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Abstract

Anisosurface extraction algorithm which can directly generate multiresolution isosurfaces from volume data is in-
troduced. It generates low resolution isosurfaces, with 4 to 25 times fewer triangles than that generated by march-
ing cubes algorithm, in comparable running times. By climbing from vertices (0-skeleton) to edges (1-skeleton) to
faces (2-skeleton), the algorithm constructs boxes which adapt to the geometry of the true isosurface. Unlike pre-
vious adaptive marching cubes algorithms, the algorithm does not suffer from thdliggpgfioblem. Alhough

the triangles in the meshes may not be optimally reduced, it is much faster than postprocessing triangle reduction
algorithms. Hence the coarse meshes it produces can be used as the initial starts for the mesh optimization, if
mesh optimality is the main concern.

1. Introduction named asadaptive skeleton climbingSince we construct
the isosurfaces by first finding iso-points on grid edges (1-
Standard isosurface extraction algorithiigenerate an un-  skeleton), then iso-lines on faces (2-skeleton) and finally iso-
wieldy number of triangles (half a million is common for a  surfaces within boxes (3-skeleton), this approach is known in
brain surface), making graphics and interactions unwieldy. topology askeleton climbingMoreover, the size of the con-
This is inevitable with approaches which create triangles ly- structed boxes will adapt to the geometry of the isosurface
ing within voxel-sized cubes, even where a surface is smooth (e.g.larger boxes for smoother regions), hence étdaptive
enoughto be well approximated by much larger facets. Mesh ) o )
reduction algorithmg 3. 4 5 can greatly reduce the triangle ~ ©Our approach is quite different from the previous adap-
countand preserve the geometrical details of the isosurfaces.Ivé marching cubes algorithnis®. We do not need a crack-
Unfortunately, these postprocessing algorithms are usually Patching step because we build compiiyb (described
time consuming. Hence they are only good for creating eco- shortly) into the faces where cells meet before generating
nomical surfaces for later use. They are less useful when fasttriangles.
creation and display of isosurfaces are required, and when  The proposed algorithm generates isosurfaces itipres
the exact threshold value is not certain. For instance, a sur- resolutions directly. The coarseness of the generated meshes
geon may have to try different threshold values to explore the js controlled by a single parameter. The triangle reduction
tumor surfaces. Rapid creation of accurate, economical iso- i gone on the fly as the isosurfaces are generated without
surfaces is vital to many forms of volume data exploration, qoing through a separate postprocess. The proposed on-the-
from neurosurgery to the planning of a gold mine. fly triangle reduction approach can generate more accurate
meshes because it directly make use of the voxel values in
the volume. On the other hand, the postprocessing triangle
reduction approachés3. 45 usually use the indirect geo-
metrical information from the approximated meshes.

We describe here a direct construction of isosurfaces with
between 4 and 25 times fewer triangles than marching cubes
algorithms!: ¢ (depending on the complexity of the volume),
in comparable running times. Hence more complexity can
be handled at interactive speed. The proposed algorithm is  The algorithm also exhibits a nice feature that coarser iso-
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Figure 1: Overview of adaptive skeleton climbing.

surfaces require smaller amount of time to generate. This is the practical implementation, shows the results and com-
opposed to the case of mesh optimization appr8achich pares them with marching cubes. Finally, section 8 gives our
requires longer time to generate coarser meshes. Hence ourconclusions and future directions.

method allows the user to first generate a low resolution

mesh as a preview before deciding to generate the detailed ]

high resolution mesh. 2. Volume Analysis

The first step of the algorithm is to analyse the volume

through manipulating the basic 1D and 2D data structures.

We start the analysis in 1D.e. consider a linear sequence

The algorithm can be intuitively subdivided into four steps:  of voxel samples. Try to find out the length-maximal subse-
. guences of voxels witsimplestructure (described shortly).

1. Volume analysis. Then we go on to the 2D data structure and find out the size-

2. Construction of simple boxes. maximal rectangular regions of voxel samples vétmple
3. Sharing information between adjacent boxes. structure.

4, Isosurface extraction.

1.1. Overview

In order to fit large triangles to smooth regions, the con-
tent inside the volume must be first analysed. The volume
is implicitly analysed thwugh the manipulation of basic 1D It helps to think of the volume data as giving sampled val-
and 2D data structures in step 1. In step 2, the data structuresues at points (dots in Fig. 2), rather than voxel values filling
built allow us to construct the 3Bimpleboxes (described cubes. For the sake of discussion, let's define the 1D termi-
in section 3) whose sizes are closely related to the geometry nologies and data structures. A line2f+1 sample points
complexity of the enclosed isosurface. Information is then is calledlign (Fig. 2(a)) where: is an integer> 0. A dike
shared between adjacent boxes to prevent existence of gapFig. 2(b)) is a segment of lign which covers voxel samples
in step 3. And finally in step 4, the triangular mesh is gen- in the interval{a2™, (a« + 1)2™], where0 < m < n and
erated. Figure 1 shows the processes of adaptive skeleton0 < a < 2"~™, botha andm are integers. That s, all dikes
climbing graphically. The basic idea is to group voxels first are organized in a binary tree (Fig. 3). The reason to use bi-
in 1D (segments), then in 2D (rectangles) and finally in 3D nary tree on 1D data instead of octree on 3D datthat
(boxes). binary tree provides more flexibility in guping voxels.

2.1. 1D Data Structures and Manipulation

Section 2 describes the step of implicit volume analysisin  Fig. 3(b) shows the binary tree organization of 15 dikes
detail. Section 3 discusses the construction of simple boxes. which covers 9 voxels. The voxels covered by each dike
Information sharing step is described in section 4. Some de- are shown graphically in Fig. 3(c). The nodes are labeled in
tails of triangular mesh generation are discussed in section 5. breadth-first-search order, with the root node as 1. With this
Section 6 discusses how the algorithm is used to generatedike-labeling scheme, we can store two length*! — 1)
multiresolution isosuefces on the fly. Section 7 discusses arrays of dike informationpccupancyndsimple dikefor a
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Figure 2: Basic 1D data structures.

lign of 2™ + 1 samples. For simplicity, lev = 2™ for short
hand.
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Figure 3: Binary tree organization of 1D voxel data.

The occupancy arrayf a lign describes the presence of
iso-points (1D analogy of 3D isosurface) on its dikes. With
this occupancy array, we can accurately locate théipos
of iso-point and how the isosurface crosses the lign. Now,
let us denote the voxel sample with value above or equal to
the threshold{) ase, and sample with value belowaso.
Then the binary value of thé&" entry in the occupancy array
means:

00,  all samplesin dike are on the same side of

oc[ i] = 01y ?f dike z ?s crossed by ?sosurface once, upward-s e.
105 if dike 7 is crossed by isosurface once, downward- o.
115 if dike 7 is crossed by isosurface more than once.

Note the binary values symbolize the crossing conditions.

through the lign in steps of length-maximal dikes in an effi-
cient way.
current := simple[1]

while current  # "end of walk” mark
current := simple[current+1]

Fig. 4(a) illustrates that a lign isubdivided into length-
maximal dikes (shown in black in Fig. 4(b)). In this 9-voxel
lign example, the lign is subdivided into 4 dikes. The first
two dikes are unit dikes, since the isosurface crosses both
of them. Although the isosurface crosses the rest of the seg-
ment only once, it is still shdivided into two dikes due to
the binary edge constraint imposed by the binary tree orga-
nization. Hence the subdivision may not be always minimal.
But this restriction simplifies the merging process in the 2D
adaptive skeleton climbing discussed in next section.

Dikeson ® © & & ¢ & & O O

(€

voxel grid i I | Region above
DikeID: 8 9 5§ 3 threshold
Dikes in
(b) the binary
tree

Figure 4: (a): The lign is subdivided into length-maximal
dikes. (b): The dikes visited when walking through the lign.

2.2. 2D Adaptive Skeleton Climbing
2.2.1. Data Structures

The 1D data structures allow us to group voxels into length-
maximal simple segments (dikes). Similarly, in the 2D, we

For instance, if the isosurface crosses the dike once and thewant to group voxels to form size-maximsimplerectan-

voxels within the dike change from (0) on the left toe
(2) on the right, then the value iocc[] is 012 (o — o).
Once the entries of unit dikes (leaf nodes of the binary tree)
are initialized directly from volume data, the entries of the
non-unit dikes (upper interior nodes) can be found by apply-

gles. Consider aQN+1)x (NN +1) farm of voxel samples,
with N+1 horizontal andV+1 vertical ligns, each with its
own occupancy and simple dike arrays. First, let's define the
2D terminologies and data structuresstfip (Fig. 5(a)) con-
sists of two consecutive ligns. plot (Fig. 5(b)) is analogous

ing a recursive bitwise OR operations on the leaf nodes. The to the dike which consists of two consecutive dikes.

values inocc[] are specially designed.

occ[ ¢] := (occ[ 2:]) OR (occ[ 27+ 1])

Another array issimple dike arraylt tells us the length-
maximalsimpledikes inside the lign. A dikeé is simpleif
occ [i] < 11.; thatis, the dike is crossed at most once by
the isosurface. The entgimple[ ] holds the index of the
length-maximal simple dike with the same left end as dike

Intuitively speaking, simple dike array tells us which vox-
els can be grouped together without violating the binary
boundary due to the tree organizatibim@ry edgdor short)
and the simplicity constraints. The length-maximal simple
step following dikes is the dikesimple[ :+1] . By per-
forming the following pseudocode fragment, we can walk

© The Eurographics Association and Blackwell Publishers 1998.

Figure 5: The 2D data structures.

Plots are also organized by a binary tree. Similarly a plot
is simpleif and only if its two dikes are also simple. Hence,
we can define aimple plot arraywhich is similar to the
simple dike array. Since the shorter dike has a larger dike
ID, the length-maximal simple plots can be easily found by
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performing aMAXoperation on each pair of elements in the
simple dike arrays of the two consecutive ligns.
strip[ il,

jl.simple[ <] := MAX(lign[  j].simple[

lign[ 5 + 1].simple[  <])

Fig. 6 shows one such operation graphically. The calcu-
lated plots are overlaid with the voxel samples in Fig. 6(b).
Note that each plotis crossed at most twice by the isosurface.
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Figure 6: Length-maximal plots from consecutive ligns.

2.2.2. Merging Plots to Form Padis

A rectangle with dikes as sides is callpddi (Fig. 5(c)). A
padi is simpleif all plots inside it and its four side dikes
are simple. Our goal is to subdivide the 2D farm of voxels
into size-maximal padis. To do so, neighboring simple plots
are merged to form simple padis (Fig. 7), as large as possi-
ble. Note there is no unique way to merge plots. Different
merging strategy gives different sets of padis. Fig. 7 shows
two alternatives when merging the two consecutive strips.
Even an optimal merging is found for 2D, it may not yield
an optimal merging in 3D (discussed in next section). More-
over, a fast algorithm is crucially required since it will be
frequently executed. A slow optimistic algorithm is useless
in this case. Hence we do not use any optimistic algorithm to
search for the optimal merging. A heuristic bottom-up merg-
ing (ASC2D, Fig. 8) is used due to its efficiency and simplic-
ity.
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0

Figure 7: Merging plots to form padis.
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The algorithmASC2Daccept2 N initialized simple plot
arrays as input. There afé arrays for horizontal strips and
N arrays for vertical strips. The array can be initialized by
the MAXoperations discussed previously. The basic idea of
the algorithmASC2Din Fig. 8 is as follows. Let us denote
the horizontal direction from left to right as directienand
vertical direction from bottom to top as directignFor each
length-maximal plot on each horizontal strip-§trip), ex-
pand it iny direction by merging it with consecutive plots
having the same length (Fig. 7). With the binary edge con-
straint, it is more likely to find neighbor plots with same

Input: 2N initialized simple plot or Isout arrays
(N for horizontal strips &V for vertical strips).
Output: A set of size-maximal padis (and iso-lines).
Algorithm:
Initialize an empty candidate list of padis.
For eache-strip (horizontal strip)
/* Expand the plots to form padis */
For each length-maximal simple plot
Letrectangle :=a
While 3 neighbor simple plok on the adjacent
strip
r:=rUb(Fig.7)
Subdivider in y-direction into pieces according
to the binary edge restriction and gikgadis
ri,r2,...1% (Fig. 9)
For each generated padi
For each padp; inside the candidate list
If p; encloses;
Deleter;
If r; encloseg;
Removep; from the candidate list
If p; partially overlaps withr;
Clip r;
If r; is not removed
Add r; to the candidate list
/* Optional Iso-line Generation */
For each padp; in the candidate list
Generate iso-line fgs; by looking up the table(Fig.12).

Figure 8: Algorithm ASC2D

length and align to each other. A candidate rectangle is then
formed. Since the binary edge constraint is also applied to
the vertical direction, this rectangle is subdivided to form
size-maximal padis (Fig. 9).

Plot Subdivde

l:l Expand alon,
y 4 Fpgnd [T gy
X l:l Binary edge constraint

applied to direction y also

Figure 9: Plots are first merged to form rectangle. The rect-
angle is then subdivided alongdirection to satisfy the bi-
nary edge constraint applied to thedirection.

During the execution of the algorith&ASC2D many padis
will be generated. They may overlap with each other or one
may enclose another. All padis which are enclosed by any
other padi will be removed. Those overlapping padis will
be clipped with each other. Fig. 10 shows an example result
of running the algorithmASC2D The generated padis are
shown as rectangles among the voxel samples.

A layout of padis is generated as the resulA8SC2D This

© The Eurographics Association and Blackwell Publishers 1998.
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Figure 10: Example result of running algoriththSC2D
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e O] ] ity also exists on 2D padi configurations (the two lower left
configurations in Fig. 12).

Figure 12: Generate iso-lines by a 16-entry table. Two am-
biguous cases lead to subsampling.

X Padi Layout
of Xy-farm
(@ (b) (© The ambiguity with two diagonally opposiie corners
can sometimes be resolved by subsampling at the center of
the padi. However, wrong iso-lines will still be generated in
some cases (Fig. 13). Where connectivity is crucial, software
should warn the user of ambiguous cases and offer finer,
layout information is stored implity in the layout arrays more CPU-costly tools for local investigation. In many cases
Layout array is very similar to the simple plot array but with ~ the warning is as useful to the surgeon, geologist or other
the constraint that no plot may cross the boundary of any user as any silently-attempted best guess by the software.
generated padion the layout. For a farm{sf+ 1) x (N +

X-Strips y-strips

Figure 11: Storing the padi layout in layout arrays.

1) voxels,2N layout arrays are definedy z-strips andV sample \0‘ @) O/ O © K)
y-strips. Thei'™ entry in z-strip (y-strip) stores the index point g / \

of the length-maximal plot that fits into the padi layout and O=—@ O/@ ON-©
sharesits left (bottom) end with platFig. 11 shows the padi Case that  Generated Better
layout of a5 x 5 wy-farm, which is represented hystrips Sail edges solution

(Fig. 11(b)) and,-strips (Fig. 11(c)). The reason to store the
layout in this way is to simplify the simple box construction
discussed in section 3.

Figure 13: Bad ambiguity resolution by subsampling.

The generated padis (shown as rectangles) and iso-lines
2.2.3. Iso-line Generation (shown as thick lines) are overlaid on the 2D voxel grid in
Fig. 10. The algorithm isolates from e voxels, with 30
edges on 23 adaptive padis rather than the 46 edges on 64
unit squares. The feature is the key how the algorithm re-
duces triangles.

Once the size-maximal padis are found, we can generate 2D
iso-lines which separate voxels from those» voxels. Al-
though we will not generate any iso-lines until the 3D boxes
have been constructed (discussed in next section). For the
sake of presentation, it is more convenientto discuss it here.

The iso-line can be efficiently generated by looking up 3. Construction of Simple Boxes

a 2D padi configuration table in Fig. 12, instead of a 3D By manipulating these 1D and 2D data structures, enough
voxel cube configuration table as in marching cubes algo- information is provided for us to construct 3impleboxes.
rithms 1.6, Fig. 12 shows all possible padi configurations The information is implicitly stored as the 2D padis. Us-
and their corresponding iso-lines. Note the padi needs not ing this information, we go on to construct simple boxes by
be a square. Similar to the 3D voxel configurations, ambigu- stacking simple padis.

© The Eurographics Association and Blackwell Publishers 1998.
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3.1. 3D Adaptive Skeleton Cllmblng Input:  An (N—|—1) % (N—I—l) % (N—|—1) 3D voxel grld
3.1.1. 3D Data Structures Output: A set of maximal highrices and isosurface

triangular mesh.
Consider g N+1) x (N+1) x (N+1) voxel sample grid. Algorithm:

For the sake of discussions, we now define the 3D terminolo- + Generate the padis on each farm */
gies and data structures. All terminologies are graphically For each farm out ofi(y-farm, zz-farm andyz-farm)

illustrated by & x 3 x 3 volume in the Fig. 14(a). Aarm Find size-maximal padis b§SC2D
containg N+1) x (N+1) voxels on a 2D grid. Alab, anal- Set layout arrays based on padi layout on eagfiarm.
ogous to a strip containing two consecutive ligns, consists of Fqof eachry-slab
two consecutive farms. Arick in the slab has two match- Find layout ofzy-bricks byMAXoperations.(Fig.16)
ing padis in two consecutive farms as facedighriceis a Initialize an empty candidate list of highrices.
rectangular box composed of stacked bricks. I* Stack the bricks to form highrice */
For eachry-slab
Yotav i+1 For eachry-brick a

Jarm 2y Yo Let rectangular box := a

Jarm Ly, While 3 neighbor simplesy-brick 5 on the

e A highrice adjacentry-slab

ek ey r =1 Ub (Fig. 17)

Subdivider into xy-highrices with the binary
b4 restriction applied along and givek zy-highrices

/| P — |
e y e é ‘ L W ri,r2,..., Tk (Flg 18)
7 x P/ For each generategy-highricer
e ) 1

For eachry-highriceh; in the candidate list

xy-farms (b;cz-tarms yz-farms If h; encloses
Deletery.
Figure 14: Data structures for the 3D algorithm. If r; encloses;
Removeh; from the candidate list.
If h; partially overlaps with-;
It is convenient to denote a farmy-farm, zz-farm or Clip ry.
yz-farm, according to which plane the farm is parallel to If v is not removed
(Fig. 14(b)). Similarly, a brick is calledy-brick if it is par- Add r;, to the candidate list
allel to thezy plane. /* Sharing information among highrices */
For each farms{y-farm, zz-farm, yz-farm)
3.1.2. Merging Bricks to Form Highrices Reinitialize layout array to fitzy-highrice boundaries
(Fig. 20)

Our goal is to construct 3Bimplerectangular boxes. We
start by findingsimplebricks. A brick issimpleif the two
padis forming it are also simple. A highricessnpleif all
its component bricks are simple, and its six facessargple

Find a padi layout wittASC2Dusing new layout values
/* 1so-line Generation */
For eachry-highrice in the final candidate list

For each padi on the surface of thg-highrice

padis. Generate iso-lines. (Fig. 12)
Firstly, simplexy-bricks are identified. Then these simple Connect the iso-lines to form loops
zy-bricks will be stacked one by one to construct the sim- For each edge loop on the surfacergthighrice
ple zy-highrice. Note a highrice can be treated as compos- Triangulate it and emit the triangles.
ing of zy-bricks,zz-bricks oryz-bricks, depends on which ] -
dimension the bricks are stacked. We call a highricertie Figure 15: Algorithm ASC3D

highrice if it is constructed by stacking simplgs-bricks.
In our algorithm, we only interest in finding the simplg-
highrices.

Fig. 15 outlines the main algorithm. The first step gen-
erates the padi layout on each farm by algorith@C2D
without the iso-line generation step. Then we identify the
simple zy-bricks by performing simpl&AXoperations for
each pair of corresponding entries in the layout arrays on
two consecutive farms. Just like the 2D version. An example
is shown graphically in Fig. 16.

© The Eurographics Association and Blackwell Publishers 1998.
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Figure 16: To find the simple bricks inside the slalbAXop-
erations are done on each pair of the layout arrays of neigh-
boring farms.

xy-slab[  k].x-strip[ 7].layout[ 7] =
max(xy-farm[  k].x-strip[ 7].layout[ 7],
xy-farm[ & + 1].x-strip[ 7].layout[ 7])
xy-slab[  k].y-strip[ 7].layout[ 7] =
max(xy-farm[  k].y-strip[ 7].layout[ 7],
xy-farm[ & + 1].y-strip[ 7].layout[ 7])

Next, neighbor bricks merge to form highrices in 3D
(Fig. 17), analogous to merging plots to form padis in the
2D case (Fig. 7). Again there is no unique merging rule
(Fig. 17), and again we prefer a fast heuristic to a search for a
suboptimal subdivision. For each size-maximaibrick on
each slab, we stack theay-bricks upward along direction
until no more simple bricks available. Then this temporary
box is subdivided along direction to fulfill the binary edge
constraint (Fig. 18). During the highrice formation, the gen-
erated highrices may overlap with each other or one may be
enclosed by another. Any enclosed highrice will be removed.
Overlapping highrices are clipped.

4
———

N
!

or

Figure 17: Merging bricks to form highrices

Subdivide
along 7

+ brick

Binary edge
expand

constraint
applied to
2 direction

)

v
UX
&

Figure 18: Bricks are first merged to form box. Then the box
is subdivided along to form highrices in order to fulfill the
binary edge constraint.

4. Sharing Information Between Highrices

At this moment, we can immediately generate triangles in-
side eachry-highrice with the padi layout on the surface on
thezy-highrices. This will yield triangular mesh with crack,
just like the cases of Shet al.” and Shekhaet al. 8, since
the boxes may not be unit cubes.

© The Eurographics Association and Blackwell Publishers 1998.

Fig. 19(a) shows a large highrice next to a small one.
The isosurface crosses the plane separating the two high-
rices (Fig. 19(b)). If triangles are emitted feach highrice
without the knowledge of their neighbors, gaps will appear
in the generated triangular mesh. This is because the linear
iso-lines generated on the highrice surfaces may not match
each other geometrically (Fig. 19(c)), even though they are
topologically correct. To prevent this mismatch, information
must be shared between adjacent highrices.

"

Gap

(2)

/

/

One face of
large highrice

(b)

+

/

Resultant isoline
without info. sharing

(c)

Resultant isoline
after sharing info.

()

The face shared
by small highrice

Figure 19: Sharing information between neighbor high-
rices.

In our algorithm, the neighbor information can be shared
by manipulating the basic data structures. Recall that we
store the padi layout of each farm in layout arrays in sec-
tion 2.2.2. Layout arrays are variants of simple plot arrays.
We can reuse these arrays with the new constraint that no
plot may cross the boundary of any face of any generated
xy-highrice. That s, we store the 3D highrice layoutin these
arrays this time. Fig. 20 shows the farm between the two
highrices in Fig. 19. The surface boundary of the larger high-
rice is shown as thick dark gray line in the farm of Fig. 20(b),
while that of the smaller highrice is shown as thick light gray
line.

Once the layout arrays are réialized, algorithm ASC2D

is executed on them (instead of simple plot arrays) to give a
new set of padis. Since the length-maximal plots represented
by the layout arrays are not allowed to cross any bound-
ary, the generated padis will fit inside these boundaries.
Fig. 20(c) shows the generated padis for the previous exam-
ple. After generating iso-lines on each padi, three segments
of iso-lines will be generated in the example (Fig. 20(d)),
therefore no gap will exist.

5. Isosurface Extraction

Instead of thinking the padis are laid on the farm, they can
also be regarded as padis laid on the six faces of egeh
highrice. Each face of they-highrice may contain more
than one padis as in Fig. 21.

To generate the isosurface, we first generate iso-lines
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Generation

Generate
Padi again

(b) © ()

Figure 20: Once we reinitialize the layout arrays to store the
3D highrices’ layoutASC2Dcan be run to generate padis
that fit into the surface boundaries of both highrices.

Figure 21: The six faces of a highrice are tiled wifradis
after information sharing.

on padis by looking up the 2D padi configuration table

in Fig. 12, and connect them to form closed edge loops
(Fig. 23(a)). Note that in our algorithm, we only need a 2D

padi configuration table, no 3D voxel cube configuration ta-
ble is needed.

Given an edge loop consisting of several vertiegswve
emit triangles as follows. In each iteration, three consecutive
verticesv;, v;4+1 andv, 2 are selected and one triangle is
generated (Fig. 22). The vertex,, is then removed from
the edge loop. The algorithm continues until only two ver-
tices are left.

sesssce essssee

Figure 22: In each iteration, one triangle is etted and one
vertex is removed.

An edge loop can be triangulated in ltipie ways. Differ-

counts, but with different geometry (Fig. 23(b) and (c)). To
generate a mesh that closely approximates the true isosur-
face, we make use of the gradient. We reject any triangle
with planar normal vecton; that largely deviates from the
gradientsy; at three vertices. The deviation is measured by
the dot product ofi; andg;. A threshold is used as a criteria.
The threshold constraint will be relaxed if no triangle can be
generated under current constraint.

1 f t i 1 /
b\q R/ N A \/\ or \%§7
P \ >4 - N
(a) (b) ‘Possible‘ () ) Better )
Triangulation Triangulation

Figure 23: Triangulate the edge loop to emit triangles.

6. Multiresolution Isosurface Extraction

The proposed algorithm handles volume with the size of
(N+1)x (N+1)x (N+1),i.eacubicblock To handle
volume with different size, we can simply tile the blocks to
cover the whole volume and apph5C3Dto each block. Re-

call that gaps will appear if no information is shared between
adjacent highrices. Similarly, cracks will appear if informa-
tion is not shared between adjacent blocks. Unlike the case
of variable-sized highrices, each block has the same size.
This simplifies the process. To share information between
blocks, we simply perfornMAXoperations on each pair of
layout arrays on the surfaces (which are also farms) of two
adjacent blocks. The simpMAXoperations effectively find
out the largest padis that fit the constraints. This informa-
tion sharing process must be done just after the information
sharing among highrices.

Up to this moment, we have not yet discussed the effect
of using different values ofV, i.e. the size of the block.
The block size constrains the maximum size of the high-
rices. When the block size is small, sAy= 1, the largest
highrice contain® x 2 x 2 voxels,i.e. same as standard
marching cubes. When a larger block size is used, larger
highrices are allowed to be generated, hence larger triangles.
In other words, by controlling the valu¥, we can gener-
ate isosurfaces in nftiresolution. Note that parametéy is
an indirect control, the actual mesh generated will also de-
pend on the geometry of the true isosurface. More triangles
will still be generated if the isosurface geometry is complex.
Figure 25(b)-(e) shows the results of using different block
sizes. From (b) to (e), the values of are 1, 2, 4 and 8.

As the block size increases, larger triangles are generated to
approximate the smooth surface.

Unlike the triangle reduction algorithm3.4.5 which
generate coarser mesh based on the high resolution mesh, the

ent sequences give triangular meshes with identical triangle proposed approach generates coarser mesh directly from the

© The Eurographics Association and Blackwell Publishers 1998.
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original volume data. This ensures no distortion or error is “knot256” and “Mt. Alps”, the running times of generating
introduced before the triangle reduction. More importantly, coarse meshes\{ = &) are faster than that of marching

the proposed algorithm is a on-the-fly process which re- cubes. This result suggests that the coarse mesh generated
quires no time-consuming postprocessingtriangle reduction. by adaptive skeleton climbing may be a better initial start

In fact, the algorithm produces coarser mesh in a smaller for mesh optimization than the highest resolution mesh from
amount of time (see Table 1). This is quite different from marching cubes, since the extra time spending on generating
those triangle reduction algorithms. Although our approach coarse mesh using our method is usually smaller than the ex-
may not reduce triangles as much as mesh optimizer does, ittra time spending in the mesh optimizer if the initial start is

is a cost effective method to significantly reduce triangles in the highest resolution mesh.

a short period of time.

8. Conclusions and Future Directions

7. Implementation and Results Adaptive skeleton climbing produces isosurfaces in times
comparable to marching cubéswith substantially fewer
triangles, and without the gaglifig problems of adaptive
marching cube methods It directly uses the volume data
and produces isosurface in multiple resolutions.

In practical implementation, there is no need to process ev-
ery block of voxels. Since many blocks are empy, con-
tains no isosurface, we can simply ignore them without per-
forming the computation intensive merging processes. This
can be done in the early stage of the algorithm. Once we have  Since we use simple rectangular boxes instead of octree
initialized the valuesicc[] for eachlignin the block, the cubes, this approach provides more flexibility in partition-
emptiness of the block can be immediately identified. ing the volume, hence captures more isosurface regions with
simple geometry. It is faster than postprocessing mesh sim-
plification methods: 4 5 2, though the mesh may not be op-
timally reduced. The proposed algorithm can serve as a com-
h panion to the mesh optimizer, since the coarse mesh it pro-
duced can be a better initial guess for the optimizer. Adaptive
dskeleton climbing is a fast heuristic algorithm, rather than a
path to a strict optimum.

Table 1 and Fig. 24 quantify for various datasets the
results of our implementation of adaptive skeleton climb-
ing with four block sizesN = 1, 2, 4 and8. Triangle
counts and CPU times on an SGI Onyx are compared wit
the Wyvill implementatiorf of marching cubes algorithm.
Fig. 25 shows the corresponding images. Gouraud shade
isosurfaces are overlaid with triangle edges for clarity.

One future research direction is to further speedup the
algorithm by combining an indexing scheme such as the
kd-tree indexing approach: 11 which can rapidly and ef-
ficiently locate the non-empty cells (those cells contain iso-
surface). Another direction is to parallelize the algorithm.
Besides the information sharing process, all other parts of
the algorithm can be easily parallelized. We are developing a
multithread implementation of theqposed algorithm. Fur-
ther speedup is expected since the information sharing pro-
cess uses only a small fraction of computational time.

The “knot” data sets are sampled from an algebraic func-
tion, at three resolutions. Fig. 25(b—e) show the extracted
isosurfaces in mitiple resolutions, while Fig. 25(a) shows
the isosurface generated by the marching cubes algorithm.
The mesh generated by marching cubes method and that
by the proposed method withh = 1 are visually very
similar. Volume “Mt. Alps” (Fig. 25(f—j)) is a landscape
heightfield dataset. We also tested two medical computed to-
mography (CT) datasets, “Head” (Fig. 25(k—0)) and “Arter-
ies” (Fig. 25(p—t)). The data set “Arteries” contains no large
smooth sheets, and its geometrical complexity inherently re-
quires a finer mesh for topological correctness. Web Availability

In general, as the block siz€ increases, both the trian- A robust implementation of the algorithm is available for
gle count and the CPU time decrease (Fig. 24 (a) and (b)). download at the web site:
There are about four to twenty-five times reduction in the tri-  http:/mwww.cse.cuhk.edu.hk/ ~ttwong/papers/asc/asc.html
angle count. Fig. 25 revealittle change in shape as the tri-
angle count decreases. Note that in some casesincreasing th
block sizeN may slightly increase the triangle count when
the complex geometry of the isosurface requires sufficient This work is supported by RGC Earmarked Grant
triangles to represent. In three out of six tested cases, the op-CUHK4162/97E of Hong Kong and CUHK Direct Grant.
timal block size (in term of triangle count)i§ = 4. Depend We would also like to thank Dr. Tushar Goradia at Johns
on the geometry complexity of the true isosurface, this op- Hopkins University for providing the “Arteries” data set.
timal value may vary. From the experiments, the proposed
algorithm is not efficient to generate the highest-resolution
mesh as the marching cubes algorithms do. However, it can
generate coarser meshes in an amount of time comparablel. William E. Lorensen and Harvey E. Cline, “Marching
to that of marching cubes algorithm. In the test cases of cubes: A high resolution 3D surface construction algo-

%\cknowledgements

References

© The Eurographics Association and Blackwell Publishers 1998.


http://www.cse.cuhk.edu.hk/~ttwong/papers/asc/asc.html

Poston, Wong and Heng / Multiresolution Isosurface Extraction withpiive Skeleton Climbing

Data Set ASCN =1 ASC,N=2 ASC,N=4 ASC,N =38 MC
knot64 12,712 3,682A 1,772/ 2,054A 13,968
64x64x64 8.16sec. 3.61sec. 2.5%ec. 2.43%ec. 1.7%ec.
knot128 44,760\ 13,08&8n 4,692A 3,918A 56,208\
128 x128x 128 61.5%ec. 24.0Gec. 15.61sec. 14.3%sec. 12.81sec.
knot256 152,080 48,562\ 15,3700 8,829 225,736\
256 %256 % 256 470.95ec. 178.54ec. 105.3kec. 87.7&ec. 94.6%ec.
Mt. Alps 423,633\ 147,562 90,4347 94,33N 423,640\
258 x 258 % 256 547.7Gec. 207.54%ec. 137.7Gec. 132.83%ec. 151.05ec.
Head 580,771 186,331n 136,901 159,207 592,368\
256x256x113 339.2kec. 138.5%ec. 97.3%sec. 100.55sec. 61.91sec.
Arteries 263,686\ 131,761 139,63\ 149,251 263,438\
256256148 311.9%ec. 134.0Gec. 103.6&ec. 128.05ec. 56.0%ec.

Table 1: Comparison of marching cubes (MC) and adaptive skeleton climbing (ASC), with block\sized, 2, 4,8, and
marching cubes, in term of triangle court{ and CPU time.
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Figure 24: Graphical presentation of the results shown in Table 1. (a) Graph of triangle count. (b) Graph of CPU time.
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[Poston, Wong & Heng] Figure 25 (cont'd) Visual comparison of the effects of block size, for an algebraic surface, a landscape, and Gbdesaafod blood vessels in the head.
(K)-(0): "Head". (p)-(t): "Arteries”.



