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Abstract

An isosurface extraction algorithm which can directly generate multiresolution isosurfaces from volume data is in-
troduced. It generates low resolution isosurfaces, with 4 to 25 times fewer triangles than that generated by march-
ing cubes algorithm, in comparable running times. By climbing from vertices (0-skeleton) to edges (1-skeleton) to
faces (2-skeleton), the algorithm constructs boxes which adapt to the geometry of the true isosurface. Unlike pre-
vious adaptive marching cubes algorithms, the algorithm does not suffer from the gap-filling problem. Although
the triangles in the meshes may not be optimally reduced, it is much faster than postprocessing triangle reduction
algorithms. Hence the coarse meshes it produces can be used as the initial starts for the mesh optimization, if
mesh optimality is the main concern.

1. Introduction

Standard isosurface extraction algorithms1 generate an un-
wieldy number of triangles (half a million is common for a
brain surface), making graphics and interactions unwieldy.
This is inevitable with approaches which create triangles ly-
ing within voxel-sized cubes, even where a surface is smooth
enough to be well approximated by much larger facets. Mesh
reduction algorithms2; 3; 4; 5 can greatly reduce the triangle
count and preserve the geometrical details of the isosurfaces.
Unfortunately, these postprocessing algorithms are usually
time consuming. Hence they are only good for creating eco-
nomical surfaces for later use. They are less useful when fast
creation and display of isosurfaces are required, and when
the exact threshold value is not certain. For instance, a sur-
geon may have to try different threshold values to explore the
tumor surfaces. Rapid creation of accurate, economical iso-
surfaces is vital to many forms of volume data exploration,
from neurosurgery to the planning of a gold mine.

We describe here a direct construction of isosurfaces with
between 4 and 25 times fewer triangles than marching cubes
algorithms1; 6 (depending on the complexity of the volume),
in comparable running times. Hence more complexity can
be handled at interactive speed. The proposed algorithm is

named asadaptive skeleton climbing. Since we construct
the isosurfaces by first finding iso-points on grid edges (1-
skeleton), then iso-lines on faces (2-skeleton) and finally iso-
surfaces within boxes (3-skeleton), this approach is known in
topology asskeleton climbing. Moreover, the size of the con-
structed boxes will adapt to the geometry of the isosurface
(e.g.larger boxes for smoother regions), hence it isadaptive.

Our approach is quite different from the previous adap-
tive marching cubes algorithms7; 8. We do not need a crack-
patching step because we build compatibility (described
shortly) into the faces where cells meet before generating
triangles.

The proposed algorithm generates isosurfaces in multiple
resolutions directly. The coarseness of the generated meshes
is controlled by a single parameter. The triangle reduction
is done on the fly as the isosurfaces are generated without
going through a separate postprocess. The proposed on-the-
fly triangle reduction approach can generate more accurate
meshes because it directly make use of the voxel values in
the volume. On the other hand, the postprocessing triangle
reduction approaches2; 3; 4; 5 usually use the indirect geo-
metrical information from the approximated meshes.

The algorithm also exhibits a nice feature that coarser iso-
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Figure 1: Overview of adaptive skeleton climbing.

surfaces require smaller amount of time to generate. This is
opposed to the case of mesh optimization approach3 which
requires longer time to generate coarser meshes. Hence our
method allows the user to first generate a low resolution
mesh as a preview before deciding to generate the detailed
high resolution mesh.

1.1. Overview

The algorithm can be intuitively subdivided into four steps:

1. Volume analysis.
2. Construction of simple boxes.
3. Sharing information between adjacent boxes.
4. Isosurface extraction.

In order to fit large triangles to smooth regions, the con-
tent inside the volume must be first analysed. The volume
is implicitly analysed through the manipulation of basic 1D
and 2D data structures in step 1. In step 2, the data structures
built allow us to construct the 3Dsimpleboxes (described
in section 3) whose sizes are closely related to the geometry
complexity of the enclosed isosurface. Information is then
shared between adjacent boxes to prevent existence of gap
in step 3. And finally in step 4, the triangular mesh is gen-
erated. Figure 1 shows the processes of adaptive skeleton
climbing graphically. The basic idea is to group voxels first
in 1D (segments), then in 2D (rectangles) and finally in 3D
(boxes).

Section 2 describes the step of implicit volume analysis in
detail. Section 3 discusses the construction of simple boxes.
Information sharing step is described in section 4. Some de-
tails of triangular mesh generation are discussed in section 5.
Section 6 discusses how the algorithm is used to generate
multiresolution isosurfaces on the fly. Section 7 discusses

the practical implementation, shows the results and com-
pares them with marching cubes. Finally, section 8 gives our
conclusions and future directions.

2. Volume Analysis

The first step of the algorithm is to analyse the volume
through manipulating the basic 1D and 2D data structures.
We start the analysis in 1D,i.e. consider a linear sequence
of voxel samples. Try to find out the length-maximal subse-
quences of voxels withsimplestructure (described shortly).
Then we go on to the 2D data structure and find out the size-
maximal rectangular regions of voxel samples withsimple
structure.

2.1. 1D Data Structures and Manipulation

It helps to think of the volume data as giving sampled val-
ues at points (dots in Fig. 2), rather than voxel values filling
cubes. For the sake of discussion, let’s define the 1D termi-
nologies and data structures. A line of2n+1 sample points
is calledlign (Fig. 2(a)) wheren is an integer� 0. A dike
(Fig. 2(b)) is a segment of lign which covers voxel samples
in the interval[a2m; (a + 1)2m], where0 � m � n and
0 � a < 2n�m, botha andm are integers. That is, all dikes
are organized in a binary tree (Fig. 3). The reason to use bi-
nary tree on 1D data instead of octree on 3D data8 is that
binary tree provides more flexibility in grouping voxels.

Fig. 3(b) shows the binary tree organization of 15 dikes
which covers 9 voxels. The voxels covered by each dike
are shown graphically in Fig. 3(c). The nodes are labeled in
breadth-first-search order, with the root node as 1. With this
dike-labeling scheme, we can store two length-(2n+1 � 1)

arrays of dike information,occupancyandsimple dike, for a
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Figure 2: Basic 1D data structures.

lign of 2n + 1 samples. For simplicity, letN = 2n for short
hand.

Figure 3: Binary tree organization of 1D voxel data.

Theoccupancy arrayof a lign describes the presence of
iso-points (1D analogy of 3D isosurface) on its dikes. With
this occupancy array, we can accurately locate the position
of iso-point and how the isosurface crosses the lign. Now,
let us denote the voxel sample with value above or equal to
the threshold (� ) as�, and sample with value below� as�.
Then the binary value of theith entry in the occupancy array
means:

occ[ i] =

(
002 all samples in dikei are on the same side of� .
012 if dike i is crossed by isosurface once, upward� ! �:

102 if dike i is crossed by isosurface once, downward� ! �:

112 if dike i is crossed by isosurface more than once.

Note the binary values symbolize the crossing conditions.
For instance, if the isosurface crosses the dike once and the
voxels within the dike change from� (0) on the left to�
(1) on the right, then the value inocc[] is 012 (� ! �).
Once the entries of unit dikes (leaf nodes of the binary tree)
are initialized directly from volume data, the entries of the
non-unit dikes (upper interior nodes) can be found by apply-
ing a recursive bitwise OR operations on the leaf nodes. The
values inocc[] are specially designed.

occ[ i] := (occ[ 2i]) OR (occ[ 2i + 1])

Another array issimple dike array. It tells us the length-
maximalsimpledikes inside the lign. A dikei is simpleif
occ [i] < 112 ; that is, the dike is crossed at most once by
the isosurface. The entrysimple[ i] holds the index of the
length-maximal simple dike with the same left end as dikei.

Intuitively speaking, simple dike array tells us which vox-
els can be grouped together without violating the binary
boundary due to the tree organization (binary edgefor short)
and the simplicity constraints. The length-maximal simple
step following dikei is the dikesimple[ i+1] . By per-
forming the following pseudocode fragment, we can walk

through the lign in steps of length-maximal dikes in an effi-
cient way.

current := simple[1]
while current 6= ”end of walk” mark

current := simple[current+1]

Fig. 4(a) illustrates that a lign is subdivided into length-
maximal dikes (shown in black in Fig. 4(b)). In this 9-voxel
lign example, the lign is subdivided into 4 dikes. The first
two dikes are unit dikes, since the isosurface crosses both
of them. Although the isosurface crosses the rest of the seg-
ment only once, it is still subdivided into two dikes due to
the binary edge constraint imposed by the binary tree orga-
nization. Hence the subdivision may not be always minimal.
But this restriction simplifies the merging process in the 2D
adaptive skeleton climbing discussed in next section.

Figure 4: (a): The lign is subdivided into length-maximal
dikes. (b): The dikes visited when walking through the lign.

2.2. 2D Adaptive Skeleton Climbing

2.2.1. Data Structures

The 1D data structures allow us to group voxels into length-
maximal simple segments (dikes). Similarly, in the 2D, we
want to group voxels to form size-maximalsimplerectan-
gles. Consider an(N+1)�(N+1) farm of voxel samples,
with N+1 horizontal andN+1 vertical ligns, each with its
own occupancy and simple dike arrays. First, let’s define the
2D terminologies and data structures. Astrip (Fig. 5(a)) con-
sists of two consecutive ligns. Aplot (Fig. 5(b)) is analogous
to the dike which consists of two consecutive dikes.

Figure 5: The 2D data structures.

Plots are also organized by a binary tree. Similarly a plot
is simpleif and only if its two dikes are also simple. Hence,
we can define asimple plot arraywhich is similar to the
simple dike array. Since the shorter dike has a larger dike
ID, the length-maximal simple plots can be easily found by
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performing aMAXoperation on each pair of elements in the
simple dike arrays of the two consecutive ligns.

strip[ j].simple[ i] := MAX(lign[ j].simple[ i],
lign[ j + 1].simple[ i])

Fig. 6 shows one such operation graphically. The calcu-
lated plots are overlaid with the voxel samples in Fig. 6(b).
Note that each plot is crossed at most twice by the isosurface.

Figure 6: Length-maximal plots from consecutive ligns.

2.2.2. Merging Plots to Form Padis

A rectangle with dikes as sides is calledpadi (Fig. 5(c)). A
padi is simple if all plots inside it and its four side dikes
are simple. Our goal is to subdivide the 2D farm of voxels
into size-maximal padis. To do so, neighboring simple plots
are merged to form simple padis (Fig. 7), as large as possi-
ble. Note there is no unique way to merge plots. Different
merging strategy gives different sets of padis. Fig. 7 shows
two alternatives when merging the two consecutive strips.
Even an optimal merging is found for 2D, it may not yield
an optimal merging in 3D (discussed in next section). More-
over, a fast algorithm is crucially required since it will be
frequently executed. A slow optimistic algorithm is useless
in this case. Hence we do not use any optimistic algorithm to
search for the optimal merging. A heuristic bottom-up merg-
ing (ASC2D, Fig. 8) is used due to its efficiency and simplic-
ity.

Figure 7: Merging plots to form padis.

The algorithmASC2Daccepts2N initialized simple plot
arrays as input. There areN arrays for horizontal strips and
N arrays for vertical strips. The array can be initialized by
theMAXoperations discussed previously. The basic idea of
the algorithmASC2Din Fig. 8 is as follows. Let us denote
the horizontal direction from left to right as directionx and
vertical direction from bottom to top as directiony. For each
length-maximal plot on each horizontal strip (x-strip), ex-
pand it iny direction by merging it with consecutive plots
having the same length (Fig. 7). With the binary edge con-
straint, it is more likely to find neighbor plots with same

Input: 2N initialized simple plot or layout arrays
(N for horizontal strips &N for vertical strips).

Output: A set of size-maximal padis (and iso-lines).
Algorithm:
Initialize an empty candidate list of padis.
For eachx-strip (horizontal strip)

/* Expand the plots to form padis */
For each length-maximal simple plota

Let rectangler := a

While 9 neighbor simple plotb on the adjacent
strip

r := r [ b (Fig. 7)
Subdivider in y-direction into pieces according
to the binary edge restriction and givek padis
r1; r2; : : : rk (Fig. 9)
For each generated padiri

For each padipj inside the candidate list
If pj enclosesri

Deleteri
If ri enclosespj

Removepj from the candidate list
If pj partially overlaps withri

Clip ri
If ri is not removed

Add ri to the candidate list
/* Optional Iso-line Generation */
For each padipj in the candidate list

Generate iso-line forpj by looking up the table(Fig.12).

Figure 8: AlgorithmASC2D.

length and align to each other. A candidate rectangle is then
formed. Since the binary edge constraint is also applied to
the vertical direction, this rectangle is subdivided to form
size-maximal padis (Fig. 9).

Figure 9: Plots are first merged to form rectangle. The rect-
angle is then subdivided alongy direction to satisfy the bi-
nary edge constraint applied to they direction.

During the execution of the algorithmASC2D, many padis
will be generated. They may overlap with each other or one
may enclose another. All padis which are enclosed by any
other padi will be removed. Those overlapping padis will
be clipped with each other. Fig. 10 shows an example result
of running the algorithmASC2D. The generated padis are
shown as rectangles among the voxel samples.

A layout of padis is generated as the result ofASC2D. This
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Figure 10: Example result of running algorithmASC2D.

Figure 11: Storing the padi layout in layout arrays.

layout information is stored implicitly in the layout arrays.
Layout array is very similar to the simple plot array but with
the constraint that no plot may cross the boundary of any
generated padi on the layout. For a farm of(N +1)� (N +

1) voxels,2N layout arrays are defined,N x-strips andN
y-strips. Theith entry in x-strip (y-strip) stores the index
of the length-maximal plot that fits into the padi layout and
shares its left (bottom) end with ploti. Fig. 11 shows the padi
layout of a5 � 5 xy-farm, which is represented byx-strips
(Fig. 11(b)) andy-strips (Fig. 11(c)). The reason to store the
layout in this way is to simplify the simple box construction
discussed in section 3.

2.2.3. Iso-line Generation

Once the size-maximal padis are found, we can generate 2D
iso-lines which separate� voxels from those� voxels. Al-
though we will not generate any iso-lines until the 3D boxes
have been constructed (discussed in next section). For the
sake of presentation, it is more convenient to discuss it here.

The iso-line can be efficiently generated by looking up
a 2D padi configuration table in Fig. 12, instead of a 3D
voxel cube configuration table as in marching cubes algo-
rithms 1; 6. Fig. 12 shows all possible padi configurations
and their corresponding iso-lines. Note the padi needs not
be a square. Similar to the 3D voxel configurations, ambigu-

Figure 12: Generate iso-lines by a 16-entry table. Two am-
biguous cases lead to subsampling.

ity also exists on 2D padi configurations (the two lower left
configurations in Fig. 12).

The ambiguity with two diagonally opposite� corners
can sometimes be resolved by subsampling at the center of
the padi. However, wrong iso-lines will still be generated in
some cases (Fig. 13). Where connectivity is crucial, software
should warn the user of ambiguous cases and offer finer,
more CPU-costly tools for local investigation. In many cases
the warning is as useful to the surgeon, geologist or other
user as any silently-attempted best guess by the software.

Figure 13: Bad ambiguity resolution by subsampling.

The generated padis (shown as rectangles) and iso-lines
(shown as thick lines) are overlaid on the 2D voxel grid in
Fig. 10. The algorithm isolates� from � voxels, with 30
edges on 23 adaptive padis rather than the 46 edges on 64
unit squares. The feature is the key how the algorithm re-
duces triangles.

3. Construction of Simple Boxes

By manipulating these 1D and 2D data structures, enough
information is provided for us to construct 3Dsimpleboxes.
The information is implicitly stored as the 2D padis. Us-
ing this information, we go on to construct simple boxes by
stacking simple padis.
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3.1. 3D Adaptive Skeleton Climbing

3.1.1. 3D Data Structures

Consider a(N+1) � (N+1)� (N+1) voxel sample grid.
For the sake of discussions, we now define the 3D terminolo-
gies and data structures. All terminologies are graphically
illustrated by a3 � 3� 3 volume in the Fig. 14(a). Afarm
contains(N+1)�(N+1) voxels on a 2D grid. Aslab, anal-
ogous to a strip containing two consecutive ligns, consists of
two consecutive farms. Abrick in the slab has two match-
ing padis in two consecutive farms as faces. Ahighrice is a
rectangular box composed of stacked bricks.

Figure 14: Data structures for the 3D algorithm.

It is convenient to denote a farmxy-farm, xz-farm or
yz-farm, according to which plane the farm is parallel to
(Fig. 14(b)). Similarly, a brick is calledxy-brick if it is par-
allel to thexy plane.

3.1.2. Merging Bricks to Form Highrices

Our goal is to construct 3Dsimple rectangular boxes. We
start by findingsimplebricks. A brick issimpleif the two
padis forming it are also simple. A highrice issimpleif all
its component bricks are simple, and its six faces aresimple
padis.

Firstly, simplexy-bricks are identified. Then these simple
xy-bricks will be stacked one by one to construct the sim-
ple xy-highrice. Note a highrice can be treated as compos-
ing of xy-bricks,xz-bricks oryz-bricks, depends on which
dimension the bricks are stacked. We call a highrice thexy-
highrice if it is constructed by stacking simplexy-bricks.
In our algorithm, we only interest in finding the simplexy-
highrices.

Fig. 15 outlines the main algorithm. The first step gen-
erates the padi layout on each farm by algorithmASC2D
without the iso-line generation step. Then we identify the
simplexy-bricks by performing simpleMAXoperations for
each pair of corresponding entries in the layout arrays on
two consecutive farms. Just like the 2D version. An example
is shown graphically in Fig. 16.

Input: An (N+1)� (N+1)� (N+1) 3D voxel grid.
Output: A set of maximal highrices and isosurface

triangular mesh.
Algorithm:
/* Generate the padis on each farm */
For each farm out of (xy-farm,xz-farm andyz-farm)

Find size-maximal padis byASC2D.
Set layout arrays based on padi layout on eachxy-farm.
For eachxy-slab

Find layout ofxy-bricks byMAXoperations.(Fig.16)
Initialize an empty candidate list of highrices.
/* Stack the bricks to form highrice */
For eachxy-slab

For eachxy-brick a
Let rectangular boxr := a

While 9 neighbor simplexy-brick b on the
adjacentxy-slab

r := r [ b (Fig. 17)
Subdivider into xy-highrices with the binary
restriction applied alongz and givek xy-highrices
r1; r2; : : : ; rk (Fig. 18)
For each generatedxy-highricerk

For eachxy-highricehl in the candidate list
If hl enclosesrk

Deleterk.
If ri encloseshl

Removehj from the candidate list.
If hl partially overlaps withri

Clip rl.
If rk is not removed

Add rk to the candidate list
/* Sharing information among highrices */
For each farm (xy-farm,xz-farm,yz-farm)

Reinitialize layout array to fitxy-highrice boundaries
(Fig. 20)
Find a padi layout withASC2Dusing new layout values

/* Iso-line Generation */
For eachxy-highrice in the final candidate list

For each padi on the surface of thexy-highrice
Generate iso-lines. (Fig. 12)

Connect the iso-lines to form loops
For each edge loop on the surface ofxy-highrice

Triangulate it and emit the triangles.

Figure 15: AlgorithmASC3D.
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Figure 16: To find the simple bricks inside the slab,MAXop-
erations are done on each pair of the layout arrays of neigh-
boring farms.

xy-slab[ k].x-strip[ j].layout[ i] :=
max(xy-farm[ k].x-strip[ j].layout[ i],

xy-farm[ k + 1].x-strip[ j].layout[ i])
xy-slab[ k].y-strip[ j].layout[ i] :=

max(xy-farm[ k].y-strip[ j].layout[ i],
xy-farm[ k + 1].y-strip[ j].layout[ i])

Next, neighbor bricks merge to form highrices in 3D
(Fig. 17), analogous to merging plots to form padis in the
2D case (Fig. 7). Again there is no unique merging rule
(Fig. 17), and again we prefer a fast heuristic to a search for a
suboptimal subdivision. For each size-maximalxy-brick on
each slab, we stack thexy-bricks upward alongz direction
until no more simple bricks available. Then this temporary
box is subdivided alongz direction to fulfill the binary edge
constraint (Fig. 18). During the highrice formation, the gen-
erated highrices may overlap with each other or one may be
enclosed by another. Any enclosed highrice will be removed.
Overlapping highrices are clipped.

Figure 17: Merging bricks to form highrices

Figure 18: Bricks are first merged to form box. Then the box
is subdivided alongz to form highrices in order to fulfill the
binary edge constraint.

4. Sharing Information Between Highrices

At this moment, we can immediately generate triangles in-
side eachxy-highrice with the padi layout on the surface on
thexy-highrices. This will yield triangular mesh with crack,
just like the cases of Shuet al. 7 and Shekharet al. 8, since
the boxes may not be unit cubes.

Fig. 19(a) shows a large highrice next to a small one.
The isosurface crosses the plane separating the two high-
rices (Fig. 19(b)). If triangles are emitted foreach highrice
without the knowledge of their neighbors, gaps will appear
in the generated triangular mesh. This is because the linear
iso-lines generated on the highrice surfaces may not match
each other geometrically (Fig. 19(c)), even though they are
topologically correct. To prevent this mismatch, information
must be shared between adjacent highrices.

Figure 19: Sharing information between neighbor high-
rices.

In our algorithm, the neighbor information can be shared
by manipulating the basic data structures. Recall that we
store the padi layout of each farm in layout arrays in sec-
tion 2.2.2. Layout arrays are variants of simple plot arrays.
We can reuse these arrays with the new constraint that no
plot may cross the boundary of any face of any generated
xy-highrice. That is, we store the 3D highrice layout in these
arrays this time. Fig. 20 shows the farm between the two
highrices in Fig. 19. The surface boundary of the larger high-
rice is shown as thick dark gray line in the farm of Fig. 20(b),
while that of the smaller highrice is shown as thick light gray
line.

Once the layout arrays are reinitialized, algorithm ASC2D
is executed on them (instead of simple plot arrays) to give a
new set of padis. Since the length-maximal plots represented
by the layout arrays are not allowed to cross any bound-
ary, the generated padis will fit inside these boundaries.
Fig. 20(c) shows the generated padis for the previous exam-
ple. After generating iso-lines on each padi, three segments
of iso-lines will be generated in the example (Fig. 20(d)),
therefore no gap will exist.

5. Isosurface Extraction

Instead of thinking the padis are laid on the farm, they can
also be regarded as padis laid on the six faces of eachxy-
highrice. Each face of thexy-highrice may contain more
than one padis as in Fig. 21.

To generate the isosurface, we first generate iso-lines
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Figure 20:Once we reinitialize the layout arrays to store the
3D highrices’ layout,ASC2Dcan be run to generate padis
that fit into the surface boundaries of both highrices.

Figure 21: The six faces of a highrice are tiled withpadis
after information sharing.

on padis by looking up the 2D padi configuration table
in Fig. 12, and connect them to form closed edge loops
(Fig. 23(a)). Note that in our algorithm, we only need a 2D
padi configuration table, no 3D voxel cube configuration ta-
ble is needed.

Given an edge loop consisting of several verticesvi, we
emit triangles as follows. In each iteration, three consecutive
verticesvi, vi+1 andvi+2 are selected and one triangle is
generated (Fig. 22). The vertexvi+1 is then removed from
the edge loop. The algorithm continues until only two ver-
tices are left.

Figure 22: In each iteration, one triangle is emitted and one
vertex is removed.

An edge loop can be triangulated in multiple ways. Differ-
ent sequences give triangular meshes with identical triangle

counts, but with different geometry (Fig. 23(b) and (c)). To
generate a mesh that closely approximates the true isosur-
face, we make use of the gradient. We reject any triangle
with planar normal vector~nt that largely deviates from the
gradients~gi at three vertices. The deviation is measured by
the dot product of~nt and~gi. A threshold is used as a criteria.
The threshold constraint will be relaxed if no triangle can be
generated under current constraint.

Figure 23: Triangulate the edge loop to emit triangles.

6. Multiresolution Isosurface Extraction

The proposed algorithm handles volume with the size of
(N +1)� (N +1)� (N +1), i.e a cubicblock. To handle
volume with different size, we can simply tile the blocks to
cover the whole volume and applyASC3Dto each block. Re-
call that gaps will appear if no information is shared between
adjacent highrices. Similarly, cracks will appear if informa-
tion is not shared between adjacent blocks. Unlike the case
of variable-sized highrices, each block has the same size.
This simplifies the process. To share information between
blocks, we simply performMAXoperations on each pair of
layout arrays on the surfaces (which are also farms) of two
adjacent blocks. The simpleMAXoperations effectively find
out the largest padis that fit the constraints. This informa-
tion sharing process must be done just after the information
sharing among highrices.

Up to this moment, we have not yet discussed the effect
of using different values ofN , i.e. the size of the block.
The block size constrains the maximum size of the high-
rices. When the block size is small, sayN = 1, the largest
highrice contains2 � 2 � 2 voxels, i.e. same as standard
marching cubes. When a larger block size is used, larger
highrices are allowed to be generated, hence larger triangles.
In other words, by controlling the valueN , we can gener-
ate isosurfaces in multiresolution. Note that parameterN is
an indirect control, the actual mesh generated will also de-
pend on the geometry of the true isosurface. More triangles
will still be generated if the isosurface geometry is complex.
Figure 25(b)-(e) shows the results of using different block
sizes. From (b) to (e), the values ofN are 1, 2, 4 and 8.
As the block size increases, larger triangles are generated to
approximate the smooth surface.

Unlike the triangle reduction algorithms2; 3; 4; 5 which
generate coarser mesh based on the high resolution mesh, the
proposed approach generates coarser mesh directly from the
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original volume data. This ensures no distortion or error is
introduced before the triangle reduction. More importantly,
the proposed algorithm is a on-the-fly process which re-
quires no time-consuming postprocessingtriangle reduction.
In fact, the algorithm produces coarser mesh in a smaller
amount of time (see Table 1). This is quite different from
those triangle reduction algorithms. Although our approach
may not reduce triangles as much as mesh optimizer does, it
is a cost effective method to significantly reduce triangles in
a short period of time.

7. Implementation and Results

In practical implementation, there is no need to process ev-
ery block of voxels. Since many blocks are empty,i.e. con-
tains no isosurface, we can simply ignore them without per-
forming the computation intensive merging processes. This
can be done in the early stage of the algorithm. Once we have
initialized the values inocc[] for each lign in the block, the
emptiness of the block can be immediately identified.

Table 1 and Fig. 24 quantify for various datasets the
results of our implementation of adaptive skeleton climb-
ing with four block sizes,N = 1, 2, 4 and 8. Triangle
counts and CPU times on an SGI Onyx are compared with
the Wyvill implementation6 of marching cubes algorithm.
Fig. 25 shows the corresponding images. Gouraud shaded
isosurfaces are overlaid with triangle edges for clarity.

The “knot” data sets are sampled from an algebraic func-
tion, at three resolutions. Fig. 25(b–e) show the extracted
isosurfaces in multiple resolutions, while Fig. 25(a) shows
the isosurface generated by the marching cubes algorithm.
The mesh generated by marching cubes method and that
by the proposed method withN = 1 are visually very
similar. Volume “Mt. Alps” (Fig. 25(f–j)) is a landscape
heightfield dataset. We also tested two medical computed to-
mography (CT) datasets, “Head” (Fig. 25(k–o)) and “Arter-
ies” (Fig. 25(p–t)). The data set “Arteries” contains no large
smooth sheets, and its geometrical complexity inherently re-
quires a finer mesh for topological correctness.

In general, as the block sizeN increases, both the trian-
gle count and the CPU time decrease (Fig. 24 (a) and (b)).
There are about four to twenty-five times reduction in the tri-
angle count. Fig. 25 revealslittle change in shape as the tri-
angle count decreases.Note that in some cases increasing the
block sizeN may slightly increase the triangle count when
the complex geometry of the isosurface requires sufficient
triangles to represent. In three out of six tested cases, the op-
timal block size (in term of triangle count) isN = 4. Depend
on the geometry complexity of the true isosurface, this op-
timal value may vary. From the experiments, the proposed
algorithm is not efficient to generate the highest-resolution
mesh as the marching cubes algorithms do. However, it can
generate coarser meshes in an amount of time comparable
to that of marching cubes algorithm. In the test cases of

“knot256” and “Mt. Alps”, the running times of generating
coarse meshes (N = 8) are faster than that of marching
cubes. This result suggests that the coarse mesh generated
by adaptive skeleton climbing may be a better initial start
for mesh optimization than the highest resolution mesh from
marching cubes, since the extra time spending on generating
coarse mesh using our method is usually smaller than the ex-
tra time spending in the mesh optimizer if the initial start is
the highest resolution mesh.

8. Conclusions and Future Directions

Adaptive skeleton climbing produces isosurfaces in times
comparable to marching cubes1, with substantially fewer
triangles, and without the gap-filling problems of adaptive
marching cube methods9. It directly uses the volume data
and produces isosurface in multiple resolutions.

Since we use simple rectangular boxes instead of octree
cubes, this approach provides more flexibility in partition-
ing the volume, hence captures more isosurface regions with
simple geometry. It is faster than postprocessing mesh sim-
plification methods3; 4; 5; 2, though the mesh may not be op-
timally reduced. The proposed algorithm can serve as a com-
panion to the mesh optimizer, since the coarse mesh it pro-
duced can be a better initial guess for the optimizer. Adaptive
skeleton climbing is a fast heuristic algorithm, rather than a
path to a strict optimum.

One future research direction is to further speedup the
algorithm by combining an indexing scheme such as the
kd-tree indexing approach10; 11 which can rapidly and ef-
ficiently locate the non-empty cells (those cells contain iso-
surface). Another direction is to parallelize the algorithm.
Besides the information sharing process, all other parts of
the algorithm can be easily parallelized. We are developing a
multithread implementation of the proposed algorithm. Fur-
ther speedup is expected since the information sharing pro-
cess uses only a small fraction of computational time.

Web Availability

A robust implementation of the algorithm is available for
download at the web site:
http://www.cse.cuhk.edu.hk/ �ttwong/papers/asc/asc.html
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[Poston, Wong & Heng] Figure 25. Visual comparison of the effects of block size, for an algebraic surface, a landscape, and CT data forbones and blood vessels in the head.

(a)-(e): Mathematical data set ”knot64”. (f)-(j): Landscape data ”Mt. Alps”.
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[Poston, Wong & Heng] Figure 25 (cont’d) Visual comparison of the effects of block size, for an algebraic surface, a landscape, and CT data forbones and blood vessels in the head.

(k)-(o): ”Head”. (p)-(t): ”Arteries”.


