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Figure 1: By utilizing the binocular single vision phenomenon, we can generate binocularly tone-mapped image pair that can collectively
present more visual richness to human observers than just a single tone-mapped image. LDR image pairs can be better inspected on computer
screen.

Abstract

By extending from monocular displays to binocular displays, one
additional image domain is introduced. Existing binocular display
systems only utilize this additional image domain for stereopsis.
Our human vision is not only able to fuse two displaced images, but
also two images with difference in detail, contrast and luminance,
up to a certain limit. This phenomenon is known asbinocular sin-
gle vision. Humans can perceive more visual content via binocu-
lar fusion than just a linear blending of two views. In this paper,
we make a first attempt in computer graphics to utilize this human
vision phenomenon, and propose a binocular tone mapping frame-
work. The proposed framework generates a binocular low-dynamic
range (LDR) image pair that preserves more human-perceivable
visual content than a single LDR image using the additional im-
age domain. Given a tone-mapped LDR image (left, without loss
of generality), our framework optimally synthesizes its counterpart
(right) in the image pair from the same source HDR image. The two
LDR images are different, so that they can aggregately presentmore
human-perceivable visual richness than a single arbitrary LDR im-
age,without triggering visual discomfort. To achieve this goal, a
novelbinocular viewing comfort predictor (BVCP) is also proposed
to prevent such visual discomfort. The design of BVCP is based on
the findings in vision science. Through our user studies, we demon-
strate the increase of human-perceivable visual richness and the ef-
fectiveness of the proposed BVCP in conservatively predicting the
visual discomfort threshold of human observers.
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1 Introduction

The popularity of 3D movies leads to the wide availability of low-
cost binocular display devices. While the dual display domains (one
for the left eye and the other for the right eye) double the space of
visualization, existing binocular displays only serve for one type
of binocular vision, stereopsis. Another commonly experienced
binocular vision phenomenon in our daily life isbinocular single
vision (or singleness of vision), i.e. images from two eyes are fused
and perceived as a single percept, even though these two images are
different (Fig. 2) [Howard and Rogers 2002]. Such image fusion is
not a simple blending, but acomplex non-linear neurophysiologi-
cal process [MacMillan et al. 2007]. The first two rows of Fig. 2
illustrate the difference between fusion (the third column) and the
linear blending (the fourth column). In addition, it tends to retain
higher contrast, sharply focused, and brighter content from either
view during the single percept formation [Steinman et al. 2000].
In other words, via the dual display, it is feasible to present more
human-perceivable visual content than any single image, as our vi-
sion can naturally combine two images without being aware of the
difference between two images.

Unlike binocular display, high-dynamic range (HDR) display is less
accessible to the general public. Even though tone mapping can
be adopted to present the HDR content on a low-dynamic range
(LDR) display, there is a tension between displaying large-scale
contrast and fine-scale details. Striking a good balance is always
challenging. In this paper, we explore the possibility to utilize ex-
isting LDR binocular display to simultaneously present the contrast
and details in HDR images by proposing abinocular tone mapping
framework. Given an HDR image and its tone-mapped LDR im-
age (left view, without loss of generality) generated by one of the
existing tone mapping techniques, our framework optimally syn-



thesizes its counterpart (right) LDR image in the binocular image
pair. So that, through the phenomenon of binocular single vision,
the two LDR images aggregately present more human-perceivable
visual content than any arbitrary single LDR image. For example,
in Fig. 1, one image within each pair presents more global contrast
while the other presents more local details. We demonstrate the
effectiveness of increasing visual richness via a user study.

Obviously, we want two views to be as different as possible in order
to retain more visual content from the source HDR. However, there
is a limit on the difference between two views. When such limit is
exceeded, binocular viewing discomfort appears, and even worse,
binocular single vision may fail. Such viewing discomfort [Lam-
booij et al. 2009] is an important health issue receiving much atten-
tion, due to the wide availability of 3D displays. To guarantee a sta-
ble formation of binocular single vision and avoid viewing discom-
fort, we propose a novel metric calledbinocular viewing comfort
predictor (BVCP) to guide the binocular tone mapping. Instead of
studying the cause of visual discomfort, we derive our BVCP based
on the findings in vision science and the experimental results in ex-
isting literature. As the first attempt to predict visual discomfort,
we intentionally design the BVCP metric in a conservative man-
ner, in order to avoid visual discomfort for most individuals. Our
optimization-based framework generates the right tone-mapped im-
age with the goal of maximizing the overall visual information con-
tent, under the guidance of BVCP. We demonstrate the validity of
such metric by a user study. Our contributions can be summarized
as follow:

• To our best knowledge, this is the first attempt in the graph-
ics area to enrich the visual experience with binocular single
vision.

• The design of a novel metric to measure the viewing discom-
fort due to binocular content difference.

• The utilization of an optimization-based binocular tone map-
ping framework to produce LDR image pairs that preserve
more human-perceivable visual content than arbitrary single
image, while simultaneously avoiding viewing discomfort.

2 Related Work

Binocular Single Vision Our visual system has the ability to
combine different images from our two eyes into a single vi-
sion [von Helmholtz 1962]. Such phenomenon is a separate and in-
dependent process from stereopsis [O’Shea 1983]. While binocular
single vision occurs only in a small volume of retinal area around
where our eyes are fixating, stereopsis occurs at places even where
our eyes are not fixating (when images of object appear double). It
was discovered that such fusion process is a non-linear combina-
tion of luminance, contrast, and color. To prove this, MacMillan et
al. [2007] measured the interocular brightness response using asym-
metrical neutral density filters and Baker et al. [2007] measured the
interocular contrast response using sine-wave gratings.

This non-linear fusion is a complicated neurophysiological proce-
dure and is generally regarded as a combination ofbinocular fusion
andsuppression [Ono et al. 1977; Steinman et al. 2000]. Binocular
fusion is a process of superimposing and combining similar con-
tent from the two views into one unified and stable percept, which
happens when the two views are similar or identical (Fig. 2, upper
row). Binocular suppression occurs when one view (submissive) is
blank, significantly dimmer, much more blurry, or has significantly
less contrast than the other (dominant). In this case, a single per-
cept is formed in our vision system by smartly turning off all or
part of the submissive view (Fig. 2, middle row). However, when
the two views are too different (e.g. Fig. 2, bottom row), an undesir-

Figure 2: Fusion, suppression and rivalry. (Top row) Binocular
fusion occurs when the two dichoptic images are similar; (mid-
dle row) binocular suppression happens when there is a submis-
sive view; (bottom row) binocular rivalry, continuous alternation
between the two views, occurs when the difference between two
views is too large.

able phenomenon,binocular rivalry, occurs. In this case, the result
is a non-converging percept composed of continuously alternating
“patches” from the two views [Lei and Schor 1994], as both stimuli
are too strong and none of them can suppress the other. Obviously,
such continuous alternation can be noticed by viewers and cause
viewing discomfort. Besides binocular rivalry, sometimes binocu-
lar suppression may also lead to visual discomfort when the stimu-
lus is too strong. A halo or drifting can be observed as a result of
inhibitory effect at the center-surround receptive fields excited by
the contour [Lei and Schor 1994].

The above discomforts can greatly destroy the visual experience.
Hence, we need an assessment for the binocular viewing comfort.
This assessment sounds like an image similarity metric. There
are several existing metrics, including mean squared error (MSE),
structural similarity (SSIM) [Wang et al. 2004], perception-oriented
metrics Visible Difference Predictor (VDP) [Daly 1993] and its ex-
tension High Dynamic Range Visible Difference Predictor (HDR-
VDP, HDR-VDP-2) [Mantiuk et al. 2005; Mantiuk et al. 2011].
Note that existing metrics consider the visible difference between
two images when the observers look at these images withboth of
their eyes. However, these existing metrics are not considering the
binocular vision in which the left and right eyes of observers are
presented with two different images. An obvious shortcoming of
existing metrics can be illustrated by binocular suppression (Fig. 2,
middle row) where two images are obviously different using any ex-
isting metric, even though a stable percept can be formed. Hence,
none of the existing metrics can be applied. In this paper, we design
a brand new metric, named Binocular Viewing Comfort Predictor
(BVCP), based on theories and experimental results of vision sci-
ence, to suit our purpose.

Tone Mapping Several sophisticated tone mapping techniques
have been proposed to generate LDR images from HDR images.
Reinhard [2006] provided a comprehensive survey on tone map-
ping techniques, ranging from sigmoidal compression to image ap-
pearance model, and to perception and engineering-based methods.
Tone mapping methods can be roughly classified into global and
local operators. Histogram adjustment methods and adaptive log-
arithmic mapping such as [Larson et al. 1997; Drago et al. 2003]
are two main categories of global operators. On the other hand,
there are also several prevalent local operators, such as bilateral fil-



Figure 3: System overview.

tering approach [Durand and Dorsey 2002], gradient domain opti-
mization [Fattal et al. 2002] and perceptual-based contrast process-
ing [Mantiuk et al. 2006].

Instead of proposing a brand new tone mapping operator, in this
paper we propose a binocular tone mapping framework that utilizes
existing tone mapping operators as our building block to generate
two LDR images that optimally increase the human-perceivable vi-
sual content without triggering discomfort. In particular, our frame-
work has been evaluated with four state-of-the-art tone mapping
methods, including bilateral filtering approach [Durand and Dorsey
2002], gradient domain HDR compression [Fattal et al. 2002],
adaptive logarithmic mapping [Drago et al. 2003] and perceptual-
based contrast processing [Mantiuk et al. 2006].

3 Overview

An overview of our binocular tone mapping framework is illus-
trated in Fig. 3. The input is an HDR image. A LDR image is first
tone-mapped from this source HDR image using a selected tone
mapping operator (the upper path in Fig. 3). The parameter(s) for
generating the LDR image can be manually specified or automat-
ically suggested by the operator (default parameters). Currently,
our system supports four state-of-the-art tone mapping operators as
described previously. Other tone mapping operators may also be
adopted.

Without loss of generality, we refer to this LDR image as the left
image. Our goal is to generate the optimal right LDR image us-
ing the same tone mapping operator as the left one, by maximiz-
ing the visual difference between two views and avoiding any vi-
sual discomfort. The optimization framework generates the optimal
right view by iteratively adjusting the tone mapping parameters in a
gradient ascent fashion. The iteration continues until the objective
value converges (the lower path in Fig. 3).

Our objective function composes of two metrics,visible differ-
ence predictor (VDP) [Daly 1993] and a novelbinocular viewing
comfort predictor (BVCP) (Section 4), corresponding to the total
amount of visual content and the viewing comfortability, respec-
tively. The BVCP is put as a hard constraint such that any LDR
image pair leading to discomfort is rejected. During each iteration,
we adjust the tone mapping parameters to follow the gradient as-
cent direction, based on the VDP of the current LDR image pair. If
the LDR image pair cannot pass the BVCP, we then reduce the step
size of gradient ascent.

Since the gradient ascent approach is sensitive to initial values, it
can be easily trapped by local optimum. To raise the chance of
finding global optimum, we distributen random seeds in the search
space and search forn paths accordingly. The final output is the
best among then pairs. In our current experiments,n=10.

Figure 4: Fusional area. Figure 5: Contour dominance.

4 Binocular Viewing Comfort Predictor

While tone mapping limits the visual content for display, binocular
tone mapping offers one additional domain for visualization. An
obvious way to exploit the dual image domain is to ensure the two
images span different dynamic ranges, in order to maximize the to-
tal amount of visual content. However, there is a limit on the differ-
ence between the two images. When such limit is exceeded, rivalry
and high level suppression appear and lead to visual displeasures,
such as flicker, nausea and fatigue.

To avoid such viewing discomfort, we introduce the novel BVCP
metric, based on current psychophysical studies [Levelt 1965; Liu
et al. 1992; Steinman et al. 2000; Kooi and Toet 2004]. In particular,
we measure the difference between the left and right images, in
terms ofcontour density, contrast, luminance, and color. The limit
of contour density can be relaxed when the contrast is small. This
phenomenon is called failure of rivalry, found by Liu et al. [1992].
Such relaxation allows more visual information to be represented.
Hence, we shall utilize this phenomenon in our BVCP design.

Fusional Area Whether two corresponding points in the left (L̃)
and right (̃R) images can be fused into a single percept or not re-
quires a complex consideration. The decision is not solely based on
the local colors of the two points, but based on the visual agreement
of neighborhoods surrounding the two points. This neighborhood
is calledPanum’s fusional area in literatures of vision science. Fu-
sional area is an area on our retina. In graphics terminology, fu-
sional area occupies a constant solid angle subtended at our eye.
When it is stimulated together with a given single retinal point in
the other eye, we form a single binocular percept [Steinman et al.
2000]. When both of viewers’ eyes fixate at a pixel with position
(i, j) in both left and right images, the whole fusional areas (both
left and right) surrounding the position(i, j) have to be considered
for fusion stability, in terms of contour, contrast, luminance and
color differences.

By projecting the fusional area to the screen via our pupil (Fig. 4),
we can compute the size of projected fusional area in terms of pixel
units. For simplicity, when we say fusional area, we mean the pro-
jected fusional area, from now on. Suppose the viewer is sitting in
front of the screen at distanced. We assume all pixels are projected
onto the screen equally and have a square shape (aspect ratio = 1).
The pixel density on the screen isγ pixels per inch (PPI). Fig. 4
explains the notations. The radius of the fusional area in pixel unit
can be computed as,

r f = γ tanθ ·d, (1)

whereθ is the maximal retinal disparity, which is around 60 to 70
arcmin [Wopking 1995] for most people. Hence, the fusional area
ζ in the image is a circular neighborhood of radiusr f . To simplify



Figure 6: Motor fusion and sensory fusion.

our computation, we approximate the neighborhood by a rectangle
of 2r f × 2r f pixels instead. Note thatr f is a function of viewing
distanced, which means the viewing distance affects the viewing
comfort.

As viewers’ eyes may fixate at an arbitrary pixel position in the im-
age pair, we need to go over all pixel pairs from the LDR image pair
and consider their corresponding fusional areas in order to measure
the fusion stability. From now on, all following assessments con-
sider the fusional areaζ at an arbitrary position(i, j). The corre-
sponding fusional areas in the left and right images are denoted as
L andR.

Contour Fusion It has been found that thecontour (edge) dif-
ference is more important than the contrast or color differences in
determining binocular fusion [Treisman 1962]. Fig. 5 illustrates
this idea. Although the images in the upper image pair are dif-
ferent in terms of color and contrast, they can still be fused be-
cause their contours are very similar. On the other hand, even the
color and contrast are very similar, the lower image pair cannot be
fused (i.e. rivalry) as their contours are noticeably different. Note
that, when two areas have similar contours, only extremely large
color difference or contrast inversion may result in rivalry (to be
explained later).

Contour fusion does not require contours in the two corresponding
fusional areasL and R to be exactly the same, because our eyes
have two mechanisms,motor fusion andsensory fusion. Motor fu-
sion superimposes corresponding points or similar contour by the
movement of our eyes. After the alignment by motor fusion, a neu-
rophysiological process, sensory fusion, combines the two views
into one unified percept. As illustrated in Fig. 6, left and right
views are first aligned to superimpose the ‘disk’ by motor fusion,
then the ‘cross’ and ‘triangle’ are both fused into the final percept
by sensory fusion. So the precondition of sensory fusion is that
part of the contour can successfully trigger motor fusion. We need
to evaluate the percentage of contour that can be aligned by mo-
tor fusion as a guidance of whether a stable fusion can be formed.
Blake and Boothroyd [1985] demonstrated that areas containing
50% matched and 50% unmatched contour segments can still be
successfully fused.

Contour (edge) has different definitions in different domains. In our
paper, a meaningful contour segment is defined as obvious color
difference expanding to, or beyond a specified visual degree. To
figure out as many contour segments as we can, a scale space rep-
resentation is applied to the fusional area. We construct a pyramid
from the original fusional area. First, we Fourier transform this fu-
sional area to the frequency domain. Then we apply a pyramid of
low-pass filters in this frequency domain (Fig. 7, upper row). By
inversely Fourier transforming each low-passed frequency images,
we obtain a pyramid of low-passed fusional areas (Fig. 7, lower
row). The low-pass filter we selected is called mesa filter [Watson
1987; Daly 1993]. It can be approximately regarded as a kind of
truncation at half-amplitude frequency. Such frequency property

Figure 7: Mesa pyramid.
Figure 8: Failure of Ri-
valry.

confirms with our requirement in determining thefailure of rivalry,
which will be discussed later. This is the rationale why we selected
the mesa filter. Suppose the pyramid hasK levels in total, the radius
of the level-0 kernel isr f pixels while that of level-(K −1) kernel
is 1 pixel.

We then define the contour based on the concept of visual acuity
(VA). A well-designed diameter of letter ‘C’ or height of letter ‘E’
in Landolt C and Tumbling E Chart, is 5 times of the visual acu-
ity. Hence, we define contour segment to be meaningful when its
occupied visual degree reaches or exceeds 5·VA (a typical human
eye has the visual acuity to separate 1−2 arcmin). Thus the lowest
level of mesa pyramid involved in our computation should be level
S with a width of less than or equal to (tanθ/ tan(VA/24)). With
such mesa pyramid, obvious color difference between two adjacent
pixels in each level is regarded as a segment of visible contour. For
each pair of fusional areasL andR, two mesa pyramids are set up
respectively. Thek-th level of the pyramids are denoted asLk and
Rk, wherek ∈ [S,K −1].

To identify a contour, we measure the color difference∆Ec between
the adjacent pixels. It is defined as a 2-norm distance of their colors
in LAB color space. Consider Fig. 9, the color difference between
a pair of pixels (red and blue pixels) with positions,p1 and p2, in
the left image is

∆Lk(p1, p2) = ∆Ec(L
k(p1),L

k(p2)). (2)

Similarly, we can obtain∆Rk(p1, p2) for the right image. Now,
we can predict their fusion stateSk(p1, p2) (i.e. whether a con-
tour is recognized by viewers) by looking up a decision table (Ta-
ble 1), with ∆Lk(p1, p2) and∆Rk(p1, p2) as query. In this table,
JND stands for a constant calledjust noticeable color difference
andOCD stands for another constant calledobvious color differ-
ence. According to existing studies [Chen and Wang 2004; Lin and
Jane 2009], we set JND=2.3 and OCD=6.0. If both∆Lk(p1, p2)

and∆Rk(p1, p2) are less than OCD, no contour is recognized. So,
the fusion state is set to be 0 (stands for ‘no contour’). If both
of them reach OCD, two obvious contour segments are recognized
and fused together. Hence the fusion state is set to be 1 (stands for
‘match’). Confusion appears only when one of the color differences

Figure 9: Contour matching.

H
H
H
H

∆Lk
∆Rk

<J J∼O >O

<J 0 0 −1

J∼O 0 0 1

>O −1 1 1

Table 1: Decision table for contour
fusion where J=JND, O=OCD.



reaches OCD, while the other falls below JND, in that case the fu-
sion state is set to be -1 (stands for ‘not match’). If one reaches
OCD and the other falls between JND and OCD, it can still be re-
garded as support for existence of contour. Hence the state is 1 too.

Thek-th level of two corresponding fusional areas (Lk andRk) are
regarded as fusible if the count of ‘1’ (match) is equal to or larger
than the count of ‘-1’ (not match). On the other hand, if the count
of ‘1’ is smaller than that of ‘-1’,Lk andRk are not fusible. If both
Lk andRk contain no contour, contour fusion takes no effect, and
the final fusion state is determined by other levels. Here, we record
the contour fusion state of two fusional areas at thek-th level in
the pyramid with a state variableBk

c f as follows (0 stands for ‘no
contour’, 1 stands for ‘fused’, and -1 stands for ‘not fused’),

Bk
c f =





0, if ∑(p1,p2)∈ζ
∣∣Sk(p1, p2)

∣∣= 0
1, else if ∑(p1,p2)∈ζ

(
Sk(p1, p2)

)
≥ 0

−1, otherwise
. (3)

Note that the contour fusion state at higher levels override the lower
ones, so

Bk−1
c f = Bk

c f if Bk
c f 6= 0, (4)

The final fusion state of two fusional areas is,

Bc f = BS
c f . (5)

Contour and Regional Contrasts The differences in luminance
can be generally referred to as contrast. Two types of contrast can
influence the binocular single vision, they are contour contrast and
regional contrast. Contour contrast coexists with contour if it can be
detected by human eye. Matched contour pair generally helps the
fusion except when their contrasts are obviously inversed. So, we
reviseSk(p1, p2) before evaluating Eq.3 as follows. When a pair of
matched contour has obviously inversed contrast, their fusion state
changes to−1 (‘not match’). The revised function is:

Sk(p1, p2) =−1, if
∣∣∣C

(
Lk(p1),L

k(p2)
)∣∣∣> OCD (6)

and
∣∣∣C

(
Rk(p1),R

k(p2)
)∣∣∣> OCD

and C
(

Lk(p1),L
k(p2)

)
·C

(
Rk(p1),R

k(p2)
)
< 0,

whereC(c1,c2) computes the lightness difference between the pixel
pair c1 andc2.

Regional contrast refers to the contrast between two regions (in
our case, the two corresponding fusional areas). It has a relatively
smaller impact on the viewing comfort (compared to contour fu-
sion), unless the two regions differ too much [Kooi and Toet 2004].
After studying existing literature, we adopt a restrictive constraint
for regional contrast, such that the average color difference between
two fusional areasL andR must be less than adistinct color dif-
ference (DCD). According to the existing study [Carter and Huer-
tas 2010], we setDCD = 34. The viewing comfort due to the re-
gional contrast (Brc), between two corresponding fusional areas, is
assessed by

Brc =





1, if ∑p∈ζ

(
∆Ec

(
L(p),R(p)

))
· 1
4r2

f
< DCD

−1, otherwise
, (7)

whereL(p) andR(p) are two corresponding pixels located at posi-
tion p in L andR, respectively.

( )a

( )b

Figure 10: Luminance
and freq. vs. contrast.
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Figure 11: The constructed log percent-
age contrast threshold.

Failure of Rivalry Normally when contour fusion fails, rivalry
or over-suppression occurs and leads to discomfort. However, it
was discovered that the occurrence of rivalry depends also on con-
trast. When contrast is below a certain threshold, a stable single
percept always forms regardless of the contour fusion criteria men-
tioned above. This phenomenon is calledfailure of rivalry and
more likely to happen in low-contrast regions. Fig. 8 illustrates
this phenomenon. The upper image pair cannot be fused because
of the contour difference. Conversely, the lower image pair has the
same contours but with much lower contrast and luminance. In this
case, they can still be fused thanks to the failure of rivalry. The
contrast threshold is a function of image luminance and spatial fre-
quency [Liu et al. 1992]. It is negatively related to the luminance
(Fig. 10(a), originated from Fig. 3 in [Liu et al. 1992]) while pos-
itively related to the spatial frequency (Fig. 10(b), originated from
Fig. 4 in [Liu et al. 1992]). The contrast is measured in log space
aslog percentage contrast between a pair of pixels,c1 andc2, ex-
pressed as,

P(c1,c2) = log10

∣∣∣∣
Γ(Y1)−Γ(Y2)

Γ(Y1)+Γ(Y2)

∣∣∣∣ , (8)

whereY1 andY2 are the normalized luma ofc1 andc2, respectively.
Γ(Y ) maps the normalized lumaY in [0,1] to the physical measure-
ment in the unit ofcd/m2.

Whenever the contrast value is below the contrast threshold, a sta-
ble single percept always forms. However, existing literature either
measure the contrast threshold against luminance or contrast thresh-
old against spatial frequency. To our best knowledge, no existing
method formulates such threshold as a function of both luminance
and spatial frequency, as required in our application. So we con-
struct the function based on the existing findings in the literature.
We first fit the plots (blue dots) in Fig. 10 to obtain two continuous
curves (red curves), expressed as,

T (l) = min
(
2, 1.999−0.362log10(l)+0.026log210(l)

)
, (9)

T ( f ) = min
(
2, log10(3.557−1.334f +1.881f 2−0.108f 3)

)
, (10)

wherel is average luminance measured incd/m2, f is the spatial
frequency measured in cycles per degree, andT represents log per-
centage contrast threshold. Whenl = 40cd/m2 and f = 5cy/deg,
Eq. 9 and 10 fixate at the same percentage contrast threshold. By



Figure 12: Visualization of BVCP assessment.

assuming the curvature is constant, we extrapolate a function of
both luminance and spatial frequency as

T (l, f ) = min
(

2, log10

(
3.557−1.334f +1.881f 2−0.108f 3

)

+0.514−0.362log10(l)+0.026log210(l)+δ
)
, (11)

whereδ is user parameter and is set to a value in[−0.15,0.15]. Its
default value is 0. Fig. 11 visualizes Eq. 11 in 3D.

Obviously, including the failure of rivalry in our metric allows us
to accept more pairs of LDR images and further maximize the in-
formation content of the optimal pair. To incorporate the failure of
rivalry into our metric, we first compute the average luminancelL
in the left fusional areaL asΓ(Y L), whereY L is the average luma
in L.

Recall that we Fourier transform the image into frequency domain
and perform mesa filtering, the difference between two adjacent
pixels in thek-th level of the filtered image pyramid can be roughly
regarded as a frequencyfk of r f /2k+1 cy/deg. Thus, the contrast
thresholdT k

L for the left fusional areaLk is obtained by feedinglL
and fk into Eq.11,

T k
L = T (lL, fk). (12)

Similarly, we can obtainT k
R . So their common thresholdT k is

min(T k
L , T k

R ). When the contrast is below this thresholdT k, sta-
ble fusion always forms and henceSk(p1, p2) can never be negative
(‘not match’). Thus, we take a second revision to the fusion state
variableSk(p1, p2), as follow

Sk(p1, p2) = 0, if Sk(p1, p2)< 0 (13)

and P(Lk(p1),L
k(p2))≤ T k

and P(Rk(p1),R
k(p2))≤ T k.

The Overall Fusion Predictor With the contour fusion predictor
Bc f and the regional contrast predictorBrc defined above, we can
now predict the ultimate viewing comfort for an arbitrary pair of
fusional areas by

B =

{
−1, if Brc =−1
Bc f , otherwise . (14)

When B = −1 (‘not fused’), viewing discomfort exists. Fig.12
shows a pair of LDR images and their BVCP assessment result ac-
cording to a viewing environment described in Section 6. Those
white pixels indicate the areas triggering viewing discomfort when
our eyes fixate at these locations.

So far, we have only discussed the BVCP test of two fusional areas.
An image pair passes the BVCP test only when all pixels pass the
BVCP test, i.e. no pixel in the image triggers visual discomfort (B=
−1). Obviously, this is a conservative design, as human observers
may be able to tolerate certain amount of pixels violating the BVCP.

5 Optimization

In general, the more different the left and right images are, the more
visual content they can preserve aggregately. To measure the visual
difference, we adopt thevisible difference predictor (VDP) [Daly
1993], that has been utilized in various applications [Myszkowski
1998]. Given a pair of images, the output of VDP is a probability
of detecting visible difference,V (i, j), at each pixel location(i, j).
The overall binocular visual differenceE is defined by

E =
1
Ω ∑

i, j

(
H[V (i, j)− τ]

)
, (15)

whereτ is a user-defined probability threshold and generally set as
75%. H is the Heaviside step function.Ω is the total number of
pixels in the image.

With the VDP and the proposed BVCP, our optimization frame-
work maximizesE without violating the BVCP (Fig. 3). Through-
out the optimization, the left image remains unchanged. Only the
right image is iteratively generated by adjusting the tone mapping
parameter(s) in a gradient ascent fashion. The pair of the left image
and the generated right image in the current iteration is evaluated
with the BVCP test. If the pair fails the BVCP test, the current right
image is rejected and the step size is reduced to generate a new one.
Such process is repeated until the BVCP test is finally passed or the
step size drops to zero. Fig. 13 plotsE against the parameters of
four tone mapping operators for an HDR example in Fig. 20. Since
the upper two tone mapping operators have only a single parameter,
their plots are 2D. On the other hand, the lower two tone mapping
operators have two parameters, their plots are 3D. The red region
in each plot indicates that the corresponding tone-mapped right im-
age will trigger visual discomfort. They are predicted by the BVCP.
The green dot corresponds to the tone mapping parameter(s) of the
left view.

6 Results and Discussions

The proposed framework is independent of the adopted tone map-
ping operators. In our current implementation, we support four
state-of-the-art tone mapping operators including bilateral filtering
approach [Durand and Dorsey 2002], gradient domain HDR com-
pression [Fattal et al. 2002], adaptive logarithmic mapping [Drago

Figure 13: Visualization of binocular visual differences of four tone
mapping operators for the HDR example in Fig. 20.



et al. 2003] and perceptual-based contrast processing [Mantiuk
et al. 2006]. Both global and local tone mappings are included
in these operators. The bilateral filtering approach [Durand and
Dorsey 2002] is a two-scale decomposition of the image into a base
layer, encoding large-scale variations, and a detail layer. Gradient
domain HDR compression [Fattal et al. 2002] manipulates the gra-
dient field of the luminance image by attenuating the magnitudes of
large gradients. Adaptive logarithmic mapping [Drago et al. 2003]
displays high-contrast scenes by logarithmic compressing the lumi-
nance values and imitating the human response to light. Perceptual-
based contrast processing [Mantiuk et al. 2006] enhances or com-
presses the contrast in a visual response space, in which the contrast
values directly correlate with their visibility in an image.

To demonstrate the effectiveness of the framework, we have ex-
perimented with all four operators on a rich variety of test images.
Fig. 14 shows four LDR pairs mapped from the same source HDR,
but with different tone mapping operators. In each pair, the left im-
age is tone-mapped with user-specified tone mapping parameters.
On the other hand, the right one is automatically optimized by our
framework to maximize the overall visual content without trigger-
ing visual discomfort. Note that the left and right images can be
interchanged without significantly affecting the visual experience.
The perceived binocular single percept generally preserves more
details (especially in Fig. 14(a)&(b)) and better contrast (especially
in Fig. 14(c)&(d)) than a single tone-mapped image. More results
can be found in the supplementary materials.

User Study To validate our method, we conducted two user stud-
ies. In our experiment set-up, we use a Zalman ZM-M215W 21.5”
3D LCD display with the highest luminance of around 300cd/m2

for displaying binocular images. The pixel density of the display is
102 PPI. The viewer is asked to sit at a distance of 0.5 meters from
the display and to wear a pair of 3D polarized glasses (with trans-
mittance of around 44%). All experiments are conducted indoor
with an ambient illumination of around 200 lux. Detailed statistics
of the user studies can be found in the supplementary materials.

Visual Richness The first user study evaluates the effectiveness of
our binocular tone mapping in terms of visual richness. It compares
bioptic image pairs (both views are identical) to dichoptic image
pairs (the two views are different). To fairly compare, the image of
bioptic pair is generated using the “best” parameter values, instead
of the default parameter values which may not be satisfactory for
certain HDR input. The “best” parameters are determined as follow.
For each HDR input, we first randomly generate 10 LDR images
with 10 sets of parameter values in the recommended parameter
range of the particular tone mapping operator. Then, 8 participants
are asked to choose the best (in terms of details and contrast) LDR

f: 0.600 f: 0.128b: 0.738 b: 0.820

a: 0.223
b: 0.930

a: 0.462
b: 0.944

s: 11.000
c: 3.600

s: 100.00
c: 2.280

(a) Drago (b) Mantiuk

(d) Fattal(c) Durand

Figure 14: Optimal LDR image pairs generated by our framework
using four tone mapping operators.

Mean
Standard 95% confidence interval

deviation Lower Bound Upper Bound

Drago 0.804 0.140 0.706 0.900

Durand 0.717 0.108 0.643 0.793

Fattal 0.753 0.101 0.683 0.823

Mantiuk 0.721 0.277 0.529 0.913

Table 2: User study of visual richness.

image among them. The top-rated one is then referred to as the
image of bioptic pair in the user study. The same image is also
referred to as one view of the dichoptic image pair, while the other
view is optimally determined by our framework. Fig.19 to 22 show
four such image pairs used in our user study.

All four tone mapping operators (Durand, Fattal, Drago and Man-
tiuk) and eight different HDR images (32 sets of image pairs in
total) are experimented in the user study. Thirty-five participants
are invited to evaluate these 32 sets of randomly displayed image
pairs. In each round, a dichoptic image pair and the corresponding
bioptic image pair are chosen for comparison. Note that the bioptic
image pair is presented to the participants via the same 3D glasses.
These two image pairs are shown in random order, i.e., the partic-
ipants do not know which one is the dichoptic image pair. Each
participant is then asked to select the one he/she prefers. We briefly
explain to them that he/she may consider the visual richness and/or
visual content clarity during selection. However, it is up to the par-
ticipants’ decision in selecting the preferred image pair. To allow
the participant to better inspect the image pairs, he/she can press a
button to toggle between these two image pairs during the selection.
Once the participant makes the decision, he/she can press a ‘select’
button.

Table 2 shows the statistics for four tone mapping operators. It is
clear that most participants prefer our binocularly tone-mapped re-
sults (80.4% for Drago, 71.7% for Durand, 75.3% for Fattal and
72.1% for Mantiuk). It also shows that our binocular tone mapping
can effectively preserve more visual richness than a single one, es-
pecially for the case with Drago’s operator. One possible explana-
tion is that global operators, like Drago’s, are generally more con-
strained than the local ones, leading to either more severe loss in
details or loss in contrast.

Binocular Symmetry Our second user study evaluates whether
the effectiveness of our binocular tone mapping is symmetric to
the left and right eyes. We conduct the previous visual richness
experiment again on 20 participants with the same data set (four
tone-mapping operators for eight different HDR images, 32 sets of
image pairs in total). However, this time these 32 sets of image
pairs are evaluated twice. In one of these two evaluations, the LDR
image generated by our framework is shown to the participants’
left eyes. While in the other evaluation, our generated LDR image
is shown to participants’ right eyes. Participants do not know which

Mean
Standard 95% confidence interval

deviation Lower Bound Upper Bound

Drago
R 0.788 0.169 0.671 0.904

L 0.825 0.167 0.709 0.941

Durand
R 0.706 0.135 0.613 0.800

L 0.738 0.095 0.671 0.804

Fattal
R 0.725 0.136 0.631 0.819

L 0.763 0.109 0.687 0.838

Mantiuk
R 0.731 0.225 0.575 0.887

L 0.738 0.285 0.540 0.935

Table 3: User study of binocular symmetry. L/R means the left/right
eye sees the images generated by our framework.



of their eyes are shown with our generated LDR images.

Table 3 compares the statistics from these two sets of evaluations. It
is clear that, no matter which optimal image is shown to which eye,
our binocular tone mapping can always effectively preserve more
visual richness than a single one. From the statistics, the left and
right eyes are slightly asymmetric. This confirms to existing study
on ocular dominance [Ehrenstein et al. 2005].

Predictability of BVCP Our third user study evaluates how
well our proposed BVCP predicts the discomfort limit of binoc-
ular vision. We conduct the experiment based on the classical
psychophysical methodology,method of adjustment [Norton et al.
2002]. Given an HDR image and a specific tone mapping operator,
we produce a sequence of 10 LDR image pairs labeled from 0 to
9. The left and right LDR images of the 0th image pair are equiv-
alent and are tone-mapped from the source HDR using a random
parameter set. As the label number increases, the left LDR im-
age remains unchanged throughout the whole sequence, while the
right LDR images are generated by linearly increasing/decreasing
the values of the most influential parameter of that particular tone
mapping operator. The actual increasing/decreasing step size of the
parameter value does not matter, provided that the sequence con-
tains discomfort image pairs. Fig. 15 shows one such sequence.
Five HDR images (1 to 5) and all four tone mapping operators are
tested, resulting in 20 sequences.

Twenty-two participants are invited to take part in the experiment.
They are asked to determine the discomfort limits of all 20 se-
quences. For each sequence, the participants are asked to search
among the 10 image pairs to find the image pair of discomfort
threshold, i.e. the image pair they begin to feel discomfort, and any
image pairs with lower label numbers are still acceptable. The par-
ticipants can move along the sequence by increasing or decreasing
the label number. We then record the discomfort thresholds identi-
fied by participants. To avoid any bias, the first image pair within a
sequence shown to the participants is randomly selected among the
10 pairs.

Fig. 16 plots the statistics of 20 test sequences. For each sequence,
the mean of human-identified discomfort threshold is indicated as
a dot, while the vertical interval corresponds to 95% confidence
interval of human selections. In the mean time, we use the pro-
posed BVCP to compute the predicted discomfort threshold. We
plot each prediction as a vertical bar. Any image pair with label
number above the bar will trigger visual discomfort. For all test se-
quences, our prediction (the blue bar) is generally below the lower
bound of human-identified thresholds. In other words, our BVCP
can always conservatively predict the discomfort threshold.

From the statistics, our BVCP metric does not perform equally well

Label 0 2 4 6 8

L
e

ft
R

ig
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t

Figure 15: One test sequence for evaluating BVCP predictability.

Figure 16: Statistics of the predictability of BVCP.

with all tested tone-mapping operators. Due to our current conser-
vative design, its prediction is overly conservative for certain opera-
tor (Fig. 16(d)). Sometimes, it also may not be well correlated with
user statistics (Fig. 16(c)). A possible explanation to this uncorre-
lation is the neglect of visual attention, as human observers may
fail to identify those low-saliency sites while our predictor treats all
sites equally.

Incorporating Stereopsis Note that the binocular fusion of
color, luminance or contrast difference does not prevent the simul-
taneous perception of stereopsis [Steinman et al. 2000]. In other
words, it is feasible to extend our binocular tone mapping to incor-
porate the stereopsis. Fig. 17 shows one example of binocularly
tone-mapped stereo image pair from a stereo HDR image pair. It
presents the depth cue and, simultaneously, raises the visual rich-
ness without triggering visual discomfort. To generate this exam-
ple, we treat the left displaced view of the stereo HDR image pair
as a standard HDR input just as before, and temporarily ignore the
right displaced view. After applying our binocular tone mapping on
the left displaced HDR image, we obtain a left LDR image and an-
other LDR with the optimized tone mapping parameter(s). We then
simply apply this optimized tone mapping parameter(s) to the right
displaced HDR image. Since our framework is originally designed
for single HDR input, the above approach implicitly assumes the
luminances of the two HDR stereo images are similar and the dis-
parity is small.

Limitations Our current BVCP design is very conservative. It
rejects an image pair if any test of the contour fusion, contour con-

Left view Right view

Figure 17: A stereo LDR image pair with left and right images
tone-mapped differently.



Left view Right view

Figure 18: A case with small improvement of overall visual rich-
ness (image courtesy of Jacques Joffre/Hdrsoft).

trast, or regional contrast fails. It rejects the image pair if there is
obvious contour error at any level of the mesa pyramid. An image
pair passes the BVCP test only if all pixels pass the BVCP test. All
these add up to give a conservative metric. Although our predic-
tion can effectively avoid visual discomfort for most individuals, it
sometimes may not be very close to the user statistics (Fig. 16(d)).
In other words, human-tolerable image pairs may sometimes be re-
jected. A future direction is to relax our current constraints to give
predictions closer to the user statistics.

Our current framework treats all pixels in the image equally. But
in reality, human vision is not equally sensitive to every pixel, due
to visual attention. Fig. 18 shows one such image pair. While our
method significantly increases the visual richness at the small door
(boxed area), the attention of human observers is very likely to be
attracted by another high-contrast region in the same image. This
high-contrast region may, however, not be significantly improved,
leading to an overall impression of insignificant improvement of
visual experience. A possible extension to incorporate visual atten-
tion is to introduce an importance map based on the image content.
Another limitation is that the contrast threshold function in mod-
eling the failure of rivalry is approximated by extrapolation. Ob-
viously, an independent psychophysical study is necessary in order
to determine a more accurate contrast threshold function. Lastly, a
more robust BVCP should account for occlusions due to the dispar-
ity, when applied to stereo input.

7 Conclusion

By applying the findings of vision science, we present a binocular
tone mapping framework to generate a binocular LDR image pair
that presents more visual richness than just a single tone-mapped
image. We develop a novel BVCP metric that can conservatively
predict the discomfort threshold. It guides our generation of binoc-
ularly tone-mapped image pairs, so that we can maximize the visual
information content of the image pair without triggering visual dis-
comfort. From the user studies, we demonstrate the effectiveness of
our framework on a wide variety of images. Multiple tone mapping
operators are experimented using our framework. Other than our
current tone mapping application, the proposed BVCP may also be
applied in any other applications requiring binocular display. Our
work serves as the first attempt in graphics applications to maxi-
mize the utilization of stereo display system for binocular single
vision. The next step is probably to extend our BVCP to support
stereopsis when severe occlusion occurs.
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