
1

Evolutionary Computing on

Consumer-Level Graphics Hardware

Ka-Ling Fok� Tien-Tsin Wong� Man-Leung Wong�

klfok@cse.cuhk.edu.hk ttwong@acm.org mlwong@ln.edu.hk

� The Chinese University of Hong Kong
� Lingnan University

Ka-Ling Fok

Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong

Email: klfok@cse.cuhk.edu.hk

Tien-Tsin Wong

Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong

Tel: +852-26098433 Fax: +852-26035024 Email: ttwong@acm.org or ttwong@cse.cuhk.edu.hk

Man-Leung Wong (Contact author)

Department of Computing and Decision Sciences, Lingnan University, Tuen Mun, Hong Kong

Tel: +852-26168093 Fax: +852-28922442 Email: mlwong@ln.edu.hk

April 14, 2005 DRAFT



2

Abstract

Evolutionary Algorithms (EAs) are effective and robust methods for solving many practical problems such as

feature selection, electrical circuits synthesis, and data mining. However, they may execute for a long time for some

difficult problems, because several fitness evaluations must be performed. A promising approach to overcome this

limitation is to parallelize these algorithms. In this paper, we propose to implement a parallel EA on consumer-level

graphics cards. We perform experiments to compare our parallel EA with an ordinary EA and demonstrate that the

former is much more effective than the latter. A range from 1.25 to 5 times of speed-up is achieved using current

generation of graphics card. Since consumer-level graphics cards are available in ubiquitous personal computers

and these computers are easy to use and manage, more people will be able to use our parallel algorithm to solve

their problems encountered in real-world applications.

Keywords: Evolutionary Algorithms, Graphics Processing Unit

1 INTRODUCTION

Evolutionary Algorithms (EAs) are weak search and optimization techniques inspired by natural evo-

lution. They have been demonstrated to be effective and robust in searching very large and varied spaces

in a wide range of applications such as feature selection [1], electrical circuits synthesis [2], and data

mining [3], [4]. In general, EAs include all population-based algorithms that use selection and recombi-

nation operators to generate new search points in a search space. They include genetic algorithms, genetic

programming, evolutionary programming, and evolution strategies [5].

An evolutionary algorithm starts with a set of individuals of the search space. This set forms a popula-

tion of the algorithm. Usually, the initial population is generated randomly using a uniform distribution.

On each iteration of the algorithm, each individual is evaluated using the fitness function and the termina-

tion function is invoked to determine whether the termination criteria have been satisfied. The algorithm

terminates if acceptable solutions have been found or the computational resources have been spent. Oth-

erwise, a number of individuals are selected and copies of them replace individuals in the population that

were not selected for reproduction so that the population size remains constant. Then, the individuals in

the population are manipulated by applying different evolutionary operators. Individuals from the previ-

ous population are called parents while those created by applying evolutionary operators to the parents are

called offspring. The consecutive processes of selection, manipulation, and evaluation form a generation

of the algorithm.

Although EAs are effective in solving many practical problems in science, engineering, and business

domains, they may execute for a long time to find solutions for some huge problems, because several

April 14, 2005 DRAFT



3

fitness evaluations must be performed. A promising approach to overcome this limitation is to parallelize

these algorithms for parallel, distributed, and networked computers. However, these computers are rela-

tively more difficult to use, manage, and maintain. Moreover, some people may not have access to this

kind of computers. Consequently, we propose to implement a parallel EA on consumer-level graphics

cards which are available in ubiquitous personal computers. Given the ease of use, maintenance, and

management of personal computers, more people will be able to use our parallel algorithm to solve huge

problems encountered in real-world applications such as data mining.

In the following section, graphics processing units will be discussed. We will present our parallel

evolutionary algorithm in Sections 3 and 4. A number of experiments have been performed and the

experimental results will be discussed in Section 5. We will give a conclusion and a description of our

future work in the last section.

2 GRAPHICS PROCESSING UNIT

In the last decade, the need from the multimedia and games industries for accelerating 3D rendering

has driven several graphics hardware companies devoted to the development of high-performance parallel

graphics accelerator. This results the birth of GPU (Graphics Processing Unit), which handles the render-

ing requests using 3D graphics application programming interface (API). The whole pipeline consists of

the transformation, texturing, illumination, and rasterization to the framebuffer. The need for cinematic

rendering from the games industry further raised the need for programmability of the rendering process.

Starting from the recent generation of GPUs launched in 2001 (including nVidia GeforceFX series and

ATI Radeon 9800 and above), developers can write their own C-like programs, which are called shaders,

on GPU. Due to the wide availability, programmability, and high-performance of these consumer-level

GPUs, they are cost-effective for, not just game playing, but also scientific computing.

These shaders control two major modules of the rendering pipeline, namely vertex and fragment en-

gines. As an illustration to the mechanism in GPU, we describe the rendering of a texture-mapped poly-

gon. The user first defines the 3D position of each vertex through the API in graphics library (OpenGL or

DirectX). It seems irrelevant to define 3D triangles for evolutionary computation. However, such decla-

ration is necessary for satisfying the input format of the graphics pipeline. In our application, we simply

define 2 triangles that cover the whole screen. The texture coordinate associating with each vertex is also

defined at the same time. These texture coordinates are needed to define the correspondence of elements

in textures (input/output data) and the pixels on the screen (shaders are executed on per-pixel basis). The

defined vertices are then passed to the vertex engine for transformation (dummy in our case).

April 14, 2005 DRAFT



4

For each vertex, a vertex shader (user-defined program) is executed (Fig. 1(a)). The shader program

must be Single-Instruction-Multiple-Data (SIMD) in nature, i.e. the same set of operations has to be

executed on different vertices. The polygon is then projected onto the 2D screen and rasterized (dis-

cretized) into many fragments (pixels) in the framebuffer as shown in Fig. 1(a). From now on, the two

terminologies, pixel and fragment, are interchangeable throughout this paper. Next, the fragment engine

takes place. For each pixel, a user-defined fragment shader is executed to process data associated with

this pixel. Inside the shader, the input textures can be fetched for computation and results are output via

the output textures. Again, the fragment shader must also be SIMD in nature.

(a)

(b)

Fig. 1. An illustration of GPU. (a) The 3D rendering pipeline. (b) Addition of two matrices on GPU.

As an example of utilizing GPU for scientific computing, we illustrate the addition of two � � �

matrices, � and �. Firstly, we define two right triangles (one upper and one lower) covering the � ��

pixels as shown on the left hand side of Fig. 1(b). The vertex shader basically does nothing but only

projects the six vertices (of two triangles) onto the 2D screen. After rasterization, these two triangles are

broken down into � �� fragments (or pixels). For each pixel, a fragment shader is executed. We then

fed matrices � and � to this shader as two input textures (Fig. 1(b)). A texture is basically an image

April 14, 2005 DRAFT



5

with each pixel composed of four components, ��� �� �� 	�. Each component can be represented as 32-bit

floating point. Therefore, one way to add two matrices is to store � ’s elements in the � component of

one input texture and �’s elements in the � component of another texture. Obviously, a more compact

and practical representation is to store elements of � and � in two components, say � and �, of the same

texture. For presentation clarity, we use two input textures. As the fragment shader is executed at each

pixel �
� �� independently and in parallel, it only contains one single addition statement and no looping

is needed (Fig. 1(b)). The statement fetches and sums � �
� ���� and ��
� ����, and stores the output in

the third texture, 
�
� ����. The notation �� specifies the � component of the pixel. The high performance

is mainly contributed by this SIMD-type parallelism. Most GPU nowadays impose certain limitations on

the usage of textures. For example, the total number of textures being accessed simultaneously is usually

limited (e.g. 16 textures on nVidia GeForceFX 6800). Furthermore, the input texture cannot be used for

output.

3 DATA ORGANIZATION

Suppose we have � individuals and each contains � variables (genomes). The most natural representa-

tion for an individual is an array. As GPU is tailored for parallel processing and optimized multi-channel

texture fetching, all input data to GPU should be loaded in the form of textures. Fig. 2 shows how we

represent � individuals in form of texture. Without loss of generality, we take �=32 as an example of il-

lustration throughout this paper. This amount of variables reflects the typical size of real-world problems.

Fig. 2. Representing individuals of 32 genomes on textures.

As each pixel in the texture contains quadruple of 32-bit floating point values (�� �� �� 	), we can encode

April 14, 2005 DRAFT



6

an individual of 32 genomes into 8 pixels. In other words, the memory is more efficiently utilized if �

is multiple of 4. This is also why we take � � � � � � �� as a working example. Instead of mapping

an individual to 8 consecutive pixels in the texture, we divide an individual into quadruple of 4 genomes.

The same quadruples from all individuals are grouped and form a tile in the texture as shown in Fig. 2.

Each tile is ��� � � in size. The reason we do not adopt the consecutive-pixel representation is that the

implementation will be complicated when � varies. Imagine the complication of genomes’ offsets within

the texture when � increases from 32 to 48. On the other hand, the fragmentation-and-tiling representation

is more scalable because increasing � can be easily achieved by adding more tiles. Another reason is for

the sake of visualization. We shall explain the details in Section 5.2. In our specific example of � � ��,

4�2 tiles are formed. It is up to user to decide the organization of these tiles in the texture. The first tile

(upper-left tile) in Fig. 2 stores genomes 1 to 4, while the next tile stores genomes 5 to 8, and so on.

Texture on GPU is not as flexible as main memory. Current GPUs impose several limitations. One of

them is the size of texture must not exceed certain limit, e.g. 4096�4096 on nVidia GeforceFX 6800. In

other words, to fit the whole population in one texture on our GPU, we must satisfy �� � �� ��	
� . For

extremely large populations with a large number of variables, multiple textures have to be used. Note that

there are also limitation on the total number of textures that can be accessed simultaneously. The actual

number varies on different GPU models. Normally, at least 16 textures can be supported.

4 EVOLUTIONARY PROGRAMMING ON GPU

Evolutionary programming (EP) and genetic algorithm (GA) have been both successfully applied to

several numerical and optimization problems. While classical GA requires the processes of crossover and

mutation, EP requires the mutation process only. Hence, for each generation of evolution, GA is more

computational intensive than EP. More importantly, the crossover process of GA induces higher data-

dependency than that of EP. When implementing on GPU, such higher data-dependency of GA leads to

more rendering passes than that of EP. A rendering pass refers to a complete execution of the fragment

shader. On current GPU, there is a significant overhead for each rendering pass. The more rendering

passes are needed, the slower the program is.

The reason why high data-dependency induces more rendering passes can be explained in a simple

scenario that two pixels � and � are considered. Since fragment shaders are executed independently

on each pixel, no information sharing is allowed among pixels. If the computation result of a pixel �

has to be used for computing an equation at pixel �, the computation result of � must be written to an

output texture first. This output texture has to be fed to the shader for computation in next rendering pass.

April 14, 2005 DRAFT



7

Therefore, if the problem being tackled involves a chain of data dependency, more rendering passes are

needed, and hence the speed-up is decreased.

Since the crossover process of GA requires more passes and more data transfer than that of EP, EP is

more GPU-friendly (efficient to implement on GPU) than GA. Hence, in this paper, we study the GPU

implementation of EP instead of the classical GA. Without loss of generality, we assume the optimization

is to minimize a cost function. Hence, our EP is used to determine a �
���, such that

��
� ���
���� � ���
�

where �
 � �
����� 
����� � � � � 
����� is the individual containing � variables; � � �� �� � is the function

being optimized. We implement a fast evolutionary programming (FEP) based on Cauchy mutation [6]

as follows:

1. Generate the initial population of � individuals, each of which can be represented as a set
of real vectors, ��
�� ����� � � �� � � � � �. Both �
� and ��� contain � independent variables,
�
� � �
����� � � � � 
�����
��� � ������� � � � � ������

2. Evaluate the fitness score for each individual �
�� ���, � � �� � � � � �, of the population based
on the objective function, ���
��

3. For each parent ��
�� ����, � � �� � � � � �, create an offspring ��
�
�� ���

�� as follows:
for � � �� � � � � �


����� � 
���� 
 ��������� ���

������ � ���� ���� ��
��
���� �� 
 ��

�
�
�
����� ���

where 
����� ������ 

�
����� and ������ denote the �-th component of �
�� ���� �
�

�� and ���
� re-

spectively. ���� �� denotes a normally distributed 1D random number with zero mean and
standard deviation of one. ��(0,1) indicates a new random variable for each value of �.

4. Calculate the fitness of each offspring ��
�
�� ���

��.
5. Conduct pairwise comparison over the union of parents ��
�� ���� and offspring ��
�

�� ���
��, for

� � �� � � � � �. For each individual, � (tournament size) opponents are chosen randomly from
all the parents and offspring. For each comparison, if the individual’s fitness is smaller than
or equal to that of opponent, it receives a “win”.

6. Select � individuals out of ��
�� ���� and ��
�
�� ���

��, � � �� � � � � �, that receive more win’s to
be parents of next generation.

7. Stop if the stopping criterion is satisfied; otherwise go to Step 3.

In the above pseudocode, �
� is the individual evolving and ��� controls the vigorousness of mutation

of �
�. In general, the computation of FEP can be roughly divided into three types: (a) mutation and

reproduction (step 3), (b) fitness value evaluation (steps 2 and 4), and (c) competition and selection (steps

5 and 6). These types of operations will be discussed in the following sub-sections.

April 14, 2005 DRAFT



8

4.1 Mutation and Reproduction

Unlike GA, EP omits crossover and carries out mutation only. Fogel [7] introduced EP using Gaussian

distribution. Yao and Liu [6] proposed a mutation operation based on Cauchy distribution to increase

the speed of convergence. From the pseudocode above, mutation operation is executed on each genome.

Genomes are assumed to be independent of each other. Thus mutation process is perfectly parallelizable.

In pure software (CPU for short) implementation, a loop is needed to perform mutation on each genome.

On the SIMD-based GPU, a fragment shader is executed in parallel to perform mutation on each compo-

nent (�� �� �� 	) of each pixel. GPU solution is thus ideal for this independent mutation and can achieve

significant speed-up.

To accomplish the mutation process on GPU, we designed two fragment shaders, one for computing �
�

and the other for ���. Fig. 3 illustrates these two shaders graphically. The parents �
� and ��� are stored in

two input textures while the offspring are generated and written to two output textures �
�
� and ���

�. One

fragment shader is responsible for computing �
�
� while the other is responsible for ���

�. Besides, we also

need two input textures of random numbers.

Fig. 3. The two fragment shaders for mutation process.

Mutation requires normally distributed random variables. Unfortunately, current GPU is not equipped

with random number generator. Hence the random numbers have to be generated by CPU and fed to GPU

in the form of input textures. We divide the process of random number generation into two steps. Firstly,

April 14, 2005 DRAFT



9

CPU is used to generate random variables with uniform distribution. The generated random numbers are

fed to GPU via input textures. Then, inside the two fragment shaders, GPU converts them from uniform

distribution to Gaussian distribution in parallel.

We employ the direct inverse cumulative normal distribution function (ICDF) as it does not require

looping, and thus it is suitable for SIMD-based GPU. Our experiment shows that GPU implementation of

ICDF is 2 times faster than CPU implementation of ICDF.

Current GPU has a slow performance in data transferal from GPU texture to main memory. Therefore,

such data transfer should be avoided as much as possible. Hence, our strategy is to keep the parent

and offspring resided in GPU memory. Only the final result, after several generations of evolution, is

transferred from GPU textures to main memory.

4.2 Fitness Value Evaluation

Fitness value evaluation determines the “goodness” of individuals. It is one of the core part of EP.

After each evolution, the fitness value of each individual in the current population is calculated. The

result is then passed to the later stage of EP process. Each individual returns a fitness value by feeding

the objective function � with the genomes of the individual. This evaluation process usually consumes

most of the computational time.

Since no interaction between individuals is required during evaluation, the evaluation is fully paral-

lelizable. Fig. 4 illustrates the evaluation shader graphically. Recall that the individuals are broken down

into quadruples and stored in the tiles within the textures. The evaluation shader hence looks up the cor-

responding quadruple in each tile during the evaluation. The fitness values are output to an output texture

of size � � �, instead of �� � ��, because each individual only returns a single value.

4.3 Competition and Selection

Replacing the old generation is the last stage of each evolution. There are two major processes involved,

competition and selection. EP employs a stochastic selection (soft selection) through the tournament

schema. Each individual in the union set of parent and offspring population takes part in a �-round

tournament. In each round, an opponent is randomly drawn from the union set of parents and offsprings.

The number of opponents defeated is recorded by the variable win. After the tournament, a selection

process takes place and chooses the best � individuals having the highest win values as parents for next

generation.

April 14, 2005 DRAFT



10

Fig. 4. The shader for fitness evaluation.

4.3.1 Competition

Exploitation is the process of using information gathered to determine which searching direction is

profitable. In EP, exploitation is realized by competition. Individuals in the population compete with �

randomly drawn opponents, where � is the predefined tournament parameter. The considered individual

wins if its fitness value is better than (in our case smaller than or equal to) that of the opponent. The times

of winning is recorded in win. It tells us how good this individual is.

Competition can be done either on GPU or CPU. For GPU implementation, � textures of random

April 14, 2005 DRAFT



11

values have to be generated by CPU and loaded to GPU memory for picking � opponents within each

evolution. In the shader, � fitness comparisons are performed by looking up the opponent’s fitness in the

fitness textures obtained previously. Such look-up is achieved by regarding the random values as indices

to fitness textures. The times of winning, win, is recorded and output to a texture.

On the other hand, for CPU implementation, only the fitness textures of both parent and offspring

population have to be transferred from GPU memory to main memory. Then the tournament is CPU-

performed by referring to these fitness textures.

It seems that GPU implementation should be faster than the CPU one, as it parallelizes the competition.

However, our experiments show that using GPU to implement the competition is slower than that of using

CPU. The major bottleneck of GPU implementation is the transfer of � textures towards GPU memory.

It evidences the limitation of slow data transfer of current GPU. As the competition does not involve any

time-consuming fitness evaluation (it only involves fitness comparison), the gain of parallelization does

not compensate the loss due to data transfer. Hence, we suggest to perform the tournament in CPU unless

the data transfer rate is significantly improved in the future GPU.

4.3.2 Median Searching and Selection

After the competition process, selection is performed based on the win values. It selects the best �

individuals having highest win values and assigns them as the parents for the next generation. The most

natural way is to sort the �� individuals in a descending order of win values. The first � individuals are

then selected. For large population size, the sorting time is unbearably slow even using 
�� �������

sorting algorithm.

Note that our goal is to pick the best � individuals, instead of sorting the individuals. These two goals

are different. We can pick the best � individuals without sorting them if we know the median win value.

The trick is to find the median without any sorting. We apply the partition-and-conquer algorithm with

linear time complexity [8] to search for the median. Once the median is known, we can scan through the

fitness values of all individuals and select those with fitness values below or equal to the median. The

process stops once � individuals are selected.

4.3.3 Minimizing Data Transfer

To minimize the data transfer between the memory on GPU and the main memory, an index array

storing the offset of each individual in the textures is constructed before the competition and selection

process. During the selection, we only record the index of the selected individuals, instead of the whole

April 14, 2005 DRAFT



12

individuals (all genomes). The index array is then loaded to GPU in form of a texture. The actual

individual replacement is performed on GPU based on the index texture. The final result is rendered to a

texture which stores the individuals of the new generation. With this approach, the textures of individuals

are always retained in the GPU memory. These textures of individuals are never transferred to the main

memory during the evolution, until the final generation is obtained. Only fitness textures, random textures

and index textures are transferred between GPU and CPU during the evolution. Since the fitness, random

and index textures are smaller than the textures of individuals, this indexing approach minimizes the data

transfer and improves the speed significantly.

5 EXPERIMENTAL RESULTS AND VISUALIZATION

5.1 Experimental Results

We applied EP with Cauchy distribution to the following benchmark optimization problems:

� �� �
���

��� 

�
�

� �� �
���

����
��

��� 
��
�

� �� �
���

��������
��� 	 
�� �
� 
 �
� 	 ����

� �	 � 	
�

��
��� 
� ����

�

�
�
� �
 �

���
����
�� 	 �� ������
�� 
 ���

We conducted the experiments for 20 trials on both CPU and GPU. The average performance is reported

in this paper. The experiment test bed was an Pentium IV 2.4 GHz with AGP 4X enabled consumer-level

GeForce 6800 Ultra display card, with 512 MB main memory and 256 MB GPU memory. The following

parameters were used in the experiments:

� population size: � = 400, 800, 3200, 6400

� tournament size: � � ��

� standard deviation: � � ���

� maximum number of generation: � � ����

Fig. 6 shows, by generation, the average fitness value of the best solutions found by our GPU approach

with various population sizes in 20 trials. It can be observed that better solutions can be obtained for all

functions if a larger population size is used. This phenomenon can be explained because more search

points are available in a larger population and EP is less likely to be trapped in local minimum.

However, EP with a larger population size will take longer execution time. Fig. 7 displays, by genera-

tion, the average execution time of the GPU and CPU approaches with different population sizes. From

April 14, 2005 DRAFT



13

the curves in this figure, the execution time increases if a larger population is applied. However, our GPU

approach is much more efficient than the CPU implementation because the execution time of the former is

much less than that of the latter if the population size reaches 800. Moreover, the efficiency leap becomes

larger when the population size increases.

The ratios of the average execution time of the GPU (CPU) approach with population sizes of 800,

3200, and 6400 to that of the corresponding approach with population size of 400 are summarized in

Table I(A). It is interesting to notice that, the CPU approach shows a linear relation between the number

of individuals and the execution time, while our GPU approach has a sub-linear relation. For example,

our GPU approach with population sizes of 400 and 800 take about the same execution time. Moreover,

the execution time of our approach with population size of 6400 is about 3 times of that with population

size of 400. Definitely, this is an advantage when huge population sizes are required in some real-life

applications.

To study why our approach can achieve this phenomenon, the average execution time of different types

of operations of the GPU (CPU) approach for the test function �
 are presented in Table I(B). It can

be observed that the fitness evaluation time of our GPU approach with different population sizes are

about the same, because all individuals are evaluated in parallel. Moreover, the mutation time does not

increase proportionally with the number of individuals, because the mutation operations are also executed

in parallel 1. Similar results are also obtained for other test functions. Table I(C) displays the speed-ups

of our GPU approach with the CPU approach. The speed-ups depend on the population size and the

problem complexity. Generally, GPU outperforms CPU when the population size is larger than or equal

to 800. The speed-up ranges from about 1.25 to about 5.02. For complicated problems that require huge

population sizes, we expect that GPU can achieve even better performance gain.

5.2 Visualization

As GPU is designed for display, all on-board textures can be trivially visualized in real-time without

much additional cost. Such visualization allows users to instantly observe individuals of the current gen-

eration. We designed two visualization schemes, namely genome-convergence and fitness-convergence.

Recall that individuals are broken down into quadruples of genomes (Fig. 2) and stored in (�� �� �� 	).

By mapping the minimum and maximum genome values to [0, 255] (8-bit integer), we can regard the

genome values in each quadruple as a color and output to the screen. At the beginning of the evolution,

�The mutation time increases with the number of individuals, because our GPU approach requires a number of random

numbers generated by CPU.

April 14, 2005 DRAFT



14

GPU CPU
� �� �� �� �� �� �� �� �� �� ��
800 1.00 1.00 1.00 1.00 1.00 2.01 2.02 2.02 2.02 2.02
3200 2.02 2.02 2.02 2.02 2.02 8.30 8.24 8.37 8.12 8.29
6400 3.11 3.09 3.04 3.05 3.05 16.57 16.45 16.75 16.40 16.53

(A)
� type competition & se-

lection time (sec)
speed-
up

fitness evaluation
time (sec)

speed-
up

mutation time
(sec)

speed-
up

total time
(sec)

speed-
up

400 CPU 3.32 0.80 7.28 0.28 16.19 7.39 26.79 0,82
GPU 4.14 26.46 2.19 32.79

800 CPU 6.70 0.91 14.86 0.68 32.49 9.00 54.05 1.65
GPU 7.33 21.84 3.61 32.78

3200 CPU 28.26 1.06 60.25 2.31 133.52 9.92 222.03 3.35
GPU 26.72 26.12 13.46 66.30

6400 CPU 56.69 1.08 118.91 5.41 267.30 10.44 442.95 4.42
GPU 52.57 21.96 25.61 100.25

(B)
� �� �� �� �� ��
400 0.62 0.85 0.62 0.93 0.82
800 1.25 1.71 1.25 1.88 1.65
3200 2.55 3.45 2.57 3.74 3.35
6400 3.31 4.50 3.42 5.02 4.42

(C)

TABLE I
COMPARISON BETWEEN THE GPU AND CPU APPROACHES. (A) THE RATIOS OF THE AVERAGE EXECUTION

TIME OF THE GPU (CPU) APPROACH WITH DIFFERENT POPULATION SIZES TO THAT WITH POPULATION SIZE

OF 400. (B) EXPERIMENTAL RESULT SUMMARY OF ��. (C) THE SPEED-UP OF THE GPU APPROACH.

the genome values are basically random and hence displayed as a noise image in Fig. 5(a). As the

population converges, the color of each tile becomes less noisy and converges to a single color. In fact,

the actual color of each tile does not matter. The most important observation to aware is the apparentness

of boundaries between two consecutive tiles, as different genomes may converge to different values.

Fig. 5(a)-(d) show the genome-convergence map at iterations 100, 500, 1000, and 2000 respectively2.

Therefore, a useful indicator of convergence is the apparentness of tile boundaries.

The fitness-convergence visualization scheme is more traditional. During our fitness evaluation, we

obtain a texture of fitness values. This texture can be output to screen for inspection. Again, we can map

the fitness values to a range of color values for better visualization using simple shader program. As our

test functions are all minimization problems, we map the minimum (0) and maximum fitness values to

[0, 255] gray levels for visualization. Fig. 5(e)-(f) are 4 snapshots of fitness values during the evolution.

Similarly, the first snapshot shows the randomness when the evolution begins. As the evolution continues,

the fitness image converges to a less noisy image.

�The boundaries are more apparent when observed on screen with colors.

April 14, 2005 DRAFT



15

(a) 100 (b) 500 (c) 1000 (d) 2000

(e) 100 (f) 500 (g) 1000 (h) 2000

Fig. 5. Visualization of evolution. (a)-(d) are four snapshots of genome-convergence visualization. (e)-(h) are four

snapshots of fitness-convergence visualization.

6 CONCLUSION

The parallel EP on GPU is a hybrid of master-slave and fine-grained models [9]. Competition and

selection are performed by CPU (i.e. the master) while fitness evaluation, mutation, and reproduction are

performed by GPU which is essentially a massively parallel machine with shared memory. Unlike other

fine-grained parallel computers such as Maspar, GPU allows processors to communicate with any other

processors directly, thus more flexible fine-grained EAs can be implemented on GPU.

For future work, we plan to implement a parallel genetic algorithm on GPU and compare it with the

approach reported in this paper.

REFERENCES

[1] Il-Seok Oh, Jin-Seon Lee, and Byung-Ro Moon, “Hybrid genetic algorithms for feature selection,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 26, no. 11, pp. 1424–1437, 2004.

[2] John R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu, and G. Lanza, Genetic Programming IV: Routine Human-

Competitive Machine Intelligence, Kluwer Academic Publishers, 2003.

[3] M. L. Wong, W. Lam, K. S. Leung, P. S. Ngan, and J. C. Y. Cheng, “Discovering knowledge from medical databases using

evolutionary algorithms,” IEEE Engineering in Medicine and Biology Magazine, vol. 19, no. 4, pp. 45–55, 2000.

[4] Man Leung Wong and Kwong Sak Leung, “An efficient data mining method for learning Bayesian networks using an

evolutionary algorithm based hybrid approach,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 4, pp. 378–

404, 2004.

[5] David B. Fogel, Evolutionary Computation: Toward a New Philosohpy of Machine Intelligence, IEEE Press, 2000.

April 14, 2005 DRAFT



16

[6] X. Yao and Y. Liu, “Fast evolutionary programming,” in Evolutionary Programming V: Processdings of the 5th Annual

Conference on Evolutionary Programming. 1996, Cambridge, MA:MIT Press.

[7] David B. Fogel, “An introduction to simulated evolutionary optimization,” IEEE Transactions on Neural Networks, vol. 5,

no. 1, pp. 3–14, 1994.

[8] Robert W. Floyd and Ronald L. Rivest, “Expected time bounds for selection,” Communications of the ACM, vol. 18(3), pp.

165–172, 1975.

[9] Erick Cantú-Paz, Efficient and Accurate Parallel Genetic Algorithms, Kluwer Academic Publishers, 2000.

April 14, 2005 DRAFT



17

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

0

10
1

10
2

10
3

10
4

Average minimum fitness vs. Generation

Generation

A
ve

ra
ge

 m
in

im
um

 fi
tn

es
s

400
800
3200
6400

0 200 400 600 800 1000 1200 1400 1600 1800 2000

1

2

3

4

5

6

7

8

9

x 10
4 Average minimum fitness vs. Generation

Generation

A
ve

ra
ge

 m
in

im
um

 fi
tn

es
s

400
800
3200
6400

(a) (b)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
3

10
4

10
5

10
6

10
7

10
8

Average minimum fitness vs. Generation

Generation

400
800
3200
6400

0 200 400 600 800 1000 1200 1400 1600 1800 2000

−12000

−11000

−10000

−9000

−8000

−7000

−6000

−5000

−4000

Average minimum fitness vs. Generation

Generation

A
ve

ra
g
e
 m

in
im

u
m

 f
itn

e
ss

400
800
3200
6400

(c) (d)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

50

100

150

200

250

300

350

400

Average minimum fitness vs. Generation

Generation

A
ve

ra
ge

 m
in

im
um

 fi
tn

es
s

400
800
3200
6400

(e)

Fig. 6. Fitness value of the best solution found by the GPU approach for function � � - ��. The results were averaged

over 20 independent trials. (a)-(e) correspond to functions � � - �� respectively.
April 14, 2005 DRAFT



18

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

350
Time vs. Generation

Generation

T
im

e 
(s

ec
)

GPU 400
GPU 800
GPU 3200
GPU 6400
Software 400
Software 800
Software 3200
Software 6400

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

350
Time vs. Generation

Generation

T
im

e 
(s

ec
)

GPU 400
GPU 800
GPU 3200
GPU 6400
Software 400
Software 800
Software 3200
Software 6400

(a) (b)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

350
Time vs. Generation

Generation

T
im

e 
(s

ec
)

GPU 400
GPU 800
GPU 3200
GPU 6400
Software 400
Software 800
Software 3200
Software 6400

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

350
Time vs. Generation

Generation

T
im

e 
(s

ec
)

GPU 400
GPU 800
GPU 3200
GPU 6400
Software 400
Software 800
Software 3200
Software 6400

(c) (d)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

350
Time vs. Generation

Generation

T
im

e 
(s

ec
)

GPU 400
GPU 800
GPU 3200
GPU 6400
Software 400
Software 800
Software 3200
Software 6400

(e)

Fig. 7. Execution time of the GPU and CPU approaches for functions � � - ��. The results were averaged over 20

independent trials. (a)-(e) correspond to functions � � - �� respectively.
April 14, 2005 DRAFT


