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Fig. 1. Given an input color image (left), our method converts it to an invertible grayscale (middle) that can be later restored to the color version (right).
The key of our method is to encode the original color information in the generated grayscale as unobvious pattern (blown-ups of the middle image) via a

convolutional neural network. (MSE:2.627 PSNR: 36.76, SSIM: 0.9622)

Once a color image is converted to grayscale, it is a common belief that
the original color cannot be fully restored, even with the state-of-the-art
colorization methods. In this paper, we propose an innovative method
to synthesize invertible grayscale. It is a grayscale image that can fully
restore its original color. The key idea here is to encode the original color
information into the synthesized grayscale, in a way that users cannot
recognize any anomalies. We propose to learn and embed the color-encoding
scheme via a convolutional neural network (CNN). It consists of an encoding
network to convert a color image to grayscale, and a decoding network to
invert the grayscale to color. We then design a loss function to ensure the
trained network possesses three required properties: (a) color invertibility,
(b) grayscale conformity, and (c) resistance to quantization error. We have
conducted intensive quantitative experiments and user studies over a large
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amount of color images to validate the proposed method. Regardless of the
genre and content of the color input, convincing results are obtained in all
cases.
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graphy;

Additional Key Words and Phrases: color encoding, invertible grayscale,
image reconstruction
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1 INTRODUCTION

People convert color images to grayscale for various purposes
and applications, ranging from black-and-white printing, aesthetic
photography, to backward compatibility for legacy display. However,
color information is lost during the color-to-gray conversion.
Although ones can colorize grayscale using existing colorization
methods [lizuka et al. 2016; Zhang et al. 2016], the introduced colors
may not be the original ones.

In this paper, we propose an innovative method to convert a
color image to grayscale, that can be later inverted back to its color
version. We call it invertible grayscale. Fig. 1 shows the invertible
grayscale (middle) generated from the color input (left), while the
right image is the restored color image. The key idea here is to
encode the original color information in the generated grayscale,
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so that the encoded color information can be restored during the
later color restoration. The blown-up grayscale sub-images on the
bottom row of Fig. 1 reveal how the color is encoded as unobvious
pattern. However, designing such a color encoding scheme by hand
is extremely complex due to the unbounded content of input.

Instead, we propose to learn and embed the color encoding
scheme via a convolutional neural network (CNN). Our system
consists of an encoding neural network to convert a color image to
grayscale, and a decoding neural network to invert the grayscale to
color. A key to utilize a convolutional neural network lies on the
design of a proper loss function. Our loss function is composed of
invertibility loss, grayscale conformity loss, and quantization loss.
The invertibility loss ensures the restored and the groundtruth color
images to be as similar as possible, so that we can restore the color
image. The grayscale conformity loss ensures that the generated
grayscale looks like the grayscale version of the color input. This
requires the generated grayscale to preserve the structure, contrast,
and lightness of the color input. The quantization loss mimics the
quantization process when we store the invertible grayscale in 8-bit
per pixel form.

Once the color encoding and restoration scheme is trained, we
can apply it to arbitrary color images without any restriction
on the visual content. To validate our model, we tested it over
3,000 natural images of different genre and content. Qualitative
and quantitative evaluations, as well as user study, are conducted.
Convincing statistics is obtained in all experiments. For instance,
when comparing the restored color images to the original input,
we achieve very high average SSIM of 0.9681 and average PSNR of
36.02 dB. Our contributions can be summarized as follows:

e We propose an innovative method to convert a color image to
grayscale, that can be later inverted back to its color version,
whenever necessary.

e We propose to formulate the color encoding scheme in a
neural network framework, so as to provide an effective and
efficient solution to generate invertible grayscale.

While our current method is tailored for the invertible color-to-
gray problem, the general neural network framework proposed can
be applied to many other applications that require an inversion
ability. The information to be encoded in the resultant images can
be color, or any other information. The framework serves to encode
the information in a visually unobvious manner while the encoded
information is restorable through the decoding network.

2 RELATED WORKS
2.1 Decolorization

Decolorization methods convert color images to grayscale. Note
that there is no absolute standard for creating grayscale, because the
visible light is a spectral quantity which is always colorful in the real
world. Different applications utilize different criteria or standards in
generating grayscale. Early grayscale generation serves the purpose
of mimicking early monochrome photography that is unable to
capture and present colors. The simplest and most commonly
used color-to-gray method is to regard the lightness/luminance
channel (either in CIELab color space or YUV/YIQ color space) of
the color image as the gray value in the target grayscale image.
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However, this naive approach not only leads to color information
loss, but sometimes also causes contrast or structural information
loss when neighboring regions have similar gray values. To resolve
this problem, various decolorization methods have been proposed
to preserve the color contrast during the color-to-gray conversion.
They can be classified into two types: local decolorization and global
decolorization.

The local decolorization methods enhance the contrast in grays-
cale based on local chrominance edges. Bala et al. [2004] proposed to
add high-frequency chromatic components to the lightness channel
for preserving the chrominance edge information. Neumann et
al. [2007] proposed a consistent gradient field notion based on local
color and luminance contrast. Lu et al. [2012] proposed to find
suitable color orders with respect to the visual context by optimizing
a bimodal distribution. The global decolorization methods intend
to preserve both local and non-local contrast via a global color
mapping [Gooch et al. 2005; Kim et al. 2009; Kuk et al. 2010; Song et al.
2010]. Gooch et al. [2005] proposed to optimize a mapping rule based
on a contrast reference map via a linear model. Kuk et al. [2010]
extended Gooch’s work by taking both local and global contrast
into account. Liu et al. [2015] proposed to compute the gradient
correlation between the color input and the targeted grayscale image.
Although our method also tries to preserve the contrast during the
invertible grayscale generation, none of the above methods aims at
generating grayscale images that can be restored to color version,
as we do.

2.2 Colorization

Colorization is a classic problem that aims at colorizing grayscale
images/videos, especially legacy photographs and footages. Due to
the color information loss, user-hints, such as user-scribbles or user-
selected reference images, are typically needed during the process.
The colorization process can be formulated as an optimization by
propagating user-guided colors based on low-level features [Huang
et al. 2005; Levin et al. 2004]. To increase the reliability of low-level
features, more advanced similarity metrics [Luan et al. 2007; Qu
et al. 2006] and long-range connection [An and Pellacini 2008; Xu
et al. 2009] have also been explored. Global color consistency can be
achieved by enforcing the global color theme [Wang et al. 2010] or
color palette [Chang et al. 2015]. However, these methods require
extensive manual intervention to achieve good colorization results.
User-provided reference images can also be used for guiding the
colorization [Charpiat et al. 2008; Chia et al. 2011; Irony et al. 2005;
Liu et al. 2008; Welsh et al. 2002]. However, reference images must
be carefully selected in order to obtain good results. This is also
time-consuming and sometimes similar-content reference image
may not be available.

Instead of providing user-hints, recently, deep-learning appro-
aches are explored to learn the correlation of color and textu-
res/objects, so that they can automatically colorize grayscale images
with high and stable performance [Cheng et al. 2015; Deshpande
et al. 2015; Larsson et al. 2016; Zhang et al. 2016]. However, these
methods may not work well for images without sufficient textures or
obvious objects. In order for users to control or provide hints, more
CNN-based colorization methods have been proposed to accept
user-interaction [Sangkloy et al. 2017; Zhang et al. 2017]. Tailored
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Fig. 2. System overview and network architectures. In both encoding and decoding networks, k denotes the kernel size. n denotes the number of feature
maps. s denotes the stride in each convolutional layer. "ES" indicates elementwise addition.

for image compression, Baig and Torresani [2017] proposed to store
the approximate color information of an image as meta-data, which
can be further used for restoring the color image. Nevertheless,
none of the existing colorization methods can guarantee to recover
the original colors. In sharp comparison, our invertible grayscale
encodes the color information so that the restoration of the original
colors becomes feasible. Note that, although we also utilize a CNN in
our method, it serves the color encoding purpose that is completely
different from existing colorization works.

3 OVERVIEW

Our system is overviewed in Fig. 2, which consists of an encoding
neural network E and a decoding neural network D. The encoding
neural network E converts any color image in RGB color space
to a grayscale image. Conversely, the decoding neural network D
converts any grayscale image to a color image in RGB space. The
network architecture of E and D is detailed in Section 4.

In the training phase, for each color image I in the training dataset,
we convert it into a grayscale image G with the encoder E, and then
restore a color image R from G with the decoder D. That is,

G E(D) (1)
R D(G) = D(EQ)). )

By laying requirements on both the grayscale image G and the
restored color image R, and hence the encoder E and the decoder
D, we jointly train E and D. In particular, we design three losses:
invertibility loss Ly (E, D) that ensures I and R to be similar,
grayscale conformity loss Lc(E) that ensures G to look like a
grayscale image and conform to I, and quantization loss Lo(E)
that encourages the pixel values of G to be integers. The overall
loss function £(E, D) is then formulated as a weighted sum of these
three losses:

L(E.D) = Ly(E,D) + 01.Lc(E) + w2 Lo(E) ®)

The detailed design of the losses will be discussed in Section 5. The
training scheme is detailed in Section 6. The weighting parameters

a a
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(a) Input (b) Without down/up conv. (c) With down/up conv.

Fig. 3. (a) Input color image. (b) Without using down/up convolution
structure, significant artifacts can be observed on the wall in the restored
color image. (c) With down/up convolution structure, the restored color
image successfully maintains the appearance of the input image.

are also discussed in Section 6 since the weights are different in
different training stages.

In the testing phase, given any color input I, we first convert it
into a grayscale image G = E(I). Note that each pixel of G is actually
a 32-bit floating-point value. So we have to quantize G to an 8-bit
grayscale image G, so that all pixel values in G are integers in [0, 255].
The restored color image R can be obtained via R = D(G). Results
and indepth validation experiments are presented in Section 7.

4 NETWORK ARCHITECTURE

As mentioned above, our system consists of an encoding network
converting color input to grayscale, and a decoding network
converting grayscale to color. At first glance, it looks like a
cyclic conversion between color and grayscale images, and seems
to be solveable using CycleGAN [Zhu et al. 2017]. However,
CycleGAN only guarantees that the output images conform to the
corresponding image classes (either grayscale or color). Due to the
unsupervised nature of CycleGAN, there is no guarantee that the
generated grayscale conforms to the corresponding input color
image as required in our case. Our encoding-and-decoding frame-
work is also close to the hash autoencoder [Carreira-Perpinan and
Raziperchikolaei 2015; En et al. 2017]. However, though the existing
autoencoders may achieve invertibility, none of them imposes any
requirement on the visual appearance of the latent representation.
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(b) Without conformity

(c) Without lightness

In our case, we require the latent sparse representation to be
visualizable as a grayscale image that conforms to the color input.

The detailed architectures of our proposed encoding and decoding
networks are illustrated in Fig. 2, with key parameters annotated
below each block. The encoding network contains two down-
convolution blocks, two up-convolution blocks, eight residual
blocks [He et al. 2016], and two flat convolution layers. Here, the
down/up convolution structure is used to increase the receptive field
for feature extraction. The decoding network contains eight residual
blocks and one flat convolution layer. We only adopt down/up-
convolution structure in the encoding network because richer
neighborhood context is needed for encoding color information
in grayscale, while decoding the grayscale back to color is relatively
local. Along with using the down/up-convolution structure, we
also adopt the skipping strategy [Ronneberger et al. 2015] in
the encoding network to suppress the blurring artifacts during
downscaling/upscaling. Fig. 3 presents a comparison between not
using and using down/up-convolution structure. As presented in
Fig. 3(b), significant artifacts can be observed on the wall without
using down/up-convolution structure.

5 LOSS FUNCTION

As in Eq. 3, our loss function consists of three terms: invertibility
loss Ly (E, D), grayscale conformity loss L¢(E) and quantization
loss Lo(E).

5.1 Invertibility Loss

Given an input color image I and the restored color output R =
D(E(I)), the invertibility loss Ly (E, D) ensures that I and R are as
similar as possible. We simply utilize a per-pixel mean square error
(MSE) to regularize this similarity:

Ly(E,D) = Erer{lIR - I||2} (4)

Here, || - ||2 denotes the Ly norm (MSE), and E denotes the average
operator over all images in the training dataset 7. As R is generated
via both the encoder E and the decoder D, this loss effectively
imposes constraints over the parameters of both E and D.

5.2 Grayscale Conformity Loss

Given the color input I and the converted grayscale G = E(I),
the conformity loss L¢(E) ensures that the grayscale image G
visually conforms to the original color input I, and matches the
general expectation on how a grayscale image looks like. Here, we
emphasize again that there exists no absolute standard of grayscale
conversion. Simple grayscale representation adopts the L channel
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(d) Without constrast
Fig. 4. Importance of grayscale conformity loss and each of its sub-terms.

(f) Full loss

(e) Without structure

in the CIE Lab color space or the Y channel in the YIQ/YUYV color
space as grayscale, which does not emphasize preserving regional
contrast. Some decolorization methods [Liu et al. 2015; Lu et al. 2012]
adopt more sophisticated computation to preserve the contrast. In
our case, our primary goal is to encode the color information in
the form of unobvious pattern. We need a relatively relaxed form
as our grayscale conformity loss, instead of solely constraining the
MSE. In particular, our grayscale conformity loss consists of three
sub-terms: lightness loss, contrast loss, and local structure loss.

5.2.1 Lightness Loss. The lightness loss ensures that the gene-
rated grayscale image G visually conforms to the luminance of
I. That is, bright regions remain bright, and dark regions remain
dark. However, we need to leave a room for color encoding. This is
achieved by permitting a grayness difference 6 in the formulation.
In particular, the lightness preservation loss £;(E) is regarded as 0 if
the difference is smaller than a threshold 6:

€1(E) = Erer {| max{|G — L(I)| = Mg, Mo}|l1} ®)

Here, || - || denotes the L; norm. | - | is an element-wise absolute
value operator. L(I) denotes the luminance channel of I. max{-, -}
is an element-wise maximum operator between two matrices with
the same size. My/M) is a matrix with the same size as G where
every element in Mg/M is equal to 6/0. With pixel values in I and G
defined in [0, 255], we empirically set 8 = 70 in all our experiments.
Note that this requirement is extremely loose to allow a larger
searching space.

5.2.2 Contrast Loss. The contrast loss aims at preserving the
global contrast of input color I in the resultant grayscale G. We
find that high-level features defined in the pretrained VGG-19
network [Simonyan and Zisserman 2014] work extremely well in
representing the global contrast. Therefore, we define our contrast
loss £¢(E) as the similarity between the corresponding VGG layers
of I and G as

Ce(E) = Ere r{|IVGGi(G) = VGG (L)l |1 } (6)

Here, VGG (+) denotes the k-th VGG layer extracted from an image.
In particular, we use the layer ‘conv4_4’ of G and I to enforce the
similarity of global contrast. c is the color channel index of I, taking
values in {1, 2, 3}.

5.2.3 Local Structure Loss. The last sub-loss aims at preserving
the local structure of the color input I in the grayscale G. That is, if
a pixel is locally smooth in the input, it should remain smooth in
the generated grayscale image. This can prevent the color-encoding
pattern in the grayscale image being apparent. To measure the
structure similarity, we adopt the local variation which is simple



but effective. So the local structure loss £5(E) can be formulated as

€s(E) = Erer{l[Var(G) — Var(I))|l1 } ™)

where Var(+) is a function that calculates the mean of local variation
of an image.

5.24 Combined Loss. The overall grayscale conformity loss is a
weighted sum of the above three sub-terms:

Lc(E) = 6(E) + ale(E) + pts(E) ®)

where o and f§ are weighting factors. We empirically set & = 177 to
balance the magnitude difference between the convolutional feature
space and the image pixel space. The weight f = 0.5 is used to
balance between the local structure loss and other losses. In fact, we
found that the training result is not sensitive to the hyper parameters.
Therefore, fixed values are adopted throughout all experiments.

Fig. 4 shows the importance of the grayscale conformity loss and
each sub-term. Without the grayscale conformity loss, the resultant
grayscale in (b) does not look like a grayscale image of the color
input. If we drop the lightness term, the contrast may be flipped as
shown on the petals in (c). If the global contrast term is dropped,
the overall contrast of the color input cannot be preserved in the
grayscale, leading to a “gray” result as shown in (d). If we drop
the local structure term, the model cannot effectively suppress
the color-encoding pattern as exhibited in (e) (compared to the
corresponding blow-up in (f)). Only when all terms are included,
a visually appealing grayscale, without obvious color encoding
pattern, is obtained in (f).

5.3 Quantization Loss

The precision of images (grayscale or color) we discussed so far is 32-
bit floating-point. In real practices, each pixel in a grayscale image is
stored in an 8-bit unsigned integer precision. This quantization error
may lead to artifacts when the quantized grayscale is restored to its
color version, as demonstrated in Fig. 5(a). Therefore, we propose to
penalize all non-integer pixel values via the following quantization
loss:

Lo(®) = (I min|G — Mal} o) ©)

where min{-} is an element-wise minimum operator among a set
of matrices with the same size. M is a matrix with the same size
as G where every element in M is equal to d. By incorporating
the quantization loss, we can suppress the artifact introduced by
quantization and achieve significantly better results (Fig. 5(b)).

6 TRAINING
6.1 Training Data

Since the groundtruth of the output is exactly the same as the input,
our system can actually take any color image I and use (I,I) as
the training pair for supervised training. In our experiment, we use
the VOC2012 (Visual Object Classes Challenge 2012) dataset [Eve-
ringham et al. 2012] for training and testing. There are 17,125 color
images in the dataset in total. Among them, 13,758 are used for
training while the rest images are used for testing. Even though our
data size is not very large, experiments show that we can achieve
extremely high-quality restoration results (average SSIM of 0.9681
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Fig. 5. Importance of quantization loss. The top row shows the restored
color images, and the bottom row shows the pixel-wise color difference map.
The values of the difference map are in [0, 32]. (a) Without quantization loss,
apparent color change can be observed in the sky. (b) & (c) With quantization
loss, artifacts can be successfully suppressed in both 1-stage and 2-stage
training, while 2-stage training leads to slightly better result.

Table 1. Hyper-parameters of our two-stage training scheme.

Stage w1 w2 Epochs
1 1.0 0.0 90
I 0.5 10.0 30

and average PSNR of 36.02 dB). The performance of our system
may be further improved with a larger dataset, but very slightly. All
input images are cropped and resized to 256 X 256 resolution during
training, but images of arbitrary resolutions can be processed during
the testing.

6.2 Two-stage Training

Our model is trained end-to-end with the loss function defined in
Eq. 3. We may train the network from scratch (one-stage scheme),
and the training loss against actual running time is plotted as the
green curve in Fig. 6. However, the quantization loss is a piecewise
function which is both difficult to train and occupying large memory
space. Hence, instead of training from scratch, we also propose a two-
stage training scheme to accelerate the training and reduce memory
consumption. In the first stage, we only consider the invertibility
loss and grayscale conformity loss. In the second stage, all three
losses are accounted. To achieve this, we set wy in Eq. 3 to 0 to omit
the quantization loss in the first 90 epochs (the first stage), and set
it to a relatively larger value to mainly focus on the quantization
loss in the subsequent 30 epochs (the second stage). Weights « and
B in Eq. 8 remain unchanged in both stages. The detailed parameter
values are tabulated in Table 1. The training loss of the two-stage
scheme against actual running time is plotted as the red curve in
Fig. 6. Each dot indicates an epoch. The two-stage training converges
much faster (in actual time) than that of the one-stage training. Even
though the number of epochs are the same, the two-stage training
consumes less amount of total time. The restored color image trained
with the two-stage training is also slightly better than that of the
one-stage training (Fig. 9(b) & (c) and Table 2).
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246:6  + Menghan XIA, Xueting LIU, and Tien-Tsin WONG

Loss against Training Time
T T

-0.6 T T T T
\ -+ 1-stage scheme
08H —- ge scheme| |
Ak 4
»
@
o~ 4
-
18 L L L L L L
0 50 100 150 200 250 300 350

Time / kilosecond
Fig. 6. Loss curves of our 2-stage training and training from scratch (1-stage
training). We plot the whole training process from epoch 1 to 120 for both
loss curves (the y-axis is on a logarithmic scale). We can observe that our
two-stage training is much faster than training from scratch.

During training, the learning rate is initialized to 0.0002, and then
linearly decreased to 0.000002 through the 120 epochs. Our model
is optimized by the ADAM solver [Kingma and Ba 2014].

7 RESULTS AND DISCUSSION
7.1 Qualitative Evaluation

We evaluated our method on images of various genre and content,
convincing results are obtained in all cases. Fig. 14 showcases
the invertible grayscale and restored color images of multiple
categories, from portrait closeup to faraway scenery, and from rural
to metropolitan. For each example, we show the original input
(the first column), the invertible grayscale with 8-bit quantization
(the second column), the color image restored from the quantized
grayscale, and the color-coded difference map (the fourth column).
The PSNR and SSIM between the restored and original color images
are annotated in the restored color images. The mean absolute error
(MAE) between the restored and original color images are annotated
in the difference maps. Readers are encouraged to zoom in the
images to inspect the fine details. The generated grayscale conforms
to the color input and resembles what we normally expect for a
grayscale image. Unless substantially zooming into the grayscale
image, it is hard to recognize the unobvious color-encoding pattern.
For busy regions, it is even harder to recognize any pattern. The
restored color images are almost the same with the original color
input. More examples can be found in the supplementary materials.

7.1.1  Color Restoration vs. Colorization. We first compare our
results to that from the state-of-the-art CNN-based colorization
method [Zhang et al. 2016] in Fig. 7. However, we have to emphasize
that this comparison may not be very appropriate. The input
grayscale image fed to Zhang method is the L channel of the
color input, while the grayscale image fed to our method is the
invertible grayscale. Since the colorization method heavily relies on
the correlation of color and natural textures, it generally fails when
the image lacks of textures as in Fig. 7(b). In sharp comparison, our
method successfully restores the original colors using the encoded
color information in the invertible grayscale (Fig. 7(c)). We further
compare our method to the state-of-the-art CNN-based interactive
colorization method [Zhang et al. 2017] which colorizes grayscale
images based on user color hints. For each image, we generate results

ACM Transactions on Graphics, Vol. 37, No. 6, Article 246. Publication date: November 2018.

(a) Groundtruth

(b) [Zhang et al. 2016] (c) Ours

Fig. 7. Color restoration vs. colorization. (a) Input. (b) Colorized result
generated by colorizing the luminance channel of (a) with a CNN-based
colorization method [Zhang et al. 2016]. (c) Color image restored from our
invertible grayscale image.

Table 2. Quantitative evaluation on invertibility in terms of MAE, PSNR,
and SSIM. Lower MAE and higher PSNR/SSIM indicate better invertibility.

MAE PSNR SSIM
Mean Stddev|Mean Stddev| Mean Stddev
Zhang et al. 2017 6.682 1.584 |29.72 2.183 | 0.9375 0.03970

1-stage 3.345 1.089 |35.44 2.499 |0.9641 0.02271

2-stage 3.083 1.055 [36.02 2.666 [0.9681 0.02007

Mode

from their method with 500 randomly sampled color-hint points,
as suggested in their paper. Fig. 8 compares their results and ours.
Even with densely sampled color hints, their results may still have
noticeable differences from the groundtruth.

7.1.2  Color-Encoding Pattern. The side effect of encoding color
information in the invertible grayscale is the introduction of
unobvious pattern (Fig. 1 & 9). It is only observable when the image
is significantly zoomed in. In general, the pattern is very complex to
understand. It is very slight in bright regions and relatively apparent
in darker regions. It is also more obvious in smooth regions than
in busy regions, probably due to the fact that human visual system
is less sensitive to the change of busy visual content. We also find
that the scale of the generated pattern is independent of the input
resolution. Fig. 9 shows an example where the input (Fig. 9(a)) is
rescaled to two resolutions, 400x300 (Fig. 9(b)) and 1,600x1,200
(Fig. 9(c)). The high-resolution one better hides the color-encoding
pattern as further zooming in is needed to recognize the pattern.

If our model is fed with a grayscale input, no color-encoding
pattern is introduced in the invertible grayscale, as there is no
color information to encode. The bottom row of Fig. 10 compares
the effect of color and grayscale input to our system. Comparing
to the color input case in which pattern is introduced (Fig. 10(c)),
no pattern is observable in Fig. 10(f). The invertible grayscale is
almost the same as the input grayscale. In addition, our invertible
grayscale image (Fig. 10(b)) can better preserve the original contrast,
compared to the L image (Fig. 10(e)), due to our contrast loss. But
our method is inferior in terms of color-contrast preservation ability
when compared to existing contrast-preserving decolorization
methods [Gooch et al. 2005; Lu et al. 2012]. We have to emphasize,
the primary goal of our method is invertiblity, even though we can
preserve the global contrast to certain extent.

7.2 Quantitative Evaluation

We further evaluate our system quantitatively on the testing dataset
composed of 3,367 images. To measure the similarity between the
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(a) Ground truth (b) Grayscale with hints  (c) Colorized result  (d) Difference map of (c) (e) Invertible grayscale (f) Restored result

([zhang et al. 2017]) (Ours)

(g) Difference map of (f)

Fig. 8. Comparison to [Zhang et al. 2017]. (a) Input. (b) Grayscale image of (a) overlaid with 500 randomly sampled color-hint points. (c) Colorized results
generated by [Zhang et al. 2017] using the color-hint points as shown in (b). (d) Pixel-wise difference map between (c) and (a). (¢) Our generated grayscale
images of (a). (f) Color images restored from the invertible grayscale images as shown in (e) using our method. (g) Pixel-wise difference map between (f) and
(a). The PSNR/SSIM with respective to the groundtruth are labelled in the colorization results. The difference maps (d)&(g) are plotted in the scale of [0, 32].

The corresponding MAE is labelled in each difference map.

(a) Input

(b) Resolution: 300 x 400 (c) Resolution: 1200 x 1600
Fig. 9. The scale of the generated pattern is independent of the resolution
of the input. The high-resolution image can better hide the color-encoding
pattern as further zooming in is needed in order to recognize the pattern.

restored and original color images, we adopt three metrics: mean
absolute error (MAE), PSNR, and SSIM [Wang et al. 2004], which
are the average values of corresponding metrics computed in RGB
channels. Similarly, we also compare with [Zhang et al. 2017] where
500 randomly sampled color-hint points are used for each image.
The statistics is tabulated in Table 2. For the MAE metric, the value is
in the range of [0,255], lower values indicate better similarity, while
0 indicates exactly the same. For PSNR and SSIM metrics, higher
values indicate better similarity, where co and 1 indicate the best,
respectively. Compared to [Zhang et al. 2017], our method achieves
amuch lower MAE and much higher scores for both PSNR and SSIM
metrics, which means our restored color images are significantly
closer to the groundtruth than the colorized ones.

There is no standard way to measure the conformity of a grayscale
image to the original color image. We measure the structure
similarity between the generated grayscale and the L channel of the
color input using the structure term defined in SSIM [Wang et al.
2004]. The rationale we take the L channel as groundtruth is because
it mostly captures the structural information of the color input. In

(e) Input (f) Invertible grayscale  (g) Blow-up of (f) (h) Restored image

Fig. 10. Comparison between color and grayscale input. Our system
generally introduces unobvious pattern in the generated grayscale as the
side effect of encoding color information, as shown in (c). However, for
grayscale input, no color-encoding pattern is introduced since there is no

color information to encode, as shown in (g).

the range of [-1, 1], the average and standard deviation are 0.9799
and 0.008830, respectively. This shows that our invertible grayscale
well preserves the structure information of the input image.

7.3 User Study

We further conduct a user study to evaluate our system in terms of
human-perceived invertibility and grayscale conformity. We invited
25 participants, including 15 males and 10 females, aging from 18 to
33. We randomly select 14 example images of different categories
for the user study. The detailed questionnaire and example images
can be found in the supplementary material.

7.3.1 Invertibility. To evaluate how well our invertible grayscale
preserves the original colors, the input and restored color image are
shown side-by-side to the participants. Then we ask each participant
to rate the similarity between the two images in the scale of 0 to
5, with 0 being completely different and 5 being exactly the same.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 246. Publication date: November 2018.
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- 0
Luminance Our grayscale  Both Luminance  Our grayscale Restored color image

(a) Grayscale preference (b) Grayscale conformity (c) Invertibility
Fig. 11. Statistic result of the user study.
Table 3. Timing statistics (in seconds).
Image Size CPU only With GPU
Encoding Decoding | Encoding Decoding
256 X 256 0.939 0.825 0.034 0.029
512 X 512 3.717 3.284 0.113 0.086
1024 X 1024 15.117 13.133 0.384 0.321

The result is shown in Fig. 11(c). Most participants think that our
restored color image is very similar to the input image.

7.3.2  Grayscale Conformity. To evaluate how well our invertible
grayscale conforms to the color input, we side-by-side show the
color input, L channel of the input, and our invertible grayscale
image to the user. Note that the positions of the two grayscale
images, luminance image and our invertible grayscale, are randomly
interchanged to avoid bias. We then ask the participants to choose
the grayscale that better represents the original color input. We
also allow them to choose both if they think both grayscale images
are similar. Fig. 11(a) shows the results. In general, our invertible
grayscale is more preferred since it better preserves the image
contrast. We further ask the participants to give a rating on the
similarity of each grayscale comparing to the input from 0 to 5, with
0 being completely different and 5 being exactly the same. Fig. 11(b)
shows the results. Both grayscale images receive high ratings while
ours is slightly better than the luminance image.

7.4 Timing Statistics

We implement our model using TensorFlow [Abadi et al. 2016] with
Python. All experiments were performed on a PC with Intel Xeon
E5-1630 v4 3.70GHz CPU and GeForce GTX 980 Ti GPU. We evaluate
the running time of both the encoding and decoding networks for
images of different resolutions with and without using GPU. For
each image resolution, we run the experiment for 100 times and
take their average. The timing statistics is tabulated in Table 3. In
general, the encoding takes more time than the decoding, since
the encoding network consists of more convolution layers and
involves more computation. With GPU, our method achieves real-
time performance for 512 X 512-resolution images.

7.5 Limitations

Since our invertible grayscale system encodes the original color
information as unobvious patterns in the grayscale, the quality of
the restored color image highly depends on the accuracy of these
patterns. Therefore, the generated invertible grayscale image is not
resistant to general image manipulations, such as image rotating,
image resizing, and JPEG compression, since the image manipulation

ACM Transactions on Graphics, Vol. 37, No. 6, Article 246. Publication date: November 2018.

(c) Middle-quality JPEG

(b) High-quality JPEG

(a) No JPEG

Fig. 12. Limitation w.r.t. JPEG compression. Note that we present the
restored color image here while JPEG compression is applied on the
grayscale image. (a) Without JPEG compression. (b) With high-quality
JPEG compression. (c) With middle-quality JPEG compression.

operators may ruin the unobvious color-encoding patterns. Fig. 12
shows the restored color images when the invertible grayscale image
is stored losslessly (Fig. 12(a)), with high-quality JPEG compression
(Fig. 12(b)), and with mid-quality JPEG compression (Fig. 12(c)).
Lowering the compression quality of the grayscale image further
damages the color-encoding patterns, and hence lowers the quality
of the restored color image. To strengthen the robustness to certain
image manipulations, a potential solution might be incorporating
the manipulations in the model during training, which is also a
potential direction of our future work.

Nevertheless, our current system does tolerate certain degree
image contamination, as demonstrated in our supplementary video.
In this video, we first generated the invertible grayscale images
using our encoding network and printed them on regular A4
paper. Then we took photographs of them with a handheld camera
equipped on a PDA. The acquired grayscale images may contain
noise, blurriness, lighting variation, and even perspective distortion.
Finally, we restored the color images from these noise-contaminated
grayscale images using our decoding network. As demonstrated in
the supplementary video as well as in Fig. 13, convincing results can
still be obtained, although the restored color may slightly deviate
from the groundtruth.

8 CONCLUSION

In this paper, we proposed an innovative method to convert a color
image to grayscale, that can be later inverted back to its color
version. The key idea is to encode the color information into the
synthesized grayscale. We proposed to learn and embed the color-
encoding scheme in a convolutional neural network. Given arbitrary
color input, the learned network can generate visually pleasant
grayscale images and obtain the color-restored images that are
hardly differentiable from the original color input. All quantitative
experimental results and user statistics support the validity of our
method.

The proposed method is designed for still pictures. Although
one can apply it to videos in a per-frame generation manner,
the current model may not be able to guarantee the temporal
consistency. Further study on such temporal consistency is needed.
Another direction is on its noise resistance. Currently, it is not
resistant to error introduced by lossy image compression such as
JPEG. One potential solution is to model the compression error
into the neural networks, so that the trained model can learn
to encode color information in a more noise-resistant fashion.
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Printing, lighting,
photographing,

rectifying,
cropping&resizing

(a) Input (b) Invertible grayscale

(c) Reacquired grayscale (d) Restored image

Fig. 13. Tolerance to contamination. We printed our generated grayscale (b) on paper, took a photograph of it (c), and finally restored the color image (d). From
(b) to (c), there can be a series of contamination-inducing operations, including printing, lighting, photographing, image rectification, cropping and resizing.

While our current method is tailored for the invertible color-to-
gray problem, the proposed general framework can be applied to
many other applications requiring information encoding in images.
One immediate extension is to convert color/grayscale image to
invertible halftone which is more suitable for printing purposes.
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Input color image Invertible grayscale Restored color image Differece map

Fig. 14. Result gallery. The PSNR/SSIM with respective to the groundtruth are annotated in the restored color images. The difference maps between the
restored color images and the groundtruth are illustrated in the range [0, 32]. The MAE with respective to the groundtruth are annotated in the difference

maps.
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