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Figure 1: By allocating two visual experiences of ordinary stereoscopic display to different audiences, we firstly accomplish seamless visual
sharing between color vision deficiencies (or colorblindness) and normal-vision audiences. Our system synthesizes an image pair from an
input image. By wearing the stereoscopic glasses, CVD audiences can identify the original indistinguishable colors. Without wearing the
stereoscopic glasses, normal-vision audiences are presented with original colors simultaneously without being aware of the change of visual
content.

Abstract

Approximately 250 million people suffer from color vision defi-
ciency (CVD). They can hardly share the same visual content with
normal-vision audiences. In this paper, we propose the first system
that allows CVD and normal-vision audiences to share the same
visual content simultaneously. The key that we can achieve this
is because the ordinary stereoscopic display (non-autostereoscopic
ones) offers users two visual experiences (with and without wearing
stereoscopic glasses). By allocating one experience to CVD audi-
ences and one to normal-vision audiences, we allow them to share.
The core problem is to synthesize an image pair, that when they are
presented binocularly, CVD audiences can distinguish the original-
ly indistinguishable colors; and when it is in monocular presenta-
tion, normal-vision audiences cannot distinguish its difference from
the original image. We solve the image-pair recoloring problem by
optimizing an objective function that minimizes the color deviation
for normal-vision audiences, and maximizes the color distinguisha-
bility and binocular fusibility for CVD audiences. Our method is
extensively evaluated via multiple quantitative experiments and us-
er studies. Convincing results are obtained in all our test cases.
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1 Introduction

People suffering from the color blindness or color vision deficiency
(CVD) are usually not able to clearly discriminate certain colors,
leading to misunderstanding, inconvenience, or even danger in dai-
ly life. There are approximately 250 million CVD people world-
wide [Wong 2011]. Ninety-nine percent of the CVD people are in-
born and there is no medical cure, unfortunately. It has been found
that CVD is usually hereditary [Sharpe et al. 1999]. In other words,
it is common for a family to have mostly normal-vision member-
s and a very few CVD members. However, existing digital visual
entertainment systems including computer games, movies, or TV
usually do not care or are not aware of the CVD audiences. This
leads to an inconvenient scenario that normal-vision and CVD fam-
ily members may not be able to share the same visual content. Such
sharing inconvenience is even more common in working environ-
ment.

One way to discriminate colors in daily life is to wear the tinted
glasses. They amplify the red-green color difference while filter
away the others [Sheedy and Stocker 1984]. However, the visual
experience of wearing tinted glasses is not comfortable, and they
may potentially impair the depth perception of users [Hartenbaum
and Stack 1997]. For digital visual content presented via a display,
recoloring techniques [Rasche et al. 2005a; Jefferson and Harvey
2007; Huang et al. 2007] can be applied. Several approaches have
been proposed to modify the colors in image to maximize the color
distinguishability for CVD individuals. Even though some [Huang
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et al. 2007; Kuhn et al. 2008a; Huang et al. 2009] try to minimize
the deviation from the originals, the change in color remains signif-
icant, and hence the resultant images are no longer shareable with
normal-vision audiences. Recent works [Sajadi et al. 2013; Chua
et al. 2015] begin to consider the visual sharing need. However, the
texture pattern intentionally introduced by Sajadi et al. [2013] is no-
ticeable to normal vision audiences. Colorbless method [2015] in-
troduces obvious “false contour” artifact (to both CVD and normal-
vision audiences) when applied to natural images (Fig. 12). Intro-
duction of additional contour (pattern or false contour) should be
avoided as audiences cannot differentiate such undesirable content
from the original image content.

In this paper, we propose a method to synthesize the color-
discriminable and undesirable-content free images that can be
shared with CVD audiences, without the normal-vision audiences
noticing the change. This sounds unachievable, but with an extra
display channel on popular and low-cost stereoscopic display, this
becomes feasible. Human binocular vision system can fuse the vi-
sual content from both eyes into a single percept, via a complex
nonlinear neurophysiological process [MacMillan et al. 2007; Bak-
er et al. 2007]. In other words, the visual perception of the binocu-
lar presentation of a dichoptic image pair (two views are different in
color) is different from the visual perception of a monocular presen-
tation of the blending of two views. These two different visual ex-
periences can be allocated to the CVD and the normal-vision audi-
ences, separately, so that two types of audiences can share the same
visual content. Our configuration is illustrated in Fig. 1. While
the normal-vision audiences can simply watch the 2D images via a
stereoscopic display as usual (without wearing any glasses), CVD
individual has to wear shutter glasses or polarized glasses to view
the image pair that maximizes the color distinguishability.

To make such configuration feasible, the input image is fed to our
system to synthesize an image pair that can maximize the color dis-
tinguishability for CVD audiences when displayed binocularly, and
at the same time, the average of the left and right images is equiva-
lent to the input. We formulate the image pair synthesis problem as
an optimization problem that simultaneously maximizes the color
distinguishability of the image pair for CVD audiences and mini-
mizes the deviation of the left+right average from the input. How-
ever, there remains a challenge that the synthesized image pair may
not be fusible (binocular rivalry), when two views are too different
from each other. Yang et al. [2012] proposed a metric to predict
the binocular fusibility. We make an attempt to refine and apply
this metric to suit CVD audiences, during the optimization. With
our approach, we are the first to achieve “seamless” visual sharing
between CVD and normal-vision audiences, not just on toy-case
images, but also challenging natural images that contain excessive
amount of confusing color pairs. In addition, we propose a novel
CVD calibration method that allows us to tailormade the image pair
synthesis for different CVD individuals according to their type and
severity of color blindness. Our results of various types of images
are validated via multiple quantitative experiments and user studies.
Our contributions can be summarized as followed.

• While there exist attempts to achieve visual sharing between
the CVD and the normal audiences, we are the first to achieve
“seamless” visual sharing without the normal vision audi-
ences being aware of the change of visual content. We are
the first to demonstrate the seamless visual sharing of chal-
lenging natural images, with many confusing colors simulta-
neously existing in the same image.

• We are the first to utilize the computer-controlled binocular
display systems to tailor-made the color discrimination solu-
tion for each CVD individual.

• We also propose a novel calibration method to measure the
severity of different CVD individuals.

2 Related Work

Humans perceive color via three kinds of cone cells in our retina,
with their spectral sensitivities peak at different wavelengths. How-
ever for the CVD individuals, one type of cone cells mutates and
its spectral sensitivity peak shifts towards that of another type of
cone cells. Detailed description of this phenomenon can be found
in [Machado et al. 2009].

To study CVD, several models of CVD have been proposed to simu-
late the visual experiences of the CVD individuals. Note that, there
are different types of CVD, including protanopia, deuteranopia and
tritanopia. Each type of CVD can have different levels of severi-
ty. Based on the experiments of unilateral dichromats [Graham and
Hsia 1959; Judd 1948], Brettel et al. [1997] and Meyer and Green-
berg [1988] calculated the projection of a given color for differ-
ent types of dichromacy. According to the two-stage model [Judd
1966], Machado et al. [2009] proposed a unified model that can
simulate different types of dicromats with different levels of sever-
ity. In our work, we adopt this simulation model.

Optical Approach With these simulation models, several ap-
proaches have been proposed to assist the people with CVD in dis-
tinguishing colors. The existing approaches can be roughly clas-
sified into two main categories: optical approach and recoloring
approach. Optical approach [Hovis 1997] requires the user to wear
a physical tinted lens to filter certain colors in order to amplify the
color difference. However, the tinted lens may unnecessarily filter
away color (and hence information) that CVD individuals can well
distinguish even without the lens.

Recoloring On the other hand, recoloring approach is mainly for
displaying digital visual content. The basic idea is to globally or
locally recolor the visual content in order to avoid any color com-
position that CVD individuals cannot distinguish. Lau et al. [2011]
redistributed colors in target color space by optimizing the distin-
guishability of CVD audiences. However, their solution is limit-
ed to colors existing in the projected original image. Laccarino et
al. [2006] recolored web pages by increasing the contrast and light-
ness according to the customized parameters. Jefferson et al. [2006;
2007] developed a user interface to allow users to specify the type
of CVD they belong to and adjusts the parameter to distinguish col-
ors. However, since these systems require users to explicitly control
the parameters, the quality of recoloring result highly depends on
the skill of users. Based on the Kondo’s model [1990], Ichikawa et
al. [2004] proposed a method to automatically recolor the images
to compensate the loss of color discrimination of CVD audiences.
Rasche et al. [2005a; 2005b], Wakita et al. [2005] and Machado and
Oliveira [2010] preserved the contrast between all pairs of colors
and maintains luminance consistency via optimization. The above
automatic methods only consider the CVD audiences during the
recoloring, the colors in the resultant images may largely deviate
from the original, and hence the results are hardly shareable with
the normal-vision audiences.

Visual Shareability Recent works attempt to achieve such share-
ability between CVD and normal audiences. Huang et al. [2007;
2009] and Kuhn [2008a] minimized the deviation of colors from the
original. This relieves the problem but does not really solve it, be-
cause the color deviation remains large to avoid confusing the CVD
audiences. Hung and Hiramatsu [2013], and Sajadi et al. [2013]
proposed a visualization method to overlay patterns over the color



Figure 2: System overview.

regions to assist CVD audiences. However, the introduction of ad-
ditional contours (texture in this case) confuses both CVD and nor-
mal audiences as audiences no longer can tell the introduced pattern
belongs to the original image or serves for differentiating colors.
Color discrimination for CVD audiences and preservation of the
same visual content for normal vision audiences is always a dilem-
ma, for a single-image configuration. With an extra display chan-
nel of stereoscopic devices, we propose to synthesize image pairs
that allow CVD audiences to distinguish colors (by wearing stereo-
scopic glasses), without normal-vision audiences (without wearing
any glasses) aware of the change in image. Independently, Chua
et al. [2015] proposed a guideline to highlight confusion color re-
gions for CVD audiences using binocular display. Their method is
based on luster effect [Howard 2002] and modifies the luminance
channel alone, to provide three comfortable and distinguisable lus-
ter levels only. Their application to natural images is questionable
as there can be much more confusion colors simultaneously exist
in the same image. False contours frequently appear when their
method is applied on natural images (Fig. 12). As their method is
based on the luster effect, they utilize the non-fusibility of binocular
vision to discriminate colors. In contrast, our method does not rely
on the luster effect and we want to avoid the discomfort caused by
the non-fusibility.

So far, most previous methods are not tailormade solutions, as they
do not measure the CVD severity of each individual. In contrast,
our solution can be precisely calibrated for each CVD individual,
regardless of his/her severity and his/her type of CVD.

3 Overview

Our system overview is illustrated in Fig. 2. It consists of an offline
and an online phases. The offline calibration is a one-off step, and
should be performed once for each CVD audience (Section 4). Dur-
ing the online recoloring phase (Section 5), our system simultane-
ously preserves contrasts in two domains, one for CVD audiences
and one for normal-vision audiences. Given an input image, our
system synthesizes an image pair that maximizes the color distin-
guishability for the characterized CVD audiences when displayed
binocularly, and at the same time, minimizes the deviation of the
average left and right images from the input, for normal-vision au-
diences. As CVD audiences are fed with image pair, we enclose the
image pair with a gray boundary (as the one in Fig. 2) to indicate
this, from now on.

We formulate our recoloring as an optimization problem. It adjusts
the colors to optimize for an objective function that considers three
factors: minimization of the color deviation between the input and
the blending of left and right images (deviation term); maximization
of the chrominance distinguishability for CVD audiences (distin-
guishability term), and the binocular fusibility for CVD audiences
(fusibility term). We first present a global color mapping approach,
and then we extend it to a local method, so as to enlarge the solution
space and preserve fidelity.

Figure 3: Calibration interface. (a) The initial color pair. (b) Just-
distinguishable color pair.

4 Calibration

In this paper, we adopt the CVD simulation model proposed by
Machado and Oliveira [2009] due to its nice feature of luminance
preservation that facilitates our subsequent computation. The color
deficiency can be modeled as a color projection,
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where T is a 3×3 color projection matrix; X , Y , Z are the color
values; while XCVD, YCVD, ZCVD are the color values perceived
by the CVD individual. In other words, the type and severity of a
CVD individual can be sufficiently characterized by T . Hence, the
goal of our calibration is to determine T for each CVD individual.

To do so, the target CVD individual takes part in a simple experi-
ment modified from Farnsworth-Munsell 100 hue test [Farnsworth
1957]. The original Farnsworth-Munsell 100 hue test is time-
consuming and tedious. Even worse, the user can learn from the
past experience which harms the accuracy of the test. Fig. 3 shows
the interface of our test. Each time it shows a pair of color patches.
Initially, the two patches have the same color CA. By moving the
scroll bar, users can move the color of right patch away from its ini-
tial color, and towards another color CB . The color pair (CA, CB)
is randomly chosen from Farnsworth-Munsell 100 hue test. Users
are asked to gradually move the scroll bar until he/she just notices
the two patches are different. C1 (the left color) and CJD (the right
color) form the just-distinguishable color pair. In other words, we
can slightly move CJD back towards C1 to construct a confusing
color pair (C1, C2), where C2 = ηC1+(1−η)CJD and η=0.0001.
The target CVD individual cannot distinguish C2 from C1, and our
system records this confusing color pair for determining T . This
process repeats, until the system collects sufficient number of con-
fusing color pairs.

For each confusing color pair (C1, C2), CVD individual cannot
distinguish them. Mathematically, it means,

T ·





R1

G1

B1



 = T ·





R2

G2

B2



 , (2)

where (R1, G1, B1), and (R2, G2, B2) are RGB values of C1 and
C2, respectively. This means each confusing color pair gives us a
set of 3 equations. With 9 unknowns in T , 3 confusing pairs (9
equations) are sufficient for determining T . In practices, we collect
10 confusing color pairs for better accuracy. In addition, as stated
in [Machado et al. 2009], each element in T has its own range on
values (Section S5 of the supplement), and the sum of each row of
T must be equal to 1. Together with these constraints and collected
confusing pairs, we solve for a more accurate T in a least-square
manner.



Figure 4: Effectiveness of deviation term. (a)&(d): Input images.
(b)&(e): The average of resultant left and right images without the
deviation term. (c)&(f): With the deviation term, the difference
between inputs and the average becomes very small. The left and
right images before blending can be found in Fig. S3 & S5 of the
supplement.

5 Recoloring as Optimization

Synthesizing color-distinguishable images for CVD audiences is a
problem to recolor images in a lower-dimensional gamut with the
goal of preserving contrast. In this regard, it is a dimension re-
duction problem. Several methods [Gooch et al. 2005; Neuman-
n et al. 2007; Grundland and Dodgson 2007; Kuhn et al. 2008b;
Lu et al. 2012] have been proposed for the color-to-gray prob-
lem (a related, but not the same as our problem). In particular,
Rasche et al. [2005b] synthesized images for CVD audiences using
a constrained multidimensional scaling technique. However, exist-
ing methods only synthesize a single output image. They do not
consider the binocular perception as in our case and therefore not
applicable.

To synthesize the image pair for CVD audiences, we formulate this
image synthesis as an optimization problem that optimizes an ob-
jective function. In our visual sharing application, we need to min-
imize the color deviation of the blending of left and right images
from the original input, so that normal-vision audiences without
wearing any stereo-glasses are not aware of the color differences.
Simultaneously, we want to maximize the color distinguishability
and binocular fusibility of the left and right images, when the CVD
audiences is presented with the dichoptic image pair. These three
requirements correspond to the three energy terms in the objective
function, the deviation (Ed), the distinguishability (Ec), and the
fusibility terms (Ef ). The whole objective function is defined as,

min {λ1Ed + λ2Ec +Ef} . (3)

All terms Ed, Ec, and Ef are functions of the input image I , fL
and fR, where fL and fR are the mapping functions of I to the
left fL(I) and the right fR(I) images, respectively. λ1 and λ2 are
weights.

Image Pair Synthesis Model We model the mapping fL and fR
as a finite multivariate polynomial function [Lu et al. 2012]. That
is, we Taylor-expand a continuous function f as

f(I) =
∞
∑

i=0

ωiΦi(I), (4)

where Φi(I) is the finite multivariate polynomial function. We
want to obtain the optimum mapping fL and fR by seeking

Figure 5: Effectiveness of distinguishability term. (a)&(d): Gradi-
ent magnitudes of the input images (normal vision). (b)&(e): Gra-
dient magnitudes of input as in CVD simulation. The contrast of
edges becomes very weak (especially in the swirl example). (c)&(f):
Gradient magnitudes of our resultant image pairs as in CVD sim-
ulation. Edge structures in both eyes are well preserved in both
cases. The original images can be found in Fig. S3 & S8 of the
supplement.

their Taylor parameter sets ΛL = {ωl
1, ω

l
2, . . .} and ΛR =

{ωr
1 , ω

r
2 , . . .}. High-order parameters are close to zero as high-

order Πm’s correspond to high-frequency information.

In our application, we keep only the first nine components by set-
ting ωi = 0 for i = m+1, . . . ,∞, where m = 2. Each pixel of the
original image I contains three color channels, c1, c2 and c3 in RG-
B color space. Each color channel of a pixel in the synthesized im-
age is formulated as the linear combination Φi(I) of 9 components,
{c1, c2, c3, c1c2, c1c3, c2c3, c

2
1, c

2
2, c

2
3}. With 3 color channels and

2 views, these add up to 54 weights ω’s to estimate. As the same
set of ω’s is applied to the whole image, changing these parameters
only causes smooth color change across the images. Hence, false
contour artifacts as in other methods never appear in ours.

Deviation Term The deviation term Ed is introduced for normal-
vision audiences, as they look at the stereoscopic display (non-
autostereoscopic ones) without wearing any stereoscopic glasses.
Effectively, they observe the linear blending (average in our case)
of the left and the right images. Hence, this deviation term is intro-
duced to minimize the per-pixel color deviation of the blending and
the input images. It is simply defined as,

Ed =
1

N

∑

N

‖G(pLi , p
R
i )− pIi ‖, (5)

where N is the total number of pixels in the input I and pIi is the
pixel value at position i, and pLi and pRi are the corresponding pixel
values in the left and right images synthesized with the parameter
sets ΛL and ΛR, respectively. Function G is the linear blending
function which depends on the stereoscopic display device. In our
case, G is the average of pLi and pRi .

Fig. 4 demonstrates the significance of this deviation term. With-
out the deviation term, the blending of left and right images
(Fig. 4(b)&(e)) may have an observable color difference when com-
pared to the input (Fig. 4(a)&(d)). In contrast, by introducing
the deviation term, we can effectively suppress the difference in
Fig. 4(c)&(f) (the corresponding left and right images can be found
in Fig. S3 & S5 of the supplement). This means that the normal-
vision audiences may not be aware of the difference, and hence
accomplishes half of our visual-sharing goal.

Distinguishability Term The color distinguishability term Ec

and the binocular fusibility term Ef (explained shortly) are tailored



Figure 6: Effectiveness of fusibility term. Top row of (a)&(c) show the resultant image pairs without the fusibility term. The contrast and
contour differences are color-coded in green and red, respectively, in the bottom row of (a)&(c). After introducing the fusibility term, the
discomfort zones are significantly reduced in (b)&(d).

for CVD audiences as the visual content is presented to them in a
dichoptic manner via the stereoscopic display device. The distin-
guishability term aims at preserving the structural information in
the input during the synthesis of the image pair. Note that when the
image pair is perceived by the CVD audiences, we need to preserve
the contrast in the simulated color space of CVD audiences. This is
where we utilize the personalized projection matrix T . The term is
defined as,

Ec = −
1

N

∑

N

(S(T · pLi , p
I
i ) + S(T · pRi , p

I
i )), (6)

where the projection matrix T projects a pixel color from the color
space of normal-vision audiences to the simulated color space of
the target CVD audiences. Function S(x, y)measures the structural
similarity of x and y. Here, we adopt from the structure and contrast
terms of SSIM [Wang et al. 2004] and defined it as,

S(x, y) =
2σxy + ε

σ2
x + σ2

y + ε
, (7)

where

σxy =
1

n− 1

n
∑

i=1

(xi − µx)(yi − µy), (8)

σ and µ are the standard deviation and the mean within the local
neighborhood, respectively; n is the number of pixels in the lo-
cal neighborhood, and the small constant ε = 0.0009 avoids the
division-by-zero. The above design minimizes the structural differ-
ence between images perceived by normal-vision audiences and the
CVD audiences. Fig. 5 demonstrates the effectiveness of our distin-
guishability term. To visualize the structural information, we plot
the gradients of the input (in RGB color space) and the synthesized
image pair (in simulated CVD color space). The contour of the
swirl (Fig. 5(a)) becomes hard to see without the distinguishabili-
ty term (Fig. 5(b)). On the other hand, with the distinguishability
term, we can effectively preserve the structural information in the
simulated CVD color space and hence, allow the CVD audiences to
distinguish colors (Fig. 5(c)&(d)).

Fusibility Term As the image pair is presented in a dichoptic
manner, this leads to the risk of binocular rivalry. This phenomenon
happens when the left and right images deviate too much (e.g.
strong stimulus and too many unmatched contours) and our brain
cannot fuse them into a stable single percept [Lei and Schor 1994].
Yang et al. [2012] proposed a metric called binocular visual com-
fort predictor (BVCP) to measure the potential of binocular rivalry.

We adopt the BVCP in designing our binocular fusibility term and
define it as,

Ef =
1

N

∑

N

(Bcf (T, p
L
i , p

R
i )

+Brc(T, p
L
i , p

R
i )),

(9)

where functions Bcf and Brc measure the contour fusion discom-
fort and the regional contrast discomfort in [Yang et al. 2012], re-
spectively. Bcf measures the discomfort caused by the fusion of
the contour difference between the left and right images, while Brc

measures the discomfort caused by the fusion of the contrast dif-
ference between the left and right images. Different from Yang’s
design which takes thresholds on the discomfort values, we mini-
mize these discomfort values in our optimization formulation. The
two functions are defined as,

Brc(T, p
L
i , p

R
i ) =

1

|Ω|
‖

∑

p∈Ω(pL
i
)

(T · p)−
∑

p∈Ω(pR
i
)

(T · p)‖, (10)

and

Bcf (T, p
L
i , p

R
i ) =

1

|Ω|
‖

∑

p∈Ω(pL
i
)

ζ(T ·p)−
∑

p∈Ω(pR
i
)

ζ(T ·p)‖, (11)

where Ω(pi) is the local neighborhood centered at pi which approx-
imates the projected fusional area. We assume users are viewing
the laptop display (as in all our experiments) and set the size of this
neighborhood as 11×11 pixels. Function ζ returns the luminance
perceived by CVD audiences. As we adopt the simulation mod-
el proposed by Machado and Oliveira [2009], the same projection
matrix that projects RGB to opponent-color space can be applied
to both the CVD simulated and original images to obtain the lu-
minance, because their model ensures the luminance perceived by
CVD audiences from the original image is the same as that per-
ceived by normal-vision audiences from the simulated image. The
detailed description on computing ζ can be found in Section S5 of
the supplement. Fig. 6 compares the results synthesized with and
without the fusibility term. Here, we color-code those pixels that
have high contrast differences and contour differences in green and
red, respectively. We can see that the introduction of fusibility term
cleans up those discomfort zones (Fig. 6(b)).

Note that we perform most computation in Lab color space, as it
is more sensible for perceptual measurement. But the personalized
CVD simulation (T · pi) has to be first computed in RGB space, as
the calibration is conducted in RGB space.



Figure 7: Local and global mappings. (a) The input image as in
normal vision. (b) CVD simulation. (c) Globally mapped result as
in CVD simulation. Fail to distinguish certain color region. (d) Lo-
cally mapped results as in CVD simulation. Halo artifact is observ-
able. (e) Globally+locally mapped results as in CVD simulation.
(f) local blown-up of (d). (g) local blown-up of (e). Now CVD audi-
ences can distinguish all different color regions, with a significant
reduction of halo artifact.

5.1 Local Mapping

So far, the mapping we discussed is a global one. It is not spa-
tially varying. In very rare scenarios, the global constraint is too
strong to produce a good solution. Fig. 7 shows the blown-up of
one such example where the global mapping fails to synthesize an
image pair with sufficient color distinguishability. It happens when
the indistinguishable color patches scattered over the image and the
color compositions are interconnected. The solution space can be
significantly enlarged by relaxing this global constraint to a local
one.

The proposed method can be easily extended to local mapping by
applying the same method to local regions instead of the whole im-
age. To do so, we randomly distribute t seeds over the image and
apply our method to the region centered at each seed. The region
size is set to 3

√

hw/t, where h and w are the height and width of
input image, respectively. This setting ensures each pixel is cov-
ered by 3 regions statistically. Obviously, we would like the local
parameter set of the u-th local region, Λu

L and Λu
R, are similar to

any regions overlapping with it. Hence, we can design a new s-
moothness term Es as,

Es =
1

K

∑

u,v

(‖Λu
L −Λv

L‖+ ‖Λu
R −Λv

R‖), s.t. u, v overlap (12)

where u and v are regions that overlap and K is the total number of
combination of region overlapping. Hence, our objective function
is modified as follows,

min {λ1Ed + λ2Ec + λ3Ef +Es} . (13)

where λi are weights. The overall mapping function f is modified
to be the average of local mapping functions fi. For each pixel

Figure 8: Tradeoff between global consistency and local variation.
(a) The input image. (b) Result left image when γ = 0.8. (c) Result
left image when γ = 0.5. (d) Result left image when γ = 0.2. The
result right images can be found in Fig. S10 of the supplement.

location x, we overload the notation f and denote it as the overall
mapping function at this location as,

f(x) =
1

k

k
∑

i

fi(x), (14)

Fig. 7(d) shows the recoloring result synthesized by this local ap-
proach. Halo artifact (the unnatural color change surrounding the
strong boundary) appears as a result of color inconsistency from the
global perspective. Besides, two isolated regions of the same color
may result in color difference, using this local approach (e.g. the
colors of the top and bottom green regions in Fig. 8(b) are drift-
ed apart). To reduce the color inconsistency, we can combine the
local and global mapping. The change is only on the construction
of the overall mapping function f . For each pixel location, if it is
overlapped by k regions, its overall mapping function is defined as

f(x) = (1− γ)f ′(x) + γf ′′(x), (15)

where f ′ and f ′′ are the global mapping and local mapping respec-
tively. Parameter γ weights between the global and local mapping.
Fig. 8 visualizes the effects of different γ values. Throughout all
our experiments, we set γ=0.2, i.e. a higher weight on the glob-
al mapping for maintaining the color consistency. By combining
the local and global mapping and optimizing them together, we en-
larged the solution space while maintaining the color consistency.
The result is further improved and no more observable haloing nor
color drift exists (Fig. 7(e), Fig. 8(d)).

We solve the optimization with a typical gradient descent approach.
We calculate the energy function in Eq.(13), take the derivative to
the Taylor parameters ωi, step forward along the tangent direction,
and repeat this process until the energy value converges. It may take
10 to 100 iterations to converge, depending on image content. To



Figure 9: Score against λ1, λ2 and λ3. x axis represents λ1, while y axis represents λ2 and z axis represents score. Four instances of λ3 are
plotted. More details can be found in Fig. S17, S18 & S19 of the supplement.

reduce the chance of being trapped by local optimum, we perform
multiple times of gradient descent (50 times for all experiments),
each with a different initial point. The one with the minimal en-
ergy is selected as our result. Since our current implementation is
not optimized nor GPU-parallelized, it takes 1 to 10 minutes for
optimizing a 1M-pixel image. It can be significantly sped up by ap-
plying speed-optimized solver together with GPU acceleration, as
most computation can be straightforwardly parallelized.

5.2 Estimating Energy Weights

The energy weights (λ1, λ2, λ3) of the objective function in E-
q.(13) are estimated via a user study, so that the same set of weights
are universally applied. We sample the 3D weight space of (λ1,
λ2, λ3) with λ1, λ2, λ3 ∈ [0.01, 100]. For each sample point in
the weight space, we optimized the corresponding objective func-
tion in order to synthesize the image pairs (30 images from a rich
variety of visual content are selected). Then, twenty participants
are invited in this weight estimation phase. Half of them are CVD
audiences and the rest are normal vision audiences. For CVD audi-
ences, they have to wear the stereo-glasses and are presented with
the synthesized image pairs in dichoptic mode. They were asked
to grade each synthesized image pair with a single score ([1,10],
with 10 being the best) by collectively considering both the color
distinguishability and the binocular fusion comfortability. For nor-
mal vision participants, they were monocularly presented with the
synthesized images, as well as the original images, and are asked
to grade the synthesized images in terms of deviation from the o-
riginals (also in the scale of [1,10]). The final score of each sample
point in (λ1, λ2, λ3) space is the average score of all participants on
all correspondingly synthesized image pairs. Fig. 9 shows the re-
sult. Since the weight space is 3D, we visualize the result by fixing
λ3 at different instances. We found that the optimal weights can be
found at (1,1,1). For this set of weights, the standard deviation (S-
D) of scores given by normal audiences is 0.85 and the SD by CVD
audiences is 1.52, which are relatively small. Hence, we fixed our
weights as (1,1,1) for all experiments. Note that our results are not
very sensitive to the choice of weights, i.e. two results from two sets
of slightly different λi values are sometimes visually quite similar.
This can be observed in Fig. 9. Even though the graphs are plotted
against the natural log of λi, the audiences scores of adjacent λi

sets are still quite similar.

6 Results and Discussion

To evaluate the effectiveness of our method, we relied on visual
comparison and multiple quantitative experiments as well as user
studies with both CVD and normal-vision audiences.

Visual Comparison Firstly, we visually present our synthesized
image pairs, by taking the most severe case of protanopia as our

target CVD audiences for generating results presented in this paper.
Due to the space limit, results for other types of CVD audiences and
other degrees of severity can be found in Fig. S11 to S16 of the sup-
plement. Fig. 12 compares our results with our competitors. Both
drawing (including test image from Ishihara test) and real photo-
graph examples are evaluated. All test images exhibit at least one
or multiple regions that CVD audiences has a difficulty in distin-
guishing colors. Two state-of-the-art methods proposed by [Huang
et al. 2009] and [Chua et al. 2015] are compared. The former repre-
sents the traditional single-image recoloring method which attempts
to minimize the deviation from original image, while the latter pro-
duces an image pair which is similar to our method. For a fair
comparison, we have obtained the original implementations from
[Huang et al. 2009] and [Chua et al. 2015] to generate their results
for comparison. The left half of Fig. 12 shows the input and result-
s as in normal vision, while the right half visualizes the results in
CVD simulation. Note that Chua’s and our results in Fig. 12(g)&(h)
are presented binocularly to CVD audiences. For normal vision, the
left and right images are blended (Fig. 12(c)&(d)) to simulate the
blending effect of stereoscopic display without wearing the stereo-
scopic glasses. From the results, both Huang’s and Chua’s methods
may fail to generate CVD-distinguishable results (e.g. the Ishihara
image “42”). Moreover, their methods tend to introduce annoy-
ing false contours in natural images such as the results of “fruits”
(as highlighted by red boxes). From the CVD simulation, the false
contour of Chua’s method is even more severe in almost all nat-
ural image results (Fig. 12(g)). In contrast, our results (blending
of left and right) are almost identical to the input when present-
ed to normal-vision audiences, and the distinguishability is main-
tained when displayed binocularly for CVD audiences. No false
contour exists in any of our results thanks to our synthesis model.
We achieve seamless visual sharing in which normal vision audi-
ences are not aware of any discrepancy, while simultaneously CVD
audiences’ distinguishability are enhanced.

Readers are referred to Fig. S1 & S2 of the supplement, where we
also compare our method to [Sajadi et al. 2013] and [Kuhn et al.
2008a]. We cannot fit in all results in the paper due to the page
limit. As no original implementation of [Sajadi et al. 2013] can be
found, we can only compare our results with the ones provided by
their paper. The code of [Kuhn et al. 2008a] only produces recol-
ored image in CVD simulated color space but not recolored image
in normal vision, so we can only partially compare to their results.
In summary, [Sajadi et al. 2013] introduces additional texture which
limits its application to natural images, as audiences can no longer
tell whether the texture is original or introduced by the synthesis.
On the other hand, the method in [Kuhn et al. 2008a] does not con-
sider normal vision audiences and may also produce undesirable
false contours.

Quantitative Evaluation To quantitatively and objectively eval-
uate our results, we compare our images with those generated by



SSIM (normal) PSNR (normal) CPR (CVD)
Chua 0.9573 33.1896 dB 0.8897

Huang 0.8844 22.5771 dB 0.9215
Ours 0.9719 40.0124 dB 0.9576

Table 1: Statistics from quantitative evaluations in SSIM, PSNR
and CPR.

[Huang et al. 2009] and [Chua et al. 2015] again. Thirty test cases
of a wide variety of images are evaluated. They all exhibit color
indistinguishability to CVD audiences. Note that our method and
the method in [Chua et al. 2015] both generate an image pair, while
the method in [Huang et al. 2009] generates a single image. We
separate the quantitative evaluation into two parts, one for evaluat-
ing results presented to normal-vision audiences and the other for
evaluating results presented to CVD audiences.

For results presented to normal-vision audiences, we evaluate how
far our and competitors’ results deviate from the input images. So
we measure the SSIM [Wang et al. 2004] and PSNR. Since normal-
vision audiences are presented with the blending of our left and
right images, we compute the average of left and right images, and
measure the SSIM and PSNR of the average image compared to the
input. Table 1 shows the statistics. The higher the values are, the
smaller deviation the images are. Both SSIM and PSNR scores of
our results are the best. Huang’s scores are the worst and signifi-
cantly lower than ours, as their method considers no normal vision
audiences and only utilizes a single display channel. Chua’s SSIM
score is slightly lower than ours, but their PSNR score is much low-
er than ours, due to the false contours. This is also evidenced in the
above visual comparison.

To evaluate the results presented to the CVD audiences, we mea-
sure how well the contrast is preserved from the input image to the
CVD simulated image pair. We extract the part corresponding to
the contrast term in SSIM and regard it as the contrast preservation
rate (CPR). It is defined as,

1

n− 1

∑n

i=1 (xi − µx)(yi − µy) + ε

σ2
x + σ2

y + ε
, (16)

where xi and yi are the two corresponding pixels from two com-
pared images; µ and σ are the mean and standard deviation within
a local neighborhood; n is the number of pixels in the local neigh-
borhood; ε is a small constant to avoid divide-by-zero. In all our
experiments, we take a local neighborhood of 11×11. This CPR
falls in the range of [0,1]. The higher the value is, the better the
contrast is preserved.

Next, we convert our left and right images to the CVD simulated
color space, and compute the above CPR for each pixel in both im-
ages. The two resultant CPR maps are combined into one by taking
the maximum of two corresponding pixels from the two maps. This
per-pixel maximum operator is justified by the psychological find-
ing [Scott et al. 2000] that, when two different contrast images are
presented in a dichoptic manner, human vision system selectively
perceives the sites with stronger contrast during the binocular sin-
gle vision. Finally, the whole image CPR is simply the mean of
all pixels in the combined map. The CPRs of our competitors are
computed similarly, except that no maximum operation is needed
for [Huang et al. 2009] as their method synthesizes only a single
image. From the statistics, our method outperforms our competi-
tors. Chua’s score is much lower because of the false contours.

User Study on Functionality To directly evaluate our effective-
ness, we invite 8 CVD individuals (2 deuteranopes and 6 deutera-
nomalous of age 18 to 27) with different severity to participate in a

Figure 10: Example test images for CVD audiences user study. (a)
Ishihara test image. (b) Color chart. (c) Natural image with color
region indistinguishable for CVD audiences.

user study. Before the test, we first perform a short Ishihara test to
classify the CVD type of each participant, then perform calibration
to obtain his/her personal projection matrix, for generating results
that tailored for each participant. Fifteen test images are chosen for
the experiment. They contain Ishihara test images, color charts, and
natural images (Fig. 10). All test cases exhibit at least one or more
places where CVD individuals cannot distinguish colors. Test cases
are presented to the participants in a random order.

During the experiment, we compare the visual experience of CVD
audiences in using our solution to that of wearing tinted glasses
(Enchroma Cx lenses), and that of two existing methods, [Huang
et al. 2009] and [Chua et al. 2015]. We set up the experiment using
a stereoscopic display on the laptop ASUS G750JX. Its displaying
luminance is around 250 cd/m2 and its size is 17.3 inches. User s-
tudies are conducted indoor with an ambient illumination of around
200 lux and the laptop display is calibrated with the colorimeter
Spyder 3 in the same lighting condition. The display screen is po-
sitioned at 0.5 meter away from the participant. During testing our
solution and [Chua et al. 2015], they have to wear the shutter glass-
es in which the images are presented to them in a dichoptic way. For
tinted-glasses solution, participants wear the tinted glasses and are
presented with the input images. For testing [Huang et al. 2009],
participants are monocularly presented with the recolored images
without wearing any glasses. Monocular presentation of the origi-
nal input images to CVD participants without wearing any glasses
is also provided as the control.

During the survey, we ask the CVD participants with questions on
the functionality and the comfortability of the compared solutions.
For functionality, we ask whether CVD participants can distinguish
the colors and acquire the visual information. Since the nature of
the types of test images are quite different, the way we query are
adjusted accordingly for each type of images. For Ishihara test im-
ages, participants are asked to tell the number or object embedded
in the image. For color chart images, participants are asked to link
the color legend with the color regions in the chart. Only when they
can correctly link all colors will the answer be considered as cor-
rect. For natural images, participants are asked to point out whether
two circled regions are in difference colors (Fig. 10(c)). For each
test case, we ask the participants twice, each with a different circled
region pair. One of them is fake, i.e. the circled region pair is of the
same color. Only when both questions are answered correctly, we
regard the answer as correct.

Fig. 11(a) plots the average correctness of the above four solutions
together with the control. The breakdown statistics for each type
of test images can be found in Fig. S38 of the supplement. The
vertical interval on each bar corresponds to the 95% confidence in-
terval of user correctness. In general, all four solutions improve
the correctness when compared to the control. Except for the type
of natural images, the tinted glasses solution is inferior than the



Method Mean Standard
Deviation

95% confidence interval
Upper bound lower bound

Chua 88.3% 32.1% 94.1% 82.5%
Our 90.8% 28.9% 96.0% 85.6%

Table 2: Stable vision. The statistics above shows the percentage
that stable vision is formed for Chua’s and our methods.

control. To ensure the statistics is meaningful, we further apply
the one-way analysis of variance (ANOVA) with a significant level
0.05 and a commonly used post hoc analysis method, least signif-
icant difference (LSD), to evaluate the result. Statistics shows that
the difference between the control and tinted-glasses method is not
significant, and that between the control and each of the three re-
coloring methods (Chua’s, Huang’s, and our methods) are statisti-
cally significant (p-values are much smaller than 0.05). That means
the improvement of wearing tinted glasses is not significant, while
the other three solutions improve the color distinguishability. In
terms of functionality, our method is statistically better than Chua’s
method, and comparable to Huang’s method. Note that Huang’s
method is designed without the consideration of normal vision au-
diences. Detailed statistics can be found in table S1 to S5 of the
supplement.

Even if the participants can correctly answer, they may not be cer-
tain. So we also record their certainty of the correct answers.
The certainty is in the scale of 1 to 5, with 5 being very certain.
Fig. 11(b) plots the average certainty of each solution. From this
overall statistics, there is no statistically significant differences in
certainty between the control and each of the four solutions. Look-
ing into the breakdown statistics of color chart images, the certain-
ties of tinted glasses and Chua’s method are significantly lower than
that of the control. For the natural images, our method significantly
improves the certainty and outperforms all competitors.

User Study on Comfortability Next, we evaluate the visual
comfortability. As three out of four solutions require CVD partic-
ipants to wear extra glasses, these three (the tinted glasses, Chua’s
and ours) certainly have a lower comfortability. We ask the user to
grade their overall comfortability of these two solutions, again in
the scale of 1 to 5, with 5 being the most comfortable. Fig. 11(c)
plots the statistics. From the overall statistics, our solution is signif-
icantly better than tinted-glasses and Chua’s method. CVD partic-
ipants complain that tinted-glasses color the whole view, and leads
to unnatural viewing experience, while Chua’s solution introduces
too much false contours. Similar observation is found in the break-
down statistics, except for the Ishihara image type, in which Chua’s
method and ours are comparable.

The second test is on binocular rivalry and is only for Chua’s and
our method, both utilize binocular display and dichoptic presenta-
tion. For each test case, we ask the participants whether the im-
age pair can form a stable percept. Table. 2 shows the stability of
perceived images (we assume our data follows normal distribution
and calculate confidence intervals according to t-distribution table).
Stable vision are generally formed in around 88.3% in Chua’s re-
sults. This is as expected since all their results are produced under
a certain amount of luminance deviation, which is below the rival-
ry threshold shown in their paper. The percentage of stable vision
for our method is higher than Chua’s, around 90.8%. Note that our
optimization can only minimize, not eliminate, the chance of binoc-
ular rivalry. If the test case is very tough, it is possible the system
has to pay less attention on the fusibility to trade for distinguisha-
bility and deviation. This happens in the cases of Ishihara images.
These test cases are so tough that our competitors even cannot gen-
erate solutions (the top row of Fig. 12(g)&(h)). Our method has
to relax the fusibility to generate solutions, leading to the higher

Method Mean Standard
Deviation

95% confidence interval
Upper bound Lower bound

Huang 6.0% 23.7% 10.3% 1.7%
Chua 38.0% 48.5% 46.8% 29.2%
Ours 84.7% 36.0% 91.2% 78.2%

Table 3: Deviation from the originals for normal-vision audiences

chance of binocular rivalry.

The third test is on the visual preference. This test is always the
last among all tests for CVD participants. We tell the participants
the right answer for each test case and present them the solutions of
all competitors again. Ask them to grade their preference on each
solution in the scale of 1 to 5, with 5 being the most preferred. The
tinted-glasses and Chua’s solution are the most unpopular, while
Huang and our methods are comparable. Nevertheless, our solution
offers the extra visual shareability with normal-vision audiences.

User Study on Visual Shareability We evaluate the visual
shareability by studying the visual experience of normal-vision au-
diences when they are presented with the recolored images. We in-
vited 10 participants with normal vision (age 18 to 30). Fifteen test
images previously used for the above CVD user study are reused
here. In each test session, the participant is presented with a 2×2
matrix of panels of images on the same stereoscopic display with
the same illumination condition set up for the CVD user study. The
normal- vision audiences do not wear any glasses. The top-left pan-
el shows the original input images. The other three panels show the
recolored images by [Huang et al. 2009], [Chua et al. 2015], and
ours in a random order. Our and Chua’s image pairs are displayed
via the stereoscopic display, and hence effectively, the blending re-
sults of left and right images are presented to the participants.

During the experiment, participants are asked to select one or more
results, that are closest to the original input, out of the three pan-
els. We allow participants to choose more than one results when
there is a tie. Table 3 shows the percentage of participant selections
for all three solutions. Our results are selected over 84% of cases.
This confirms to the statistics in quantitative evaluation, and evi-
dences that our method introduces the minimal change. Note that
for the remaining 16%, participants prefer our competitors’ results
because they make little changes on the original images, which also
makes them fail to produce color-distinguishable solution (for CVD
audiences).

Video Extension Video extension is an obvious next step to pur-
sue. Machado and Oliveira [2010] and Huang et al. [2011] also
consider temporal consistency in their methods, by sacrificing the
deviation term a bit. Although our method is originally designed
for static images, we have evaluated its feasibility in extension to
video, via a naive strategy to maintain the temporal coherence. As
each frame is synthesized with the corresponding Taylor parameter
values, we can apply a temporal Gaussian filter (of a window size
of 11 frames) on the parameter values. A result can be found in the
supplementary materials.

To evaluate the result of video extension, we invite 8 deuteranopes
and 10 normal people to perform a preliminary user study. One
video is tested in this study. CVD participants are asked to watch
the original video first, followed by our recolored video (wearing
the stereo-glass). They are asked whether the color contrast in the
recolored video is enhanced, and whether there exist any abrupt col-
or changes in the recolored video. All CVD participants agree that
our method improves the color contrast when compared to the origi-
nal video, and 7 out of 8 CVD participants cannot aware of any tem-



Figure 11: Results of user study on functionality and comfortability.

poral incoherence of the recolored video. For normal-vision partic-
ipants, they are presented with the original and recolored videos
in a side-by-side manner, and are asked to rate the color similarity
between the two videos. The rating options include “not similar at
all,” “slightly similar,” “moderately similar,” “almost the same” and
“totally the same.” All of them rate the video as “almost the same”
or “totally the same.” This pilot test looks promising. Nevertheless,
we believe a more sophisticated algorithm may be needed for more
challenging video cases, and a more thorough evaluation may be
required. This is out of the scope of this paper and should be our
future direction.

Limitations Although our system can be calibrated for the target
CVD audience, it can serve for only one type of CVD audiences
at a time (either protanopia, deuteranopia or tritanopia). When the
CVD audiences are in the same CVD type but different severity, we
may calibrate our system according to the most severe individual so
as to ensure the distinguishability for all audiences. Our current im-
plementation also assumes that both eyes own the same type and the
same severity of CVD. If this does not hold, we need to separately
model the projection matrices for left and right eyes. We believe
that, by modifying the implementation and utilizing binocular sup-
pression, we can still generate a good solution. Another assumption
is that the perceived image of normal audiences is the linear blend-
ing of left and right images on the screen, and here we ignore the in-
fluence of the nonlinear gamma correction of the display. BVCP is
originally designed for normal-vision audiences. In this paper, we
basically assume the BVCP model can be applied to CVD individu-
al. Another limitation is that our method relies on the validity of the
physiologically-based simulation of CVD vision. If the simulation
cannot accurately model the visual perception of CVD individual,
we may fail to produce good result for CVD individual. Fortunate-
ly, the CVD simulation in our recoloring optimization framework
is replaceable. If a more accurate CVD simulation model is pro-
posed in the future, we can simply replace our current model with
the more advanced one. Recoloring-based techniques can be ap-
plied on digital visual content only, this limits its applications in
comparison with the optical approach. Our current implementation
is not real-time, further optimization is required.

7 Conclusions

By utilizing the extra display channel of stereoscopic display, we
present the first system that allows CVD and normal-vision au-
diences to share the same visual content seamlessly and simulta-
neously, without sacrificing the original image color for normal-
vision audiences or sacrificing the color distinguishability for CVD
audiences. By wearing the stereoscopic glasses, CVD audiences
can identify the indistinguishable colors. Without wearing the
stereoscopic glasses, normal-vision audiences are presented with
the blending of the left and right images, which is very close to the
original image. We solve the image pair recoloring problem as opti-
mization of an objective function that minimizes the color deviation
for normal-vision audiences, and maximizes the color distinguisha-

bility and binocular fusibility for CVD audiences. Via extensive
quantitative experiments and user studies, we demonstrate the ef-
fectiveness of the proposed method.

So far, we have tackled the still images and performed a pilot test on
its extension to video. More sophisticated algorithm may be needed
for maintaining the temporal coherence of more challenging cases
(that may reduce the solution space) and further in-depth evaluation
is necessary. This will be our future direction. Currently we do not
consider the visual attention. We believe if the visual attention is
taken into account, some of the constraints can be further relaxed
and lead to an even larger solution space.
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BRETTEL, H., VIÉNOT, F., AND MOLLON, J. D. 1997. Comput-
erized simulation of color appearance for dichromats. JOSA A
14, 10, 2647–2655.

CHUA, S. H., ZHANG, H., HAMMAD, M., ZHAO, S., GOYAL, S.,
AND SINGH, K. 2015. Colorbless: Augmenting visual infor-
mation for colorblind people with binocular luster effect. ACM
Transactions on Computer-Human Interaction (TOCHI) 21, 6,
32.

FARNSWORTH, D. 1957. The farnsworth-munsell 100-hue test for
the examination of color discrimination.

GOOCH, A. A., OLSEN, S. C., TUMBLIN, J., AND GOOCH, B.
2005. Color2gray: salience-preserving color removal. ACM
Trans. Graph. 24, 3, 634–639.

GRAHAM, C., AND HSIA, Y. 1959. Studies of color blindness: a
unilaterally dichromatic subject. PNAS 45, 1, 96.

GRUNDLAND, M., AND DODGSON, N. A. 2007. Decolorize:
Fast, contrast enhancing, color to grayscale conversion. Pattern
Recognition 40, 11, 2891–2896.

HARTENBAUM, N. P., AND STACK, C. M. 1997. Color vision
deficiency and the x-chrom lens. Occupational health & safety
(Waco, Tex.) 66, 9, 36.



HOVIS, J. K. 1997. Long wavelength pass filters designed for the
management of color vision deficiencies. Optometry & Vision
Science 74, 4, 222–230.

HOWARD, I. P. 2002. Seeing in depth, Vol. 1: Basic mechanisms.
University of Toronto Press.

HUANG, J.-B., TSENG, Y.-C., WU, S.-I., AND WANG, S.-
J. 2007. Information preserving color transformation for
protanopia and deuteranopia. Signal Processing Letters, IEEE
14, 10, 711–714.

HUANG, J.-B., CHEN, C.-S., JEN, T.-C., AND WANG, S.-J.
2009. Image recolorization for the colorblind. In ICASSP, 1161–
1164.

HUANG, C.-R., CHIU, K.-C., AND CHEN, C.-S. 2011. Tempo-
ral color consistency-based video reproduction for dichromats.
Multimedia, IEEE Transactions on 13, 5, 950–960.

HUNG, P., AND HIRAMATSU, N. 2013. A colour conver-
sion method which allows colourblind and normal-vision peo-
ple share documents with colour content. Tech. rep., tech. rep.,
Konica Minolta Tech. Report.

ICHIKAWA, M., TANAKA, K., KONDO, S., HIROSHIMA, K.,
ICHIKAWA, K., TANABE, S., AND FUKAMI, K. 2004. Pre-
liminary study on color modification for still images to realize
barrier-free color vision. In Systems, Man and Cybernetics, 2004
IEEE International Conference on, vol. 1, 36–41.

JEFFERSON, L., AND HARVEY, R. 2006. Accommodating color
blind computer users. In SIGACCESS, 40–47.

JEFFERSON, L., AND HARVEY, R. 2007. An interface to sup-
port color blind computer users. In Proceedings of the SIGCHI
conference on Human factors in computing systems, 1535–1538.

JUDD, D. B. 1948. Color perceptions of deuteranopic and
protanopic observers. J. Res. Natl. Bur. Stand 41, 247–271.

JUDD, D. B. 1966. Fundamental studies of color vision from 1860
to 1960. PNAS 55, 6, 1313.

KONDO, S. 1990. A computer simulation of anomalous color
vision. In Color Vision Deficiencies, Symp. Int. Res. G. on CVD,
145–159.

KUHN, G. R., OLIVEIRA, M. M., AND FERNANDES, L. A. 2008.
An efficient naturalness-preserving image-recoloring method for
dichromats. Visualization and Computer Graphics, IEEE Trans-
actions on 14, 6, 1747–1754.

KUHN, G. R., OLIVEIRA, M. M., AND FERNANDES, L. A. 2008.
An improved contrast enhancing approach for color-to-grayscale
mappings. The Visual Computer 24, 7-9, 505–514.

LACCARINO, G., MALANDRINO, D., DEL PERCIO, M., AND S-
CARANO, V. 2006. Efficient edge-services for colorblind users.
In WWW, 919–920.

LAU, C., HEIDRICH, W., AND MANTIUK, R. 2011. Cluster-
based color space optimizations. In Computer Vision (ICCV),
2011 IEEE International Conference on, IEEE, 1172–1179.

LEI, L., AND SCHOR, C. M. 1994. The spatial properties of
binocular suppression zone. Vision research 34, 7, 937–947.

LU, C., XU, L., AND JIA, J. 2012. Contrast preserving decol-
orization. In ICCP, 1–7.

MACHADO, G. M., AND OLIVEIRA, M. M. 2010. Real-time
temporal-coherent color contrast enhancement for dichromats.
In Comput. Graph. Forum, vol. 29, 933–942.

MACHADO, G. M., OLIVEIRA, M. M., AND FERNANDES, L. A.
2009. A physiologically-based model for simulation of color
vision deficiency. IEEE Trans. Vis. Comput. Graph. 15, 6, 1291–
1298.

MACMILLAN, E. S., GRAY, L. S., AND HERON, G. 2007. Vi-
sual adaptation to interocular brightness differences induced by
neutral-density filters. Investigative ophthalmology & visual sci-
ence 48, 2, 935–942.

MEYER, G. W., AND GREENBERG, D. P. 1988. Color-defective
vision and computer graphics displays. IEEE CGA 8, 5, 28–40.
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Figure 12: Visual comparison of results. Column (a) shows the input. (b),(c)&(d): Results from Huang’s, Chua’s and our method as in
normal vision. (e) Input in CVD simulation. (f),(g)&(h): Results from Huang’s, Chua’s and our method as in CVD simulation. Note that
Chua’s and our results are image pairs for CVD audiences. False contours can be found in red boxes.


