Stereoscopizing Cel Animations

Xueting Liu Xiangyu Mao

Xuan Yang

Linling Zhang Tien-Tsin Wong

The Chinese University of Hong Kong*

A\

Figure 1: Stereoscopization of a cel animation. Our method takes an ordinary 2D cel animation (top row) as input, infers the temporal-
consistent ordering, and synthesizes the per-frame depth maps (middle row), in order to generate a stereoscopic cel animation (bottom row,
presented in the form of anaglyphs). This sequence has 12 frames (1920 x 1080). The frame containing the maximal number of regions has
82 regions. In our experiment, depth ordering takes 12 minutes, and depth synthesis takes 9.6 minutes.

Abstract

While hand-drawn cel animation is a world-wide popular form of
art and entertainment, introducing stereoscopic effect into it re-
mains difficult and costly, due to the lack of physical clues. In this
paper, we propose a method to synthesize convincing stereoscop-
ic cel animations from ordinary 2D inputs, without labor-intensive
manual depth assignment nor 3D geometry reconstruction. It is
mainly automatic due to the need of producing lengthy animation
sequences, but with the option of allowing users to adjust or con-
strain all intermediate results. The system fits nicely into the ex-
isting production flow of cel animation. By utilizing the T-junction
cue available in cartoons, we first infer the initial, but not reliable,
ordering of regions. One of our major contributions is to resolve
the temporal inconsistency of ordering by formulating it as a graph-
cut problem. However, the resultant ordering remains insufficient
for generating convincing stereoscopic effect, as ordering cannot be
directly used for depth assignment due to its discontinuous nature.
We further propose to synthesize the depth through an optimiza-
tion process with the ordering formulated as constraints. This is
our second major contribution. The optimized result is the spatio-
temporally smooth depth for synthesizing stereoscopic effect. Our
method has been evaluated on a wide range of cel animations and
convincing stereoscopic effect is obtained in all cases.
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1 Introduction

Traditional cel animation is produced with each frame being drawn
manually on celluloids or via computer tablets, and remains a wide-
ly used approach (Fig. 2). Unfortunately, it is extremely difficult
to introduce stereoscopic effect into cel animations. To our best
knowledge, there is only a scarce number of stereoscopic cel ani-
mations produced so far. Unlike live-action movies that can be cap-
tured with a stereo camera and 3D computer animations that can be
computer rendered (e.g. Toy Story and Cyborg 009 [Production [.G.
et al. 2012]), hand-drawn cartoons contain no physically correct
depth to estimate nor 3D geometrical information to exploit. In fact,
frames drawn by cel animators usually contain physically incorrec-
t objects or shapes to maintain aesthetics and style [Rademacher
1999]. Training animators to manually draw stereoscopic pairs of
frames is almost infeasible.

As cels may be physically incorrect, 3D geometry reconstruction of
the hand-drawn scenes becomes infeasible. Besides, the transition
between adjacent frames is typically much larger than that of the
live-action videos, thus existing pose estimation and feature track-
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Figure 2: Traditional production of cel animation. Motion char-
acters are drawn on physical celluloids (or compositing layers in
modern digital production) and then composed to produce the ani-
mation.

ing may not be applicable. One may suggest utilizing cels as or-
dered layers in the animation production. However, such cel layers
may not correspond to the physical depth we need. As illustrated in
Fig. 2, the two characters may be collapsed into a single cel during
the production. No ordering information between them is avail-
able in the original cel. Such collapsing treatment is decided by
the animator and is common in the real production. Although one
can manually introduce depth information to still cartoons by la-
beling [Sykora et al. 2010] or modeling geometry [Production I.G.
et al. 2012], these approaches are labor-intensive. The situation is
even worsened when extended to long animation sequences.

In this paper, we propose a novel method to “stereoscopize” (intro-
duce stereoscopic effect to) traditional cel animations by inferring
the pseudo-depth, that looks convincing and pleasant. While our
method is automatic, it provides the option of full user control vi-
a direct adjustment and constraints on all intermediate results. It
fits naturally into the existing production flow of the 2D cel ani-
mation. Animators do not have to model 3D geometry nor to train
themselves for hand-drawing stereo frames. While cartoons may
not contain physically correct information, there remain important
cues for human audiences to perceive the depth. One important cue
is the T-junction (Fig. 5) corresponding to the occlusion, and has
long been aware by psychologists and computer scientists [Bruce
et al. 2003; Guzman 1968] in visual perception. Hence, we propose
to first infer the ordering of the layers by exploiting the T-junction
cue. Here, the “layers” refer to the regions we extracted and may
not be equivalent to the cel layers. While the T-junction cue may
not be obvious to detect in natural images, it is especially distinctive
in cartoon drawing as regions are mostly enclosed by clear edges.
However, the T-junction cue may still be noisy and lead to ordering
inconsistency within a frame and/or among the frames. To suppress
the noise while allowing the change of ordering due to the actual
motion, we formulate the relation between each pair of layers as a
graph-cut problem to maintain temporal ordering consistency.

Even with the ordered layers, layers separated by equal distance
(due to the lack of inter-layer distance information) and discontin-
uous depth change across consecutive frames cannot produce visu-
ally appealing stereoscopic effect. Instead, layers belonging to the
same object should have similar depth values, and the depth should
change smoothly across frames. To compute the pseudo-depth with
these required properties, we formulate it as an optimization prob-
lem, with the computed layer ordering as inequality constraints and
the user control as higher-priority constraints. Once the pseudo-
depth is computed (Fig. 1, middle row), we can then synthesize a
stereo pair for each frame by rendering the layers from novel view-
points and inpainting the missing pixels due to disocclusion. Our
major contribution lies on two aspects. The first one is a novel

graph-cut formulation for achieving temporal consistency of order-
ing. The second is the depth synthesis by minimizing the energy
over similar motion and temporal smoothness. On the bottom row
of Fig. 1, visually pleasant and convincing stereoscopic effect for
the cel animation is obtained, even the character is originally drawn
on a single cel layer and provides no physical clues.

2 Related Work

The key to stereoscopize movies or animations is to obtain a depth
value for each pixel in each frame, so that the disparity can be com-
puted. The depth is determined by obtaining either image-based
depth maps or geometry-based models. Existing methods can be
roughly classified into depth inferencing and depth creation.

Depth Inferencing Recovering depth and/or geometry from nat-
ural images is a classical problem in computer vision. Existing ap-
proaches utilize various photographic depth cues for recovery, in-
cluding shading [Horn 1990; Wu et al. 2008], texture [Super and
Bovik 1995; Forsyth 2001], focus [Nayar and Nakagawa 1990;
Assa and Wolf 2007], and even haze [He et al. 2009]. With a
live-action video sequence as the input, camera trajectory can be
estimated and temporal coherence can be considered [Kang and
Szeliski 2004; Zhang et al. 2008; Lang et al. 2010]. Unfortunately,
these methods are only applicable for natural images/videos, be-
cause hand-drawn cartoons are lack of cues exploited above. For
instance, cartoon shading is usually crude and not guaranteed to
be physically correct. More seriously, the movement between con-
secutive frames is usually much larger than that of the live-action
videos. Together with the insufficiency of textures in cartoons, fea-
ture tracking and pose estimation become very difficult. Hence,
depth or geometry recovery from hand-drawn cel animations is in-
feasible with the above methods.

While most depth cues are not exploitable in cel animations, there
remains one common cue available in both natural images and car-
toons. It is the T-junction. Its notion has long been aware by re-
searchers in visual perception [Metzger 1936; Guzman 1968; Bruce
et al. 2003]. However, only small number of work is available [A-
postoloft and Fitzgibbon 2005; Dimiccoli and Salembier 2009a;
Dimiccoli and Salembier 2009b; Amer et al. 2010; Jia et al. 2012]
and all of them only focus on natural images. In this paper, we
make the first attempt to exploit the T-junction cue within a cartoon
frame and the temporal consistency of T-junctions over the whole
cel animation to infer the depth. Note that, unlike in natural images
where T-junctions are less obvious to detect, the T-junction cue is
especially suitable for cartoons due to the availability of clear en-
closing edges.

Depth Creation Attempts have also been made to construct 3D
geometry from line drawings by making assumptions on both the
input drawing and the shape being constructed. Taking CAD or ar-
chitectural drawings as input and making the parallel-line assump-
tion, methods have been developed to construct objects or archi-
tectural structures [Lipson and Shpitalni 1996; Varley and Martin
2002; Lee et al. 2008; Ward et al. 2011]. Due to the strong as-
sumptions, they are not applicable to arbitrary drawings, such as
cartoons of “organic” characters or even physically incorrect but
stylish drawings. Another stream of work focuses on sketch-based
modeling [Igarashi et al. 1999; Gingold et al. 2009; Goldberg 2009;
Karpenko and Hughes 2006; Nealen et al. 2007; Joshi and Carr
2008; Kim et al. 2013] that can construct more “organic” objects
by making another set of assumptions. Unlike these comprehensive
shape construction approaches, we only construct a 2.5D layer rep-
resentation from the cartoon and make no assumption on the input.

The most straightforward approach to create depth is to allow users



c
Sw -
S c S
5% H 2 £
s =& 5 2 E @ S
35 —> -1 E o @ ©
g ® 5 8 3 £ 3
% 5 c < o
) / 3 2 > e
$ o N 2 by < g
3 : ] S > o
& (c) Ordering graph I5] 3 5 8 &
-y — (per frame) b iy @ —y —_—
’J:
— .\. 3
b \sink
(a) Input frames (b) Region map >l ! _ - - (f) Refined ordering (9) Depth map (h) Stereo pair
(per frame) Py (e) o(;(fﬁ;ggsgﬁgﬁge%mph graph (per frame) (per frame) (per frame)
o o
8%
=}
SE I
a9 r
o (d) Region
‘g correspondence

Figure 3: System overview.

to assign depth values to pixels directly [Ventura et al. 2009; Schar
et al. 2008; Wang et al. 2011]. The amount of user intervention can
be reduced by specifying equalities and inequalities [Zhang et al.
2002; Assa and Wolf 2007; Sykora et al. 2010]. Nevertheless, ex-
isting methods are mainly applied on still cartoons and seldom con-
sider temporal consistency. Due to the amount of manual input,
practical application of these methods to lengthy cel animation is
questionable. In contrast, our depth-inferencing method is main-
ly automatic with optional user control, and capable to synthesize
temporally coherent depth for the whole animation sequence.

If the original cel layers are available, one can also create a stereo-
scopic animation by manually assigning depth to each cel lay-
er [Tokyo Movie Shinsha 1977; Production I.G. 2011; Rivers et al.
2010] as practiced in the current film industry. However, content
within the same cel is therefore flattened unless it is modeled sep-
arately with geometry. In our work, we compute the depth for the
regions extracted from a cel, contents in the same cel can also be
stereoscopized as demonstrated in Fig. 1.

3 Overview

Our system is overviewed in Fig. 3. Given a sequence of animation
frames as input, we first extract the regions from each frame. Our
goal is to determine a depth value for each region in order to syn-
thesize stereo frames. Here, each area enclosed by edges forms a
region (Fig. 4(e)). Unlike typical segmentations, we do not segment
purely based on color, as separated regions caused by shading (e.g.
shaded regions in Fig. 4(a)) are inappropriate in our application.
Instead, we first identify all edge pixels and store them in an edge
map. Note that edges in cartoons are not necessarily black in color.
It can be any color but locally darker than that of the neighboring
regions. As the luminance channel contains the most visually sen-
sitive content, we convert the RGB frames to Lab color space and
process only the L channel. We preprocess the L image by applying
the adaptive histogram equalization to make edges more distinctive,
followed by the median filtering. The difference between the be-
fore and after median-filtered images is the edge map. The median
filter can effectively differentiate the explicitly hand-drawn edges
(trough-shaped profile Fig. 4(c)) from color discontinuity due to
shading (stair-shaped profile in Fig. 4(d)). Fig. 4(b) shows the edge
map extracted with Fig. 4(a) as the input. We further extract edge-
enclosing regions (Fig. 4(e)) by applying a rolling-ball [Zhang et al.
2009] on this image-based edge map. Note that simple flood-filling
may fail as stylish drawings not always form closed regions. Op-
tionally, users are allowed to modify the extracted regions (merge
over-segmented or split under-segmented regions) via an interactive
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Figure 4: (a) Input frame. (b) Edge map. (c) Profile of intensity
across an explicit edge in the small top-right balloon. (d) Intensity
profile across the edge due to shading. (e) Region map. (f) Ordering
graph.

tool.

As one of our key contributions, we then determine the depth-
ordering of the extracted regions. We utilize the T-junction cue to
resolve the ordering. A T-junction indicates the appearance of oc-
clusion and suggests an ordering relation that one region occludes
the other two (e.g. Fig. 5(b)). With the T-junction cue, we construct
an ordering graph for each frame independently (Fig. 3(c)). By
topologically sorting [Kahn 1962] (Section 4) this ordering graph,
we can already determine an ordering. However, sometimes a T-
junction is vague or even incorrect (Fig. 5(c)-(e)), thus relying on
T-junction cues from a single frame is noisy and insufficient. By
exploiting T-junctions from multiple frames, we can suppress nois-
es and maintain temporal consistency. In particular, we formulate
this problem as a graph-cut problem [Boykov et al. 2001]. A single
ordering relation graph is constructed for the whole animation se-
quence (Fig. 3(e)) where the ordering relations between every pair
of regions are the nodes and inter-frame correspondences among
regions (Fig. 3(d)) are the edges. Then temporal-consistent order-
ing relations can be obtained by solving an optimal cut (Section 5).
A nice feature of this graph-cut formulation is that it also allows
sharp changes of the orderings due to actual motions. The result of
the graph-cut is used to remove inconsistent and/or insert missing
orderings in each ordering graph (Fig. 3(f)). The final ordering of
regions for each frame is determined using the topological sorting.

To produce convincing stereoscopic effect without discontinuous
depth change, depth ordering alone is not sufficient. We need to
further compute the pseudo-depth (Fig. 3(g)) so that the depth of
a region changes smoothly over time (Section 6). We formulate
it as an optimization problem with an objective to minimize two
types of inter-region depth distances. They are the depth distances



Figure 5: An example frame in (a) contains T-junctions having cor-
rect suggestion (b), vague suggestion (c), as well as incorrect sug-
gestions (d) & (e). (f) Notations used in our formulation.

between temporally neighboring regions over consecutive frames,
and the depth distances between spatially neighboring regions with
similar motions (regions with similar motions are more likely to be
connected, and so as their depths). Previously estimated ordering
information is formulated as the inequality constraints so that the
ordering is not violated during energy minimization.

Finally, with the optimized image-based depth maps (partial geom-
etry) and the original color frames, we can synthesize a stereo pair
for each frame (Fig. 3(h)) by re-rendering each frame as viewed
from two novel eye positions (Section 7). Gaps due to disocclu-
sion in the re-rendered views are inpainted. The reason, that we do
not reuse the input frame as one view of the stereo pair, is to avoid
large gaps generated by large eye disparity which may complicate
the subsequent inpainting.

4 T-Junction for Ordering

When a boundary (the vertical line in letter “T”) is blocked by an-
other boundary (the horizontal line in “T”), a T-junction is formed
and it suggests the appearance of occlusion (Fig. 5(f)). While the T-
junction suggests no ordering information between the two regions
sharing the blocked boundary (regions b & c in Fig. 5(f)), it suggest-
s a high belief of the third region (region a in Fig. 5(f)) occluding
the other two (b & ¢). We define a T-junction as a 3-valence junc-
tion point in the edge map. An ideal T-junction is formed by three
sufficiently long boundaries in which two boundaries are colinear
and the third boundary is perpendicular to them. Obviously, short
boundaries (Fig. 5(d)) as well as vague T-junction (Fig. 5(c)) may
mislead the ordering. Hence, we compute a belief of the occlusion
suggestion for each detected T-junction. Consider a T-junction ¢,
we model its belief of suggesting region a blocking regions b and ¢
(denoted as a — b and a — ¢) as

B._, =B!_.=kimin(0.,2r —0.), 1)
where | = min(lgp, lac, lbe, lo), and k = 1/(wl,).

Here, region a is the region with the maximally subtended angle
0, at the junction. Regions b and c are the two remaining regions.
Fig. 5(f) explains the notation. Notation /,; denotes the arc length
of the boundary shared by regions a and b. l,. and I, are defined
similarly. [, is the radius of the circular neighborhood centered at
the junction and it is pre-defined (15 pixels in all our experiments,
and should be associated with the resolution). It bounds the con-
tribution of the boundary length to the above belief as it is mean-
ingless to consider the whole boundary. Constant £ normalizes the
belief value to the range of [0,1]. The belief defined above is maxi-
mized when the blocking boundary is straight and all boundaries are
sufficiently long. When there exists two equal maximally subtend-
ed angles at the same junction (Fig. 5(c)), both ordering suggestions
are valid and their beliefs are computed separately.

Our current junction identification method is rather straightforward.
More sophisticated approach can be found in [Noris et al. 2013].
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Figure 6: (a) An input sequence of three frames. (b) The corre-
sponding ordering graphs constructed based on the T-junctions in
a single frame. (c) The ordering relation graph for the whole se-
quence. (d) Refined ordering graphs based on the graph-cut result.

However, no matter how sophisticated the method is, missing or in-
correct T-junctions may still be unavoidable. Instead of relying on
the sophistication of T-junction identification and its belief mod-
el design, we rely on the aggregate effect of the large number of
T-junction suggestions from multiple frames, to suppress the nois-
iness, compensate the missing T-junctions, and resolve the incons-
tency among the ordering suggestions in the following section.

With the ordering suggestions and their beliefs, we construct an or-
dering graph for each frame (Fig. 4(f)). Each region corresponds
to a node in the graph and an ordering suggestion a — b corre-
sponds to a directed edge from node a to node b. Each edge carries
a weight corresponding to the belief. When there are multiple T-
junctions between regions a and b, the beliefs of all T-junctions
suggesting the same ordering direction are summed and assigned
as the weight of the directed edge from a to b,

wl_, = B ©
teT

where 7T’ is the set of T-junctions suggesting the same ordering a —
b in the frame f. It is possible that different T-junctions suggest
opposite ordering directions, i.e. both a — b and b — a exist.
These opposite directions correspond to opposite directed edges in
the graph (the cycle in Fig. 4(f)). In that case, weights of opposite
ordering directions are summed separately.

5 Temporal-Consistent Ordering

It seems that the ordering of all regions in each frame already can
be obtained by topologically sorting each ordering graph indepen-
dently. However, T-junctions in a single frame may be unreliable,
contradictory, or temporally inconsistent. Fig. 6(a) shows one un-
stable scenario in which a yellow square moves from left to right
and occludes the pink square behind. Even though the ordering re-
lationship among the three color regions does not change over time,
the T-junctions captured are inconsistent with each other (Fig. 6(b)).
Hence, we utilize the aggregate effect of a large number of T-
junctions from multiple frames in order to maintain the temporal



consistency. While an ordering relation tends to remain unchanged
in a period of time, it may also change at certain points due to actual
motions. Hence, we formulate this problem as a graph-cut problem
which can maintain the temporal consistency while simultaneously
allow sharp and persistent change of ordering.

We construct an ordering relation graph (Fig. 6(c)) for the whole
animation sequence, based on the per-frame ordering graphs con-
structed previously. In this graph, each node, denoted as nf: b S-
tands for an ordering relation between a pair of regions a and b in
frame f. Each non-terminal node is connected to the two terminal
nodes, source and sink. If the graph-cut result labels a non-terminal
node nfi , to source, it means region a occludes region b (a — b)

in frame f. Otherwise, region b occludes region a (b — a).

Data Cost The data cost measures how likely an ordering relation
between regions a and b in a frame f is a — b (source) or b — a
(sink). Each node is connected to both the source and the sink, and
the costs associating with the correspondingly edges are defined as

D(n},,source) = w)_,,/(w)_, +w]_,,) C)
and .
D(né,lﬂ Slnk) = w{*}a/(wtf%b + wl{*}a) (4)
respectively.

Region Correspondence and Smoothness Cost The smooth-
ness cost measures how likely an ordering relation remains un-
changed in two consecutive frames, and is modeled as the similari-
ty of the corresponding regions. To measure the similarity, first we
need to determine the correspondence of regions. Unlike live-action
videos, content of cel animation usually changes much more rapid-
ly and abruptly. So existing motion tracking methods are generally
not applicable. We propose to determine the region correspondence
based on the similarity of regions. In particular, the similarity of
two regions, a and b, is measured in terms of their differences in
color, position, size, and shape as follow,

Oa,b exp - lra = 7ol |ha — el
min(rq, rp)’ min(re, )  min(hg, hy)
5

Sa,b = Ja,b Max (

where
Ja,b = H[7—C - Ca,b]H[TN - Na,b]: (6)
H is a Heaviside step function
_J 0, n<O
il ={ 250 ™
and Cq» =|| 9a — Qb || measures the color difference of a and b

by calculating the Euclidean distance between their corresponding
color histogram vectors qa, and qp. The color histogram vector is
constructed in RGB color space with each channel quantized into
16 bins. N, ; is the smallest Euclidean distance between regions
a and b and is normalized by image resolution. 7¢ and Tas are
user-defined thresholds and are set to 0.3 and 0.1 respectively in
our experiments. 04, is the size of the overlapping area of a and b,
T4 s the size of a, and h, is a very crude shape descriptor defined
as hq = T'a/ya Where yq is the perimeter of a.

For each region in a frame, we search for the most similar region
in the previous and subsequent frames respectively and they are
referred as the corresponding regions. Note that it is possible that a
region has no corresponding region previously or/and subsequently.
We design the similarity by taking two forms of region changes into
account. On one hand, a region may be divided into multiple sub-
regions in neighboring frames due to occlusion. These sub-regions
can be very different in shape and size with the original region, but
their positions are less likely to change too much. Thus, measuring
the overlapping area gives high tolerance for this complication. On
the other hand, a region can translate a lot over two consecutive
frames, but the shape of the region is less likely to change. In this
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Figure 7: Direct usage of the ordering for depth assignment. (a)
Four input frames. Corresponding regions are labeled with the
same colors. (b) Refined ordering graphs. (c) Assigning the lay-
er number as the depth leads to discontinuous motion over time.
The colors of the curves correspond to that of the regions. (d) Plot
of our optimized depth values over time.

case, measuring the difference of area size and shape gives higher
tolerance. It is less likely to have both severe occlusion and large
movement simultaneously, as this may hurt the “readability” of the
animation and seems to be avoided by cel animators.

With the correspondence information, we create an edge to link
each two corresponding relations (not regions, i.e. nodes in
Fig. 6(c)) of regions a and b in consecutive frames f and f+ 1. The
associated smoothness cost is modeled as a function of the similar-
ity of @ in frames f and (f + 1), s£/**, and the similarity of b in
frames f and (f + 1), s{:’fﬂ,

1 : S ffHL
V(niwnf;fb )= ﬂmln(s{: £+ 75{: £+ ) ®)
where [ is the user-defined scaling factor. We set it to 0.8 in all our
experiments.

Optimization and Consistency Refinement The overall energy
function is

ST D@l wel , u)+ > Vnd . nithew!  ulth o)
fiu f

where u € {source, sink} is the label, uﬁ’b is the label of nﬁ’b, and
®(u,v) returns 1 if u is different from v and 0 otherwise. Noise-
suppressed and temporal-consistent ordering can then be obtained
by finding the minimum cut of the graph that minimizes the above
energy function. With the graph-cut result, we can then refine the
per-frame ordering graphs by adding missing edges and removing
inconsistent edges (Fig. 6(d)). Followed by the topological sorting,
we obtain the ordering of all regions in all frames.

6 Depth Synthesis

Given the ordered regions as layers, the simplest way to create
depth is to assign each layer with a distinct depth value, with clos-
er layers having smaller depth values. A natural assumption is
that the inter-layer distance is constant (Fig. 8(c)). But obviously,
such depth assignment cannot produce convincing and temporal-
coherent stereoscopic effect. Fig. 7 explains why such simple
approach cannot maintain temporal coherence. Consider a tan-
colored ball is thrown over a fixed blue wall (Fig. 7(a)). The order-
ing graph of each frame after refinement is shown in Fig. 7(b). By
assigning the layer ordering as the depth without considering tem-
poral coherence, it is possible to obtain depth values for the tan and
blue layers over the four frames as plotted in Fig. 7(c). Fig. 12(b)
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Figure 8: Depth of a real example created by assigning layer num-
ber as depth ((b) & (c)) and our depth optimization ((d) & (e)).
(a) Configuration of the two cameras used for rendering the layer-
s. (b) & (d) are rendered from the 45°-elevated camera. (c) & (e)
are rendered from the top-view camera. Note the difference in the
distribution of layers along the z direction.

shows a real example in which the depth of old man changes abrupt-
ly over the frames.

Temporal-Coherent Depth Synthesis We formulate the depth
synthesis as an optimization. Before describing the objective func-
tion in detail, we first identify the requirements for a smooth depth
motion. Firstly, the same regions should not change in depth abrupt-
ly over time. That is, the depth distances of temporally neighboring
regions should be minimized. Secondly, regions belonging to the
same object should be close to each other in depth. However, de-
termining whether regions belonging to a single object requires a
sophisticated semantic analysis. Instead, by assuming that regions
belonging to the same object are more likely to move synchronous-
ly, we can simplify the problem to minimizing the depth distances
between regions with similar motions. In addition, the previously
computed depth ordering should be preserved in the form of con-
straints. Thus, we formulate the depth synthesis as a minimization
of the following energy function,

Es + Ey (10)

where the term Fs corresponds to the similar motion requirement,
and FE; corresponds to the temporal smoothness. We define the
similar motion term F; as,

Eo=Y exp (—53 | mf — mf, H)(d£ —d)?>  an
f.ab

which minimizes depth differences between spatially neighboring
regions with similar motions. Here, df denotes the depth of re-
gion a in frame f, and it is the value to be determined during the
minimization. m?, is the motion vector of region a. It is a vector
(normalized to the canvas size) from the centroid of a in frame f to
the centroid of @ in frame f + 1. J; is a scaling factor and set to 0.1
in all our experiments.

The temporal smoothness term is defined as

By =Y syt dh —di)? + 0D Jecdl, 0 (12
fra fa

It minimizes depth differences between corresponding regions be-
tween consecutive frames. The left part controls the tolerance of
depth change of a region. sI*/*! is the similarity of a defined in
Section 5. Our rationale is that a region having a smaller change
in shape is less likely to have large depth change. Hence, the blue
wall in Fig. 7 is less likely to change in depth while the moving
ball (with a change of scale) is more acceptable to have a larger
change in depth. The right part in Eq.(12) aims at obtaining a s-
mooth depth change over time guided by a fitted curve. That is, we
hope the depth d}, of region a over time f can be represented by

a fitted quadratic curve C. Its fitting error e (df, ¢) is what we are
minimizing. A is the weight and is set to 100 in all our experiments.

The previously obtained depth ordering is formulated as the follow-
ing linear constraints
df —dl > gf Yw! >0 (13)

—b

The above constraint is only applied to any two regions with an or-
dering relation. Function gf: _, controls the minimal depth differ-
ence between regions a and b in frame f. It tries to pull regions a-
part in the depth domain and provide the variety of inter-layer depth
distance. If a T-junction has a higher belief value, it is more confi-
dent that the corresponding regions differ in depth. If the ordering
relation between two regions are more persistent over a period of
time, the depth difference should be more observable. Moreover,
regions with larger sizes contribute more to the overall visual expe-
rience. This gives rise to the following design,

g({ﬁb = min(r£7 T{)Oiﬁbwgab (14)
where I o f’
ol = n}lln|f —fl st. wi_,, >0 15)

measures the number of frames to the nearest swapping point (when

a — bbecomes b — a), v is the size of a in frame f, and wgﬁb
is the belief of the T-junction.

This optimization can be solved using standard methods such as
active set [Gill et al. 1984]. It terminates when the energy con-
verges. After minimization, each region is assigned with an op-
timized depth value. Fig. 12(c) shows the per-frame depth maps
obtained with this approach. Our result effectively suppresses the
abrupt depth change in Fig. 12(b). Note that the optimized depth
values are relative, and can be scaled as needed.

User Constraint We allow users to specify constraints to the
depth synthesis by adding new ordering suggestions or directly as-
sign depth values to the regions. Whenever the user introduces a
new ordering suggestion, we add an additional inequality constrain-
t to Eq. 13 and remove any contradicting constraints immediately.
Whenever the user directly assigns the depth value of a region a in
frame f, we add a new constraint to the optimization process as

do—e<df <do+e (16)

where dp is the user-assigned depth value, and € is a small tolerance.

Background Region Special treatment is needed to deal with the
background region. Even with T-junctions, the ordering between
the background and other regions is not informative. Currently, our
system identifies the background region by heuristics, e.g. region-
s that are large in size and regions having frequent contact to the
frame boundary are regarded as background. Of course, users can
also refine the identification of the background via a simple inter-
active tool. Once a region is identified as the background, it is as-
signed with an infinite depth.

7 Stereoscopization

With the per-frame depth maps (partial geometry), we can synthe-
size a stereo pair of images for each frame by rendering the cor-
responding depth map (textured with the input color frame) from
novel viewpoints. Instead of regarding the original frame as one
of the two views, we render two novel views by equally translat-
ing the viewpoint to the left and to the right. This strategy reduces
the amount of disoccluded pixels to fill. Fig. 9(a) and 10(a) are two
blow-ups of the re-rendered images with disoccluded pixels colored
in green.
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Figure 9: (a) A blow—up of a left view image from the sequence in
Fig. 13. (b) Optimized depth map with gaps. (c) Region map with
gaps. (d) Regions are extended to fill the disocclusion pixels. (e)
The final inpainted result.
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Flgure 10: (a) A blow—up of a rlght view image from the sequence
in Fig. 1. (b) Optimized depth map. (c) Region map with gaps. (d)
Region map dressed with boundaries. (e) Boundary of the closer
region is first extended. (f) Followed by the farther region. (g) The
final extended boundaries. (h) Extended regions with boundaries.
(i) Extended regions only. (j) The final inpainted result.
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Figure 11: (a) & (b) are the final inpainted stereo pair. (c) & (d)

are blow-ups of (a). (e) & (f) are blow-ups of (b).

We then inpaint the disoccluded pixels by extending the regions be-
ing occluded. Fig. 9 demonstrates a simple scenario in which only
one region is disoccluded. Note that there can be multiple regions
being disoccluded (Fig. 10). Hence, before the actual inpainting,
we need to first identify which region a disoccluded pixel belongs
to. The basic idea is to extend each region in a front-to-back or-
der. With the previously synthesized depth map, we first pick the
closest region with the boundary broken by the disoccluded pixels
(Fig. 10(e)), and then extend it along its tangent near its end, until
the extension is blocked by another region. Then the next closest
region is selected and performed with the boundary extension simi-
larly (Fig. 10(f)). The process continues until all broken boundaries
are extended (Fig. 10(h)). The result is an extended region map
(Fig. 10(i)). Finally, for each region, we inpaint its disoccluded
pixels using texture synthesis method [Ashikhmin 2001]. More so-
phisticated inpainting techniques [Criminisi et al. 2004; Sun et al.
2005], such as structure-based inpainting, may also be employed
for large disocclusion. Fig. 9(e) and 10(j) show the inpainted re-
sults. Fig. 11(a) & (b) show a stereo pair of one frame. Note how
the regions are properly occluded or disoccluded in the blow-ups of

the two views (Fig. 11(c)-(f)).

8 Results and Discussion

To validate the effectiveness of our method, we stereoscopize a
wide variety of cel animations, ranging from Japanese to Western
styles of drawing, and from single-character to hundreds of char-
acters animated sequences. Fig. 1, 12 and 15 are Japanese-style
animations while the ones in Fig. 13 and 14 are in more Western
style. Readers are referred to the supplementary video for visualiz-
ing the stereoscopic effect of the examples shown in this paper.

Fig. 1 shows a character stretching out his hands. In traditional cel
animation production, his hands, head, and body are very likely to
be collapsed into a single cel. Existing approaches to create stereo-
scopic effect have to manually separate this single character into
multiple layers in order to manually assign depth to each layer. Ob-
viously, this is tedious. In contrast, our method automatically gen-
erates multiple regions and synthesizes the depth for stereoscopiza-
tion. Fig. 13 further demonstrates the strength of our method. There
are hundreds of regions in this example, making the manual depth
assignment and the maintenance of temporal coherence very labor-
intensive. Instead, we can conveniently stereoscopize the anima-
tion with temporal consistency. As our method purely relies on the
T-junction cue of edges, color information is not required during
stereoscopization. Fig. 14 shows one interesting example, in which
the input animation contains only line drawings. Even with this,
we can introduce stereoscopic effect into the animation. Fig. 15
demonstrates the effectiveness of our graph-cut based depth order-
ing estimation in handling the sudden change of ordering in the
sequence. Here, the girl does a crossover. With the synthesized
depth maps, we can further introduce out-of-focus effect into the
sequence (Fig. 12(e)). In our above experiments, the manual inter-
vention is minimal. For those frames requiring adjustment, each
frame only requires less than one minute of user intervention. The
same set of parameter values are applied in all our experiments.

Reliability of T-junctions To validate how effective T-junctions
are in suggesting ordering, we compare the ordering estimated by
our method to the ground truth ordering. We first prepared ground
truth orderings by manually labeling the ordering of every pair of
regions in each frame. So that we can compute the correct ratio.
On average, each frame contains about 213 T-junctions (maximum
454). Table 1 shows the correct ratio statistics at different stages
of our system. Even if the ordering is estimated only based on in-
dividual T-junctions, the correct ratio is already around 68%-83%.
With the simple belief computation (Eq.(2)), the correct ratio is sig-
nificantly improved. After the graph-cut based temporal consistent
ordering computation, the ratio is further raised to 85%-98%.

Correct Ratio Fig. 1 Fig. 12 | Fig. 13 | Fig. 14 | Fig. 15
T-junction alone 77.18% | 74.70% | 82.88% | 70.73% | 68.83%
With intra-frame information | 90.17% | 90.36% | 94.09% | 80.57% | 81.75%
96.81% | 94.14% | 97.29% | 85.60% | 96.55%

With temporal coherence

Table 1: Reliability of T-junctions in each stage of our ordering
determination.

Timing statistics All our experiments are conducted on PC with
3GHz CPU, 4 GB system memory. The total computational time for
each sequence is reported in the corresponding caption. Currently,
the whole system is implemented with Matlab. No GPU is used.
We believe GPU implementation can significantly boost the system
performance.

Limitation One of our limitations lies in the cardboard-like repre-
sentation where regions are basically assumed to be flat. Hence, we



Figure 12: “Running.” (a) Input frames. (b) Topologically sorted ordering graph visualized as intensity. (c) Depth maps. (d) Stereo result.
(e) Stereo result with out-of-focus effect. This sequence has 12 frames (1920 x 1080). The frame containing the maximal number of regions
has 72 regions. Depth ordering takes 13.5 minutes, and depth synthesis takes 10.9 minutes.
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Figure 13: “The mushrooms.” (a) Input frames. (b) Depth maps. (c) Stereo result. This sequence has 80 frames (994 x 728). The frame
containing the maximal number of regions has 124 regions. Depth ordering takes 39.1 minutes, and depth synthesis takes 65.3 minutes.
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Figure 14: “Raised by Zombies.” (a) Input frames. (b) Depth maps. (c) Stereo result. This sequence has 52 frames (1280 x 720) presented
in the form of line drawing. The frame containing the maximal number of regions has 188 regions. Depth ordering takes 23 minutes, and
depth synthesis takes 40.2 minutes. © Guy Collins.
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Figure 15: “The basketball girl.” (a) Input frames. (b) Depth maps. (c) Stereo result. This sequence has 15 frames (1104 x 622). The frame
containing the maximal number of regions has 92 regions. Depth ordering takes 5.4 minutes, and depth synthesis takes 5.1 minutes.

cannot synthesize curved regions (curving towards the viewpoint)
with gradually changing depth values. It is possible to “inflate” the
regions to create pseudo-3D meshes so that regions are connected
with each other in the boundary. Besides, in some cases, a region
a can be partly occluding another region b and simultaneously a
is partly occluded by b (see the head and collar of the running old
man in the third frame in Fig. 12). Currently, we cannot compute
the depth correctly. Furthermore, our assumption of similar mo-
tion suggesting the same object may fail. Unless with sophisticated
semantic analysis, such problem has to be resolved by user inter-
vention.

As our method highly relies on the proper identification of regions,
cartoons without clear boundary lines (blurry images, images with
smoke or explosive effects) may not generate correct result. An-
other limitation is that our result may fail to resolve the ordering if
T-junctions in the sequence consistently suggest an incorrect order-
ing. Currently, we can only correct this by hand.

9 Conclusions

In this paper, we present a novel method to stereoscopize 2D cel
animations. The proposed method relies only on the T-junction cue
to resolve the ordering of regions. It fits naturally into the existing
production of cel animations. The cel animation can be produced
as usual, with an additional last step of our stereoscopization. Our
high degree of automation frees users from the labor-intensive seg-
mentation and depth assignment.

Our first key contribution is to maintain the temporal consisten-
cy of ordering relationship across the frames, via a graph-cut for-
mulation. Our second contribution is the temporal-coherent depth
synthesis via a novel optimization formulation. Convincing stereo-
scopic effect is created in all our examples.

While our current method only relies on T-junctions, other depth
cues like crude shading could also be exploited in the future. We
may also “inflate” regions to avoid the cardboarding gaps. Besides,
we shall further investigate the feasibility in deducing the grouping
of regions in a more semantic fashion.
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