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(a) Target grayscale image (b) Reference images from Internet (c) Colorized result

Figure 1: Colorization of St. Basil’s Cathedral: To colorize the target image in (a), we utilize the references searched from the Internet in
(b). After recovering the intrinsic color of the target, we colorize to obtain the result in (c) without the influence of illumination and dynamic
objects in the references.

Abstract
In this paper, we present an example-based colorization technique
robust to illumination differences between grayscale target and
color reference images. To achieve this goal, our method per-
forms color transfer in an illumination-independent domain that
is relatively free of shadows and highlights. It first recovers an
illumination-independent intrinsic reflectance image of the target
scene from multiple color references obtained by web search. The
reference images from the web search may be taken from different
vantage points, under different illumination conditions, and with
different cameras. Grayscale versions of these reference images are
then used in decomposing the grayscale target image into its in-
trinsic reflectance and illumination components. We transfer color
from the color reflectance image to the grayscale reflectance image,
and obtain the final result by relighting with the illumination com-
ponent of the target image. We demonstrate via several examples
that our method generates results with excellent color consistency.

Keywords: colorization, intrinsic images

1 Introduction

The need to colorize classical black-and-white (grayscale) movies
and photographs has driven several works in recent years. A
state-of-the-art technique performs this task by propagating user-
provided color scribbles on the grayscale target image to the rest of
the image using a color optimization process [Levin et al. 2004].
Scribbling, however, can be tedious for images with complex de-
tails, and requires some skill to obtain natural-looking results.
In [Irony et al. 2005], a method is presented for automatically gen-
erating such scribbles from an example image provided by the user.

Although the use of an example image can save considerable labor,
the quality of the result depends heavily on the choice of example.
In particular, significant colorization errors may arise when the il-
lumination condition of a reference image differs from that of the
target. These errors arise from the basic assumption in previous
colorization works that similarities (or differences) in grayscale in-
tensities indicate similarities (or differences) in colors. Intensity
disparities due to differences in shadows and highlights between a
reference and a target image can therefore mislead colorization al-
gorithms. In this paper, we propose a technique called “intrinsic
colorization” to address this problem of illumination inconsistency
between target and reference images.

The key idea of our method is to reduce the effects of illumina-
tion in the target and reference images prior to color transfer, and
then reintroduce the illumination of the target image in the final re-
sult. To compute an illumination-independent reference image, we
perform intrinsic image decomposition, which separates an image
into a reflectance (albedo) component and an illumination (shad-
ing) component. Intrinsic image estimation is an ill-posed problem,
since at each scene point there are two unknowns (reflectance and
illumination) for each image measurement. So in a scheme similar



to [Weiss 2001], we utilize multiple images of the target scene to
obtain a more reliable decomposition. Using grayscale versions of
the reference images together with the grayscale target image, we
also compute the intrinsic images of the target photograph. Colors
from the color reference reflectance image are then transferred to
the grayscale target reflectance image at pixels with high confidence
in the reference decomposition result. These transferred reflectance
colors are used as scribbles that are propagated using the method
in [Levin et al. 2004], and then the illumination image of the target
photograph is factored back in to generate the colorization result.

Fig. 1(c) shows our colorization result using the reference images
shown in (b). Note that our method can correctly colorize the im-
age without interference from illumination effects such as shadow
and specular highlight in the target grayscale image. A unique ad-
vantage of our technique is its ability to colorize old photographs
taken many years ago, even though the photographs are noise-
contaminated and of poor quality.

The wide availability of online images provides a base for our
method to obtain multiple reference images of a target scene. With
several color references registered to the target grayscale image, our
system can compute intrinsic images more reliably. Although dif-
ferences in vantage points between reference images and the target
image may allow only partial registration, we present a technique
to jointly use all of the available information for intrinsic image
decomposition. The use of web resources makes the proposed sys-
tem especially convenient for automating the colorization of well-
known monuments and rigid structures/buildings. We demonstrate
its effectiveness via multiple examples.

2 Previous Work
Existing work on colorization can be roughly divided into scribble-
based colorization and example-based colorization.

Scribble-based colorization This class of techniques performs
colorization based on scribbles placed by users onto the target
grayscale image. The classical work, called color optimization, was
proposed by Levin et al. [2004]. It optimizes the color of all image
pixels with the scribbles as constraints. Later, Huang et al. [2005]
prevented the color from bleeding over object boundaries by us-
ing adaptive edge detection. Yatziv et al. [2006] proposed a faster
scribble-based color optimization technique by chrominance blend-
ing. However, these methods all require intensive user intervention,
especially when the image contains complex structures or is full
of textures. To avoid the burden of scribbling over images with
complex textures, Qu et al. [2006] and Luan et al. [2007] both em-
ployed texture continuity to colorize pattern-intensive manga and
natural images, respectively.

Example-based colorization Another class of techniques au-
tomates the colorization process by providing an example im-
age. It does not rely on the user’s skill or experience to choose
suitable colors for a convincing colorization. Inspired by image
analogies [Hertzmann et al. 2001] and the color transfer technique
of [Reinhard et al. 2001], Welsh et al. [2002] proposed a pixel-based
approach to colorize an image by matching swatches between the
target grayscale and color reference images. This work was later
improved by Irony et al. [2005]. Its basic idea is that regions with
similar textures are colorized with similar colors. A segmented ref-
erence image is needed for the purpose of texture matching. The
texture matching technique used by Irony et al. was later improved
by Schnitman et al. [2006].

Our work can be classified as example-based colorization. Instead
of making use of a single reference image, our method utilizes mul-
tiple reference images from the Internet for colorization in order to

avoid problems arising from illumination differences. Approaches
based on Internet images have recently been used for different ap-
plications ([Snavely et al. 2006], [Hays and Efros 2007], [Lalonde
et al. 2007]). We regard Irony’s method [2005] as the state-of-the-
art technique in example-based colorization and compare our work
with theirs in this paper. Note that existing techniques do not ac-
count for the illumination, which may severely degrade the quality
of colorization.

3 Illumination Inconsistency
In example-based colorization, the goal is to give objects in the
grayscale image the same intrinsic colors of corresponding objects
in the reference image, while maintaining its own original illumi-
nation. This is a challenging task, since what we observe in images
is not the intrinsic reflectance colors, but the combined appearance
of reflectance and illumination, including shadows and highlights.
Transfer of image colors that include these illumination effects in-
stead of reflectance colors can therefore lead to erroneous coloriza-
tion results when the illumination is inconsistent between the refer-
ence and target images. We illustrate this problem in Fig. 2 where
two different methods are used to transfer color from the reference
image in (b) to the target image in (a). Note that the illumination
of (a) and (b) are substantially different even though the views are
exactly the same. In (e), we directly transfer the colors from (b)
to (a) in YUV color space by copying U and V channels. Even if
the reference and target images have the same pose, the inconsis-
tent illumination conditions introduce unnatural, false or missing
colors compared to the ground-truth color image in (d). In (f), we
apply Irony’s method with reference to the initial segmentation (c)
which is manually prepared based on the reference image (b). Al-
though the regions of missing colors are smaller than that of direct
color transfer in (e), the inconsistent illumination causes false tex-
ture matches and hence misleads the colorization into an erroneous
result.

(a) Target  image (b) Reference  image (c) Reference segmentation

(e) Direct color transfer (f) Result of Irony’s method(d) Ground-truth image

Figure 2: Discrepancies due to illumination inconsistency. Even
when the target image (a) and the reference image (b) are per-
fectly aligned, inconsistent illumination causes severe errors in the
colorization result of (e) and (f), where direct color transfer and
Irony’s method are applied, respectively. The ground-truth color
image in (d) is converted to grayscale to obtain the target image in
(a).

For accurate color transfer, the effect of illumination must first
be removed. One way to obtain the illumination-independent re-
flectance colors is to measure the bidirectional reflectance distribu-
tion function (BRDF) of points in the scene, which is clearly im-
practical for colorization applications. In this paper, we propose to
extract the intrinsic reflectance component of the scene from a set
of reference images using a decomposition method based on [Weiss
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Figure 3: An overview of intrinsic colorization.

2001]. This view-dependent intrinsic reflectance image is a mid-
level description to represent the underlying surface reflectance,
and it is invariant to illumination changes. Extracting intrinsic im-
ages is practical for colorization purposes since only a few refer-
ence images are sufficient for a reasonable decomposition. We ac-
quire these images from the vast collection of images available on
the web. Since we colorize the grayscale target with intrinsic re-
flectance colors recovered from reference images, we refer to our
method as intrinsic colorization.

4 Algorithm

The Internet serves as a huge distributed image database that con-
tains multiple images of a given scene captured at different times
and by different persons. It is an invaluable source of reference
images from which to determine intrinsic reflectance colors for col-
orization of grayscale images or old photographs. Given a target
grayscale image, our system searches for corresponding references
from the Internet by attempting to register online images to the tar-
get image. Those images that can be registered at least in part are
used as references for determining intrinsic colors.

An overview of our system is shown in Fig. 3. From N registered
reference images, we solve for a single reference reflectance image
of the target scene and N reference illumination images. Simi-
larly, from a set containing the target grayscale image and the N
reference images converted to grayscale, we can compute the tar-
get reflectance image and the target illumination image from the
grayscale target.

Conceptually, colors from the reference reflectance image can then
be transferred to the target reflectance image and combined with the
target illumination image to obtain the final result. However, since
this method may easily suffer from color bleeding (as explained
later), we use an alternative but equivalent approach. The color
reference reflectance image is first combined with the target illu-
mination image to generate color scribbles which are then used to
transfer color to the target image via color optimization. Details of
these algorithmic components are presented in the remainder of this
section.

4.1 Registration of Reference Images

Given images from the Internet or an image database, we first iden-
tify the set of reference images that can be used. Theoretically,
using a larger number of reference images with different illumi-
nations will lead to more statistically accurate computation of in-

trinsic images. We utilize SIFT [Lowe 2004], the state-of-the-art
feature matching algorithm, to detect and match corresponding fea-
tures in grayscale between each reference and the target images.
These corresponding features are then used to register each candi-
date reference image to the target image. The registration is done
using RANSAC [Fischler and Bolles 1987] to estimate an eight-
parameter homographic projection matrix P from the target to the
reference, which in turn is used to compute the re-projection error
for all the corresponding features in the candidate reference image.
The re-projection error for any feature point can be computed as

e(x′) = ‖x− P
−1(x′)‖ (1)

where x and x′ are the positions of matched points in the target and
reference images, respectively. If most of the feature points have
re-projection errors below a predefined threshold ε, we include this
image into the reference image set.

Registration can then be done in two ways depending on the quality
of feature matching. If most of the feature points in the reference
image have re-projection errors below a small threshold ε0, we per-
form global alignment using the estimated projection matrix P to
transform the entire image. Otherwise, if there are many feature
points with relatively large re-projection error, we perform triangle-
based warping. We first triangulate the target image based on the
feature points using Delaunay triangulation [Shewchuk 1996]. The
reference images are then automatically triangulated since a regis-
terable feature point in a reference image corresponds to another
feature point in the target image. Folding generally does not occur
in the triangulation of a reference image, since the target and refer-
ence images have consistent spatial relationship. Although folding
is possible when the distance between two connected feature points
is less than the matching error, this is generally avoided in our ap-
plication because of the constraint on re-projection errors. Thus,
with this texture-mapped mesh, we can warp the reference image
by transforming the feature points to their matches (from SIFT) in
the target image.

Some errors may exist in registration, depending on the selected
value of ε0, but a certain amount of registration error (i.e., up to
about 10 pixels) can be tolerated by our colorization technique
since these errors are not noticeable in color channels. Registra-
tion may be degraded by noise in either the target or the reference
images. For the cases, such as an old target photograph or a low-
quality reference image, the state-of-the-art image denoising algo-
rithm (e.g. [Portilla et al. 2002]) may be applied as a preprocess-
ing step. If denoising does not lead to satisfactory registration, the
matching results may be manually adjusted. Manual adjustment



(a) Target grayscale image

(b) Reference images

(c) Reference reflectance (d) Target reflectance

(e) Target illumination (f) Synthesized scribbles

(g) Ground-truth (h) Colorized result

Figure 4: Intrinsic colorization in action. (a) is the target grayscale image. (b) is a set of references acquired from the Internet. By
registering all references and solving for intrinsic images with partial registration, we obtain a reference reflectance image (c), a target
reflectance image (d), and a target illumination image (e). Color scribbles are automatically synthesized from (c) and (e), as shown in (f).
With color optimization, the result in (h) is obtained. The ground-truth image is shown in (g) for comparison.

may also be used to deal with false matches that result from signif-
icant illumination difference between the target and reference im-
ages. After registration, reference images with different resolutions
are automatically scaled to match the resolution of the target image.
Here, bilinear interpolation is used for scaling.

Once the reference images are registered, each reference may only
partially cover the target image. Hence, we associate to each refer-
ence image a binary mask Mi to identify pixels that can be regis-
tered to the target image. This will be used for the following intrin-
sic image decomposition.

4.2 Recovering Intrinsic Components

As proposed by Barrow and Tenenbaum [1978], intrinsic images
are a view-dependent, mid-level description of a scene. An image
is usually decomposed into a reflectance image and an illumination
image. Although not making explicit all the physical causes of im-
age features, intrinsic images are very useful for supporting a range
of visual inferences. Recovering the intrinsic image from one sin-
gle image remains a difficult problem since it is highly ill-posed.
Although certain progress has been made in single-image decom-
position (e.g., Land et al. [1971], Freeman et al. [1998], Tappen
et al. [2005]), significant improvement in accuracy and robustness,
and simplicity in implementation, can be obtained when multiple
images are taken into account. Weiss [2001] solved the decompo-
sition problem for a set of N images with the same view but under
different illumination conditions. With the assumption of constant
scene reflectance, this method outputs one reflectance image and N
illumination images. In our work, we adopt a modified version of
this technique that handles images with partial registration.

Deriving Intrinsic Images We first describe the basic approach
for intrinsic image decomposition in [Weiss 2001]. Consider N
images captured from the same view but under different illumina-
tion conditions. All N images are assumed to share the same re-
flectance. We denote the intrinsic reflectance image by R and each
intrinsic illumination image by Lk. Then each reference image can
be expressed by the following relationship:

Ik(p) = R(p)Lk(p). (2)

To linearize the equation, we take the logarithm on both sides of
this equation:

ik(p) = r(p) + lk(p) (3)

where logarithm counterparts are denoted in lowercase. To each
logarithmic image ik, we then apply derivative filters fx(p) and
fy(p) along the x and y directions and get the corresponding fil-
tered output images:

ox(p, k) = fx(p) ? ik(p) (4)

oy(p, k) = fy(p) ? ik(p) (5)

Based on the property that most natural images have sparse deriva-
tive filter output, we obtain a maximum likelihood estimate of the
filtered reflectance derivative images by taking the median values
of the filtered output images:

r̂x(p) = mediank{ox(p, k)|k = 1..N} (6)

r̂y(p) = mediank{oy(p, k)|k = 1..N} (7)

To obtain r, we solve the following Poisson equation with zero
boundary condition:

4r(p) = ∇ · [r̂x(p), r̂y(p)]. (8)

Substituting r into Eq. 3 gives the logarithmic illumination lk for
each reference image. Finally, inverse logarithm (exponential) is
computed to obtain the reflectance image R and the N correspond-
ing illumination images Lk.

Intrinsic Images with Partial Registration In [Weiss 2001], all
N images are assumed to be of the same view. Our application
differs in that each reference image may be registered to only part
of the target image. To solve this partial registration problem, we
propose a labeling scheme. With the N mask images obtained in
our registration process, we form a label set L(p) for each pixel p
in the target image that identifies all reference images whose partial
registration includes p. The size of label set L(p) may vary among



different pixels, and is determined by the coverage of different mask
images. With these label sets, we modify Eqs. 6 and 7 to

r̂x(p) = mediank{ox(p, k)|k ∈ L(p)} (9)

r̂y(p) = mediank{oy(p, k)|k ∈ L(p)} (10)

and then evaluate with the same zero-boundary condition.

Illumination Separation Before Colorization Our core contri-
bution is to reduce much of the illumination influence before col-
orization, so that our colorization is not degraded by differences
in illumination conditions. To achieve this, we first obtain the
illumination-independent color reference reflectance Rr and the
illumination-independent grayscale target reflectance Tr .

To compute the reference reflectance image Rr , we take the N reg-
istered color references as input and perform our intrinsic image
computation with partial registration. This returns a single refer-
ence reflectance image Rr , and N corresponding reference illu-
mination images which are not used in our application. Fig. 4(c)
shows an example of the reference reflectance image computed
from the reference images in Fig. 4(b). The target reflectance image
Tr is computed in the same manner except using grayscale version
of the reference images together with the grayscale target image.
Decomposition then yields N + 1 illumination images. Of these,
only the one that corresponds to the target image is retained, and
we denote this grayscale target illumination image as Tl. Examples
of Tr and Tl are shown in Fig. 4(d) and (e), respectively. By trans-
ferring colors from Rr to Tr , we colorize the target image without
illumination. Recombining the colorized target reflectance with the
illumination component of the target grayscale illumination image
Tl, we finally obtain the colorized target image with illumination.

Note that solving the intrinsic components avoids not only the in-
fluence of illumination, but also the influence of dynamic occluders
in the reference images, since these occluders are essentially “dy-
namic illumination” that can be removed in the maximum likeli-
hood estimate in Eqs. 9 and 10. This property is demonstrated in
Fig. 1, where people standing in front of St. Basil’s Cathedral in the
reference images do not affect our colorization result. The same
property also reduces the influence of noise in both reference and
target images, since the same amount of noise does not in general
persistently appear at the same location in different reference and
target images. We examine this issue in Fig. 5, where (b) and (g)
show close-ups of the recovered target reflectance image of Qinian
Palace and the reference reflectance image of St. Basil’s Cathe-
dral in Fig. 9 (a) and Fig. 1, respectively. Although the target or
some of the reference images are noisy, both of the recovered in-
trinsic reflectance images are smooth. However, noise may still ex-
ist in the target illumination if the target image is noisy, as demon-
strated in Fig. 5(c). Therefore, our colorized image retains the same
amount of noise as the target image, as shown in Fig. 9 (a). Sim-
ilarly, the same amount of degradation is retained in the colorized
result, if the target image is of poor quality or low dynamic range.
On the other hand, if a small proportion of the reference images
are noise-contaminated, and of poor quality or low dynamic range,
these degradations can be regarded as “dynamic illumination” and
will not influence the results, as demonstrated in Fig. 5(d) to (g).

4.3 Colorization

With the three intrinsic images (Rr , Tr , and Tl) in hand, we can
perform intrinsic colorization. Assuming white illumination in the
target image, this could be done by transferring color from the ref-
erence reflectance Rr to the target reflectance Tr and then multi-
plying by the target illumination Tl. Equivalently, we could sim-
ply multiply Rr and Tl to obtain the final image. However, errors

(a) Noisy target image (b) Target reflectance (c) Target illumination

(d) Noisy
reference

(e) Poor quality
reference

(f) Low dynamic
range reference

(g) Reference
reflectance

Figure 5: Influence of image degradations on intrinsic image
solver. The top row shows the effect when noise exists in the tar-
get image (a). The recovered reflectance (b) is smooth, while the
noise is present in the illumination image (c), which will lead to a
colorization result with the same noise level. The bottom row shows
the influence of various image degradations in the references. Even
though the references include images with noise (d), compression
artifacts (e) and of low dynamic range (f), the intrinsic image solver
can still return a nice reflectance image (g).

in registering the reference images can lead to a blurry color re-
flectance image Rr , as exemplified in Fig. 4(c). This blur in the
reflectance image can seriously degrade colorization if it is not care-
fully accounted for, as demonstrated in Fig. 6(a) for colorization by
direct multiplication of Rr and Tl. Severe color bleeding artifacts
are noticeable in the rectangular regions.

Therefore, we do not trust the colors of all pixels in the reference
reflectance Rr . Instead, we allow color transfer only for pixels
considered to be less affected by misalignment errors. This lim-
ited transfer produces color scribbles that are propagated by color
optimization [Levin et al. 2004].

Scribbles could potentially be transferred from Rr to Tr prior to
color optimization, and relit with Tl. However, Tr also suffers from
blur due to registration errors, so color optimization on Tr also re-
sults in color bleeding artifacts, as shown in Fig. 6(b). To address
this issue, we instead transfer colors from RrTl to TrTl, where
TrTl is equivalent to the original target image, which is unaffected
by misalignment blur. The pre-multiplication of the target illumina-
tion Tl can significantly reduce color bleeding artifacts in the color
optimization. Furthermore, it directly yields the final colorized tar-
get image under the target illumination condition. The correctness
of this pre-multiplication approach relies on the assumption that the
illumination in the reference image is white light, as the target illu-
mination Tl is equally applied (R:G:B = 1:1:1) to all three color
channels.

Generating Scribbles The color scribbles are automatically gen-
erated from the product of reference reflectance Rr and target illu-
mination Tl:

C(p) = Rr(p)Tl(p). (11)

There may be color error among scattered pixels in the image due
to intrinsic image computation on misaligned pixels. To minimize
this error influence, we first over-segment the target grayscale im-
age into segments of similar intensities using the mean-shift algo-
rithm [Comaniciu and Meer 2002]. Then for each segment, pixels
are uniformly sampled from C(p), with the number of pixels in



(a) Direct multiplication

(b) Optimization  on  target  reflectance

Figure 6: Color-bleeding artifacts. In (a), colorization is per-
formed by multiplying Rr and Tl. Inconsistent colors appear in
the rectangular regions because of misalignment of reference im-
ages. In (b), colorization is performed with automatically computed
scribbles and color optimization on Tr . Since Tr also suffers from
misalignment problems, this result also exhibits color bleeding and
inconsistency artifacts. The reference images from Fig. 8(a) are
used to compute the two results.

proportion to the segment size. This sampling is assumed to consist
mostly of pixels that are not influenced by misalignment. Next, we
compute a weighted average color within each segment:

C̄i =

∑
p∈Si

ω(p)C(p)
∑

p∈Si

ω(p)
(12)

where Si is the i-th segment and the ω(p) is a Gaussian weight
computed by

ω(p) = e
−k(C(p)−µs)2/2σ2

s (13)

with µs and σs denoting the mean and the variance of the segment
colors, respectively. We empirically set k = 1. Pixel with color
C(p) close to C̄i, i.e.,

|C(p)− C̄i|

C̄i
< ε, (14)

is considered to be the representative of the segment and less af-
fected by misalignment error. This color is then used as the scrib-
ble color. The value of ε is set to 0.1 in our implementation. The
scribbles are generated in YUV color space and Fig. 4 (f) shows an
example of color scribbles computed with this approach.

Color Optimization Having obtained the synthesized color scrib-
bles, we apply color optimization [Levin et al. 2004] to colorize the
target grayscale image. This is achieved in YUV color space by
minimizing the following quadratic objective function for both U
and V channels respectively, with constraints on scribble colors:

J(C) =
∑

r

(C(r)−
∑

s∈N(r)

ωrsC(s))2 (15)

where
ωrs = ge

−(Y (r)−Y (s))2/2σ2

r (16)

Examples Reference No. Target Image Res. Time
Fig. 1 44 412×600 3m15s
Fig. 4 46 800×314 4m50s
Fig. 8(a) 34 649×408 2m35s
Fig. 8(b) 21 700×419 2m30s
Fig. 9(a) 8 338×600 1m04s
Fig. 9(b) 12 406×375 2m05s

Table 1: Timing statistics.

and N(r) is the set of 4-connected neighbors of pixel r and Y is
the target grayscale image. The normalization factor g is set so that
the weights sum to one. In Fig. 4(h), we demonstrate a colorization
result with this color optimization scheme. We also compare our
colorization result to the ground-truth image as shown in Fig. 4 (g).

5 Results

Figs. 1, 4, 8 and 9 show multiple colorization results by our method.
All references are searched from the Internet and may differ in il-
lumination conditions and/or in the presence of foreground occlud-
ers. By decomposing the reflectance images as well as the target
grayscale image into reflectance and illumination images, the in-
trinsic color can be used to reliably colorize the target image.

A unique and direct application of our method is to colorize old
black-and-white photographs taken many years ago and of ex-
tremely low quality. The “Qinian Palace” and “Temple of Heaven”
target images in Fig. 9 are both old photographs captured in the
1950s. These images are severely contaminated by noise. Never-
theless, our method can still obtain reasonable colorization results.
Here, we assume the color-to-gray process during the acquisition
of these old photographs is consistent to our grayscale conversion
of reference images. We also assume that the objects in the target
images have maintained their colors over the years.

To demonstrate the stability of our technique on images acquired in
different illumination conditions, we compare our colorization re-
sult of St. Basil’s Cathedral to that of the example-based coloriza-
tion by Irony et al. [2005] in Fig. 7. We applied Irony’s method
twice with two different reference images, one with illumination
similar to the target image (see (b)) and the other with illumination
significantly different from the target image (see (d)). Fig. 7 (h)
and (i) show the results using the reference images in (b) and (d),
respectively. The one with more similar illumination gives better
result, but still contains noticeable false color. On the other hand,
our method gives a reasonable and consistent colorization result in
(g) by determining the intrinsic colors. The comparison suggests
that the illumination difference in reference and target images can
substantially affect the quality of colorization.

For most of the examples in our paper, the colorization can be done
automatically, depending on the quality of the computed image reg-
istration. Automatic image registration, however, may fail in some
cases, so users may be needed to adjust the matching results. This
is the only user interaction that is required in our colorization pro-
cess. Table 1 shows the total processing time for colorizing each
of the examples on a computer equipped with an Intel Core(TM)2
6400 @ 2.13GHz CPU and 3GB system memory. It depends on
the size of the target image as well as the number and the size of
reference images. The time for user interaction varies for different
examples, which depends on the number of reference images failed
in registration. For the example of Temple of Heaven, which has
the maximum number of reference images failed in registration, it
requires around 5 minutes to adjust the matching results.



(a) Target  image (b) Reference image (c) Segmentation for (b)

(f) Ground-truth  image (g) Our result (h)  Irony’s result from (b)

(d) Reference image (e) Segmentation for (d)

(i) Irony’s result from (d)

Figure 7: Comparison of our method to that of Irony et al. [2005]. (a) is the target grayscale image. (b) is the first reference image for the
Irony method. It has a similar illumination as the target. (c) is the corresponding segmentation for (b). (d) is the second reference image for
the Irony method. This one has an illumination substantially different from the target, as seen from the highlights and shadows. (e) is the
segmentation for (d). The results of the Irony method given (b) & (c) and (d) & (e) are shown in (h) and (i), respectively. Greater differences
in illumination lead to more serious colorization error. (g) is our result. (f) is the ground-truth image.

Limitations As mentioned previously, intrinsic colorization as-
sumes the illumination in all images be white light. For the intrin-
sic image decomposition to be effective, we also require sufficient
reference images be obtained from web search in order to provide
enough registerable images with different illuminations. Because
of this, our method is intended to colorize well-represented scenes
that can be well aligned with web images, and may not properly
colorize personal items. In addition, our method is restricted to col-
orizing static scenes using images of the same scene viewed from
similar directions. Content in the target image that is inconsistent
to the reference images, or objects in the old photographs that are
long gone, may not be colorized properly. Significant view changes
among reference images may cause occlusions that impair the reg-
istration process. The scene in a target image also may not be fully
covered by the set of reference images. Image inpainting techniques
could potentially be used to fill in the colors of those uncovered re-
gions.

6 Conclusion
In this paper, we present a novel method to colorize a grayscale
image by extracting intrinsic reflectance colors from multiple refer-
ences. These references are all obtained directly from web search.
With previous example-based methods, consistent colorization re-
sults are difficult to obtain when illumination conditions between
the target grayscale image and its references are different. By re-
ducing the influence of illumination with intrinsic image decompo-
sition, reliable colorization results can be generated.

Our current method assumes that a sufficient number of registerable
reference images of the target scene can be acquired from the Inter-
net. In cases when no exact match is available, color information
from similar scenes may potentially be used in computing intrinsic
reflectance images. Relevant scenes may be identified through tex-
ture analysis. Alternatively, single-image methods [Tappen et al.
2005] for intrinsic image decomposition may also be employed to
determine reflectance colors of the target scene, when reference im-
ages are very scarce.
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