret the great circle subdivision
scheme we established in previous subsection in terms of
normal vectors. Taking a family of N partitioning great circles
generated by the great circle subdivision scheme, we can
plot their corresponding normal vectors on the sphere. Since
these great circles are generated by a uniform speed rotation,
their corresponding normal vectors thus form a geodesic curve
between n̂01 and n̂32 on the sphere, see Figure 4 (left).
Any point on this geodesic curve corresponds to a unique
partitioning great circle between v0v1 and v3v2.

This interpretation enables us to have a different view
on subdivision scheme; the problem of creating a family of
partitioning great circles between opposite rhombus edges can
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be interpreted as a problem of creating a valid spherical curve,
called the normal curve, joining n̂01 and n̂32. Any point on
this designated curve corresponds to a partitioning great circle
between v0v1 and v3v2. In essence, a valid normal curve, say
n̂(t) (t ∈ [0, 1]), has:

• n̂(0) = n̂01 and n̂(1) = n̂32,
• ∀t ∈ [0, 1], G(n̂(t)) should cut through the other two

opposite edges (i.e., v0v3 and v1v2) of the given rhombus,
and

• ∀t1, t2 ∈ [0, 1], if t1 �= t2, G(n̂(t1)) and G(n̂(t2))
should not intersect within the given rhombus,

where G(n̂(t)) is the great circle corresponding to point n̂(t)
on the normal curve. The first constraint is the end-point con-
dition for the partitioning, while the second constraint ensures
that all generated great circles cut through the given rhombus
properly; the highlighted red region in Figure 4 (right) denotes
a region of valid normal vectors obeying this constraint. The
last constraint guarantees no intersection between partitioning
great circles within the given rhombus.

D. Skew Great Circle Subdivision Scheme

In looking for a good normal curve that satisfies the above
constraints as well as can improve the data encoding efficiency,
we find that we can apply a small circle to join n̂01 and n̂32

rather than just a geodesic, see Figure 5. Note that on sphere,
the radius of a great circle always equals the radius of the
sphere, but the radius of a small circle can take any value
smaller than that.

Since small circles on sphere can have different radii,
we can optimally choose a small circle that maximizes the
quantitative measures to be presented in Section V (with
detailed analysis and comparisons). Based on the optimization,
we found the small circle curve, n̂small(t), shown in Figure 5;
its corresponding subdivision pattern is shown in Figure 6. The
family of great circles generated by this subdivision kernel
forms a curve stitching pattern on the sphere as they do not
rotate about the pole. In Section V, we will show that this
off-pole rotation can lead to a much better pixel distribution
that has higher data uniformity, and lower area and stretch
distortion than that of straightforward on-pole rotation (great
circle subdivision). We call the subdivision method the skew
great circle subdivision scheme, which is the core of our
rhombic dodecahedron map (RD map).

IV. DATA INDEXING

This section continues our discussion on the rhombic do-
decahedron map and derives the mathematical detail for the
fast indexing method of this map.

Fig. 5. Fitting a small circle as the normal curve.

Fig. 6. The skew great circle subdivision scheme forms a curve stitching
pattern at the pole of rotation in the great circle subdivision scheme; left: the
partitioning; middle: n̂small(t); Right: zoom at the pole.

A. The Data Retrieval Problem

Systematically, the retrieval of data in the RD map can be
formulated as: Given a query point q̂ on the sphere, what is
the associated data value at q̂? In answering this question, we
have to locate the pixel area that contains q̂ on the sphere, and
retrieve or interpolate the pixel value at q̂.

The process of locating the pixel area that contains q̂ can
be reduced to two sub-steps: 1) locate the base spherical
rhombus that contains q̂, and 2) locate the corresponding
pixel on the rhombus. The first sub-step is relatively simple.
Since edges of a rhombic dodecahedron follow a system of
six great circles, we can perform six dot products between q̂
and the great circle normals, create a 6-bit integer with zeros
and ones corresponding to the dot product results (positive
and negative), and quickly locate the spherical rhombus that
contains q̂ by a table lookup. Furthermore, since the six great
circles are not arbitrarily orientated, we can further speedup
this sub-step by simplifying the dot product multiplications.
As a result, this sub-step requires just eight fragment program
instructions in our GPU implementation.

B. On Deriving the Indexing Equation

The normal curve concept is useful not only for the design
of subdivision scheme, it is also useful for the second sub-step
in the data indexing problem. The underlying reason is that any
valid normal curve, say n̂(t), corresponds to a family of non-
intersecting great circles sweeping through a given spherical
rhombus from one side to the other. Thus, every single location
on a spherical rhombus is associated with a certain great circle
(for each set of partitioning great circles) defined with a certain
t along a normal curve. In this way, if q̂ locates inside a given
rhombus, we can always find a certain great circle passing
through it; and since the associated normal vector of this great
circle is perpendicular to the great circle plane, we have

q̂ · n̂(t) = 0 for some t ∈ [0, 1].

Hence, the data indexing problem can be reduced to the
above simple equation: given q̂, solve for t. Furthermore, it is
worth to note that since we employ a uniform-speed sampling
along the small circle arc n̂small(t), we can quantize the
resultant t value, and quickly locate the subdivided strip that
contains q̂ on the spherical rhombus. Finally, by solving this
simple equation again for the other set of partitioning great
circles corresponding to the other pair of opposite edges on the
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Fig. 7. Solving q̂ · n̂(t) = 0 by the intersection of Πq and n̂(t).

spherical rhombus, we can analytically determine the specific
pixel that contains q̂ on the RD map.

From a geometric point of view, the above dot product equa-
tion can be further transformed to a plane-curve intersection
problem. That is, given any q̂ on sphere, we can construct a
3D plane, say Πq , through the sphere center and perpendicular
to q̂, see Figure 7. If q̂ ·n̂(t) = 0 has a solution, Πq should also
intersect n̂(t). As a result, we can formulate the mathematical
procedure for solving t using Πq , refer to the Appendix.

When we introduce normal curves, readers may question
that small circle arcs cannot cover the space of all possible
non-intersecting great circles in terms of the normal curve
concept, so we may have some better normal curves than just
small circle arcs. This could be true, but the use of small
circle arcs does provide us with a fast data indexing that is
implementable on the GPU, and also a promising subdivision
pattern, see Section V. Taking these advantages into account,
a more complicated normal curve hence may not be worthy.

V. IMPLEMENTATION, ANALYSIS, AND EXPERIMENTS

This section contains three parts: The first part details the
implementation of our omnidirectional video system (includ-
ing capturing, encoding, decoding, and playback); the second
part presents three complementary metrics (sampling unifor-
mity, area deviation, and shape distortion) to quantitatively
analyze and compare different mapping schemes; finally, the
third part shows a series of experiments to analyze and
evaluate the playback performance, the visual quality, the
PSNR in data representation, the stability in rendering quality,
and the video encoding efficiency.

A. Implementation: the Omnidirectional Video System

A.1 Video Capture We capture omnidirectional videos with
Ladybug2, a spherical digital video camera from Point Grey
Research [30]. Ladybug2 contains six cameras (five positioned
in a horizontal ring and one pointing straight up). Each camera
captures a perspective image at a resolution of 1024 × 768.
The camera system covers approximately 75% of a full sphere
and its 1394b transfer interface enables transfer rates of up to
30 fps. Figure 8 shows the system setup. It consists of a PC
(An AMD Athlon 64x2 Dual Core PC with Processor 3800+,
2.01GHz, 2.0GB RAM, and Geforce 7800) and the Ladybug2
camera mounted on a tripod that sits on a movable platform.

Although Ladybug2 comes with a proprietary software that
stitches the six views into a cylindrical panorama, it does

Fig. 8. Left: Ladybug2 camera. Right: the setup of our capture system: a PC,
the Ladybug2 camera device, and a tripod attached on a movable platform.

not fully utilize the captured pixels for stitching a high-
quality omnidirectional frame; resampling of the cylindrical
panorama is needed to produce the RD map. Therefore, we
developed our own stitching program to directly generate
high-quality RD maps (frames) by resampling the raw frames
from the six cameras, based on a user-specified subdivision
number (the number of subdivisions on the rhombus faces).
Each of the six cameras is carefully calibrated to obtain its
intrinsic and extrinsic parameters in order to minimize the
image distortion. Subsequently, we can efficiently encode and
store each omnidirectional image in a highly uniform manner,
visualizable as the fish-like form in Figure 9 (left).

A.2 Video Compression For compatibility with the existing
MPEG framework, we proposed a four-strip encoding scheme
to pack the image blocks like the six-tile encoding scheme
in [17]. Given the twelve rhombi in the fish-like form, we re-
arrange them as four consecutive strips shown in Figure 10.
Using this scheme, four video streams are formed and each is
encoded with the standard MPEG2.

A.3 Video Decoder and Renderer Our fast video playback
system involves an MPEG2 decoder and an OpenGL-based
renderer. In the decoding of an MPEG2-encoded video, we
have a sequence of 2D textures (RD maps) in the form of
the four-strip format on the texture memory of the GPU. The
renderer we developed then handles this texture stream, and
takes advantage of the parallel processing power on the GPU
to lookup color values from them. In detail, the graphics
hardware first interpolates the viewing direction for each
pixel fragment on the screen using its rasterization engine.
Then, a Cg fragment program addresses each pixel fragment
encountered, and computes the RD map indexing algorithm
so as to retrieve the color values stored on the RD map. Since
fragment programs are executed in parallel on an array of pixel
processing pipelines, we can largely boost up the RD map
indexing performance and render the omnidirectional videos
at a speed far greater than real-time requirement.

B. Analysis on the Mappings: Three Quantitative Metrics

B.1 Sampling Uniformity The classical approach we em-
ployed to measure the uniformity of sample point distribution
is the discrepancy analysis method [31]–[33]. Its basic idea is
to measure the variation of pairwise distances among sample
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Fig. 9. Visual Comparison: the rhombic dodecahedron map (left) and Cube-map (right).

chop the fish into five pieces

merge head and tail

Fig. 10. Turning the fish-like form into four strips for MPEG-compatible encoding.

point locations; a smaller distance variation (known as the
discrepancy) implies a more uniform sampling distribution.
Based on this concept, Cui et al. [33] devised the generalized
discrepancy formulae below for measuring sampling unifor-
mity on the sphere:

D =
1

2
√

πN

[ N∑
ij

[
1 − 2 ln

[
1 +

√
1
2
(1 − x̂i · x̂j)

]]] 1
2

,

where x̂i, i from 1 to N , is the location of the ith sample
point on a unit sphere.

In terms of omnidirectional video encoding, a small discrep-
ancy value corresponds to a more uniform mapping scheme,
which further implies a more uniform data sampling and
encoding over the sphere surface. Figure 11 (left) plots the
generalized discrepancy of various mapping schemes against
different number of sampling points. Since discrepancy has
a large range when we have Equal Lattice and Cube-map
in the plotting, we have to use logarithmic scale in the
vertical axis. Note also that Equal Lattice refers to a uniform
angular subdivision in a longitude and latitude grid, while
Hammersley [33]–[35] is a sampling point sequence on the
sphere, known to have very low discrepancy. Moreover, we
can also see from the figure that our skew great circle scheme
(the RD Map) has the smallest discrepancy among all; It
outperforms Cube-map, equal-area cylindrical map, as well
as the basic great circle subdivision.

B.2 Area Deviation Area deviation aims at measuring the
pixel area utilization on the sphere. Quantitatively, we first
census the spherical area of all subdivided pixels on the sphere
surface, and determine the corresponding standard deviation,
Astdev . Thus, a small Astdev implies a more uniform area
mapping between the data space (sphere) and the parametric
space (2D rectilinear domain).

However, it is also worth to note that a low Astdev does not
always imply a uniform sampling. As in the case of equal-area
cylindrical projection, though its Astdev is always zero, its
discrepancy is no better than the RD map. Figure 11 (middle)
plots the analysis results. Since equal-area cylindrical is an
equal area projection, it is ignored for proper scaling in the
plot. And for Hammersley, since it is merely a point sequence
on sphere without any pixel structure, it could not be tested
by area deviation (nor by the following stretch measure).

B.3 Shape Distortion A spherical mapping locally trans-
forms an infinitesimal spherical region to a planar quadri-
lateral. It is important to measure how much the spherical
pixel deviates from a 2D square. Researchers have proposed
different stretch metrics for spherical mapping [36]–[39].
Snyder et al. defined the stretch using the larger singular value
of the mapping’s Jacobian [39]. Praun et al. computed the
spherical L2-stretch norm by L2-integrating over the spherical
surface [37]. Unlike the previous methods, we develop a
stretch measure using the ratio of the two singular values and
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Fig. 11. Analyzing different mapping schemes: discrepancy (left), area deviation (middle), and stretch (right).

the ratio of a spherical pixel area and a 2D square,

S =
1
M

M∑
i=1

(
(1 + |1 − Ai

4π
· M |) ∗ (

Γi

γi
)
)

,

where M is the total number of subdivided pixel areas on
the sphere, Ai is the area of the ith pixel on a unit sphere,
and Γi and γi are its maximal and minimal singular values,
respectively, after singular value decomposition (SVD). It is
clear that the optimal stretch value should be 1.0 which
happens when the pixels are equal-area and close-to-square.
While the more the stretch is deviated from 1.0, the more the
stretch or shape distortion a mapping produces. To be precise,
we locally sample in each pixel area on the sphere by 2D
grid points and project them onto the tangential plane so as
to perform the SVD computation. From Figure 11 (right), we
can see that the skew great circle scheme (the RD Map) also
outperforms the other schemes, which implies that the RD
Map introduces the least shape distortion for pixels on sphere.

C. Experiments

In this subsection, we carefully devise and conduct a series
of experiments to study and verify the effectiveness of the
proposed mapping scheme.

C.1 Playback Performance #1 Since the encoded data is
stored according to the mapping scheme structure, in case
we have intensive data query, for example, when playback an
omnidirectional video, the speed of data retrieval is extremely
crucial in the overall performance. For the RD map, since its
analytical equation is simple and easy to implement, we can
evaluate it by a fragment program running on GPU, and obtain
over 140 fps in the video rendering.

TABLE I
PLAYBACK PERFORMANCE: VARYING RD MAP RESOLUTION.

Number of pixels stored in the RD map
24300 97200 393132 1572528

(12 × 452) (12 × 902) (12 × 1812) (12 × 3622)
Geforce 7800 207.92 fps 206.74 fps 205.60 fps 204.09 fps
Geforce 6800 160.97 fps 160.46 fps 160.62 fps 139.99 fps

Table I shows the frame rate in rendering omnidirectional
videos with different video resolutions, i.e., RD map resolu-
tion. The timing statistics are recorded on an AMD Athlon
64x2 Dual Core PC with Processor 3800+, 2.01GHz, with
2.0GB of memory. Two different GPUs are employed in the
experiment: nVidia GeForce 6800 and nVidia GeForce 7800

models. The performance results show that we can achieve a
very high frame rate in the playback and such a frame rate
is far enough to support real-time playback requirement (30
fps). Note that we use the texture rectangle format in OpenGL
to represent 2D textures on GPU so that we can handle non-
powers-of-two textures as in our RD maps, and the screen
resolution is 980 × 980. This demonstrates the fact that we
can always achieve very high framerate (playback speed) with
varying screen resolution, even during video playback.

C.2 Playback Performance #2 In addition, we also compare
the playback performance (rendering performance) against
different number of on-screen pixels, i.e., screen resolution
in the playback. Here we use the machine with Geforce
7800 as in experiment C.1, and the resolution of the RD
map is 12 × 3622. Furthermore, we try out two different
configurations: The first one is a video stream, where we have
to update the GPU texture per time frame (as in experiment
C.1), whereas the second one is just a static texture on the
GPU, see Table II for the performance results.

TABLE II
PLAYBACK PERFORMANCE: VARYING SCREEN RESOLUTION.

screen resolution video playback single image
400 × 400 243.81 fps 1499.16 fps
512 × 512 238.72 fps 1131.11 fps
640 × 640 231.84 fps 742.97 fps
800 × 800 217.17 fps 474.23 fps
980 × 980 204.15 fps 309.56 fps

C.3 Visual Comparison: RD Map and Cube-map Since
Cube-map is a more popular and better choice of mapping
than Equal lattice and equal-area cylindrical map, we visually
compare Cube-map and RD Map: Figure 9 shows their basic
structures with roughly the same number of sample points
(located at center of pixels) distributed over the sphere. We
can see from the grid representations that the RD map is
less shape-distorted and has higher sampling uniformity as
compared to the Cube-map. Instead of the 12-rhombus layout
presented in Figure 2, we organize the twelve rhombi in a
fish-like form shown in Figure 9 above. The face IDs shown
on the fish figure match that shown in Figure 2.

Figure 12 visually compare the decoded results. For the top
row, the same omnidirectional image is represented with the
RD map in a face resolution of 181 × 181 and Cube-map in
a face resolution of 256× 256, while for the bottom row, we
use a RD map of face resolution 362 × 362 and a Cube-map
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(a) rendering result (b) region1 (c) region2

Fig. 12. Visual quality comparison of the RD map and Cube-map.

of face resolution 512 × 512; the control image is in Cube-
map format with a resolution of 1024 × 1024. Thank to the
sampling uniformity, low area deviation, and low stretch, the
RD Map preserves more details of the bookshelf and the panel
than the Cube-map.

C.4 Rendering Quality based on PSNR In addition, we also
quantitatively compare the rendering quality in terms of PSNR.
Here we measure how close the renderings are as compared
to the control images. Note that we turn off MPEG encoding
in this experiment (and also experiment C.5), just like what
we did in Figure 12.
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Fig. 13. PSNR achieved by Cube-maps and RD maps against the different
map resolutions.

The same omnidirectional environment is encoded using
Cube-map and RD map and peak-signal-to-noise (PSNR) ratio
is used to measure the rendering quality against a control
image, that is produced from a high resolution Cube-map. In
detail, we randomly select 20 frames from the omnidirectional
video sequence, which contains 322 frames. For each omni-
directional frame, the scene (READINGROOM) is rendered at
60 different random viewing orientations and compared to the

control images. The averaged PSNR of viewing directions is
plotted against different resolutions of RD maps and Cube-
maps, see Figure 13. From the figure, we can see that the
rendering result of the RD maps have larger PSNR values
than that of the Cube-maps. The improvement is consistent
over all tested resolutions.

C.5 Stability in Rendering Quality Further than that, we also
would like to point out that using the RD map, we can achieve
more stable rendering quality. In this experiment, two viewing
paths (the curves illustrated in Figure 14) on the unit sphere
are arbitrarily selected to simulate how the user heads towards
during the video playback. The camera is oriented so that it
points along this viewing path, and the scene is rendered at 55
viewing orientations sampled on the path. These 55 viewing
orientations are obtained by interpolating the quaternions at the
six input key points that define the viewing path. We randomly
select 20 omnidirectional frames from the READINGROOM

omnidirectional video which is in a resolution of 6×2562 for
Cube-map and 12 × 1812 for RD map. The averaged PSNRs
are plotted against the 55 viewing orientations along the two
user navigation paths.

Fig. 14. Two viewing paths are arbitrarily selected; the tube pointing from
the sphere center represents where the camera pointing to, initially.

Figure 15 shows that the PSNR varies with the content in
the rendering and the PSNR resulted from RD map has the
similar trend as that from Cube-map; however, the PSNR of
Cube-map has a large fluctuation. It is due to the fact that
Cube-map over-samples the corner regions and under-samples
the central regions on its faces. On the other hand, our RD map
achieves a more uniform sampling pattern over the spherical
surface, and hence, results in a more stable visual quality.

C.6 MPEG2 Coding Efficiency Next, we evaluate the effect
of the RD maps on MPEG2 coding efficiency. We use two
omnidirectional video sequences, READINGROOM and WTY,
that contains 322 and 564 frames, respectively, at frame rates
of 30 fps. Both sequences are resampled in Cube-map at
a resolution of 6 × 2562 and RD map at a resolution of
12 × 1822 (so that the two maps have similar resolutions).
We then MPEG2-encode the videos with different target bit
rates (bit per second) and compute the PSNR values of the
decoded sequences against the original sequence. Note that
the RD map has resolution 12 × 1822 instead of 12 × 1812

because the image resolution input to the employed MPEG
encoder has to be even numbers. Unlike the previous two
experiments (C.4 and C.5), which measure the PSNR of
the rendered perspective views (planar in nature), the PSNR
of the encoded omnidirectional video we measure this time
is spherical in nature. The reason why we do not measure
the PSNR in the “unfolded” rectilinear domain, where the
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Fig. 15. PSNR achieved by Cube-maps and RD maps during the process of
camera rotation; the top and bottom graphs correspond to the viewing paths
shown on the left and right in Figure 14, respectively.

encoding is performed (i.e. the unfolded faces in Figure 9),
is because it does not reflect the “physical” error as the video
is actually spherical in nature. To correctly account for the
contribution of each pixel over the spherical domain, when
computing PSNRs, we have to multiply the error at each pixel
by its corresponding solid angle (its spherical area). We called
this weighted PSNR the spherical PSNR (sPSNR).
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Fig. 16. sPSNR against target bit rates for Cube-map and RD map; top:
READINGROOM and bottom: WTY.

Figure 16 compares the sPSNR values between Cube-map
and RD map after video coding. The figure plots the curves
of sPSNR values against the target bit rates. Here the target
bit rates are the overall bit rates assigned to four-strip streams
for RD map video, or similarly six-tile streams for Cube-map
video. In general, the PSNR increases as the bit rate increases
for both Cube map and RD map, and a bit rate of 3Mbps is
sufficient to attain a decent sPSNR. In comparison, RD map
has higher sPSNR values than Cube-map for both testing video
sequences. From this experiment, we can see that the choice of
mappings can affect the coding efficiency and that a uniform
and low-distortion mapping, like the RD map, outperforms the
efficiency of the traditional Cube-map.

VI. CONCLUSION

Sphere-to-plane mapping has a long history over two thou-
sands of years [12]. Various mapping schemes have been pro-
posed owing to different practical needs, such as cartography,
navigation, etc. The RD map proposed in this paper is a novel
mapping scheme favoring rectilinear-based encoding on the
spherical surface. As the proposed mapping scheme is highly
uniform, low in both area and stretch distortion, and supports
ultra-fast data indexing, it can be used to map omnidirectional
images and videos to the rectilinear domain and facilitate the
encoding with the off-the-shelf image and video standards
originally designed for rectangular domain.

We show that the effects of such mapping on omnidirec-
tional video encoding cannot be neglected, as it affects the
visual quality, stability, and compression efficiency. This novel
mapping scheme provides a practical and effective platform for
the development of an omnidirectional video system. Further
than that, this mapping scheme can also lead to other future
work yet to be explored. We shall investigate other potential
applications of the RD map on different areas like allsky
astrophysical imaging and shadow mapping in the future.

ACKNOWLEDGMENT

We would like to thank all reviewers for their constructive
comment. We also thank Lai-Sze Ng for her contribution to
the early development of this work. This project is partly
supported by the Research Grants Council of the Hong Kong
Special Administrative Region, under General Research Funds
from Hong Kong Government (Project No. CUHK417107
and CityU116508), and the Nanyang Technological University
Startup Grant (Project No. M58020007.500000).

REFERENCES

[1] E. H. Adelson and J. R. Bergen, “The Plenoptic function and the
elements of early vision,” in Computational Models of Visual Processing,
M. S. Landy and J. A. Movshon, Eds. MIT Press, 1991, ch. 1, pp.
3–20.

[2] J. Meehan, Panoramic Photography. Amphoto Books, 1990.
[3] S. K. Nayar, “Catadioptric omnidirectional camera,” in Proceedings of

the Computer Vision and Pattern Recognition Conference, 1997, pp.
482–488.

[4] T. Svoboda, T. Pajdla, and V. Hlavác, “Epipolar geometry of panoramic
cameras,” in Proceedings of the Computer Vision, 1998, pp. 218–231.

[5] S. B. Kang, “Catadioptric self-calibration,” in Processings of the Com-
puter Vision and Pattern Recognition, 2000, pp. 201–207.



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. XX, XXXX 2009 10

[6] A. Majumder, W. B. Seales, M. Gopi, and H. Fuchs, “Immersive
teleconferencing: a new algorithm to generate seamless panoramic video
imagery,” in Proceedings of the 7th ACM international conference on
Multimedia, 1999, pp. 169–178.

[7] U. Neumann, T. Pintaric, and A. Rizzo, “Immersive panoramic video,”
in Proceedings of the 8th ACM international conference on Multimedia,
2000, pp. 493–494.

[8] J. Foote and D. Kimber, “FlyCam: practical panoramic video,” in
Proceedings of the 8th ACM international conference on Multimedia,
2000, pp. 487–488.

[9] D. Kimber, J. Foote, and S. Lertsithichai, “FlyAbout: spatially indexed
panoramic video,” in Proceedings of the 9th ACM international confer-
ence on Multimedia, 2001, pp. 339–347.

[10] X. Sun, J. Foote, D. Kimber, and B. S. Manjunath, “Panoramic video
capturing and compressed domain virtual camera control,” in Proceed-
ings of the 9th ACM international conference on Multimedia, 2001, pp.
329–347.

[11] W.-K. Tang, T.-T. Wong, and P.-A. Heng, “A system for real-time
panorama generation and display in tele-immersive applications,” IEEE
Transactions on Multimedia, vol. 7, no. 2, pp. 280–292, 2005.

[12] J. P. Snyder, Flattening the Earth : Two Thousand Years of Map
Projections. University of Chicago Press, 1993.

[13] D.-S. Lee, B. Erol, J. Graham, J. J. Hull, and N. Murata, “Portable meet-
ing recorder,” in Proceedings of the 10th ACM international conference
on Multimedia, 2002, pp. 493–502.
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APPENDIX

Solving n̂small(t) · q̂ = 0
Mathematically, any small circle on a sphere can be interpreted as the cross-section of

the sphere and a plane. Let Πs be such a cross-section plane that contains n̂small(t)
and â be its normal, see Figure 17; note that any small curve arc can be uniquely
defined by n̂01 , n̂32, and â. Now, we can define �h as the projection of n̂01 along â,
and decompose n̂01 and n̂32:

�h = (n̂01 · â) â and

{
n̂01 = �h + �v01

n̂32 = �h + �v32
,

where �v01 and �v32 are the projections of n̂01 and n̂32 on Πs, respectively.

Fig. 17. Revealing the small circle plane, Πs.

To accelerate the data indexing, we can pre-compute θs, l, v̂01 , and v̂32 (note: these
quantities are all on Πs):

l = |�v01| , v̂01 = �v01/l , v̂32 = �v32/l , and θ = cos
−1

(v̂01 · v̂32) .

Then, by using slerp interpolation from v̂01 to v̂32 , we can represent the normal curve
n̂small(t) as

n̂small(t) = l

[
sin((1 − t)θ)

sin θ
v̂01 +

sin(tθ)

sin θ
v̂32

]
+ �h .

Since v̂01 and v̂32 are unit vectors, the slerp-interpolated result is always a unit vector.
If q̂ is found to be on the given base rhombus (from sub-step 1), the indexing equation
becomes (put lv̂01 = �v01 and lv̂32 = �v32):

q̂ ·
[

sin((1 − t)θ)

sin θ
�v01 +

sin(tθ)

sin θ
�v32 + �h

]
= 0

(q̂ · �v01)(sin θ cos α − cos θ sin α) + (q̂ · �v32) sin α + (q̂ · �h) sin θ = 0 .

By putting A = [ (q̂ · �v32) − (q̂ · �v01) cos θ ], B = (q̂ · �v01) sin θ, and
C = (q̂ · �h) sin θ, we have

A sin α + B cos α + C = 0 .

Since A and B cannot be zero simultaneously (using proof by contradiction), the above
equation can be further reduced by letting tan φ = B/A:

cos φ sinα + sin φ cos α =
−C√

A2 + B2

t =
1

θ

[
sin−1(

−C√
A2 + B2

) − φ

]
.

Note that such an equation can be readily implemented (with proper transformations) as
fragment program on the graphics processing unit (GPU).
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