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Abstract

The existing predictive spatiotemporal indexes can be classified into two categories, depending on
whether they are based on theprimal or dual methodology. Although we have gained considerable
empirical knowledge about various access methods, currently there is only limited understanding on the
theoretical characteristics of the two methodologies. In fact, the experimental results in different papers
even contradict each other, regarding the relative superiority of the primal and dual techniques.

This paper presents a careful study on the query performanceof general primal and dual indexes, and
reveals important insight into the behavior of each technique. In particular, we mathematically establish
the conditions that determine the superiority of each methodology, and provide rigorous justification for
well-known observations that have not been properly explained in the literature. Our analytical findings
also resolve the contradiction in the experiments of previous work.
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1 Introduction

A predictive spatiotemporal databasemaintains the current motion parameters of linearly moving objects,

and supports efficient retrieval of objects whose expected future locations satisfy certain predicates. Such

databases have been extensively studied in the past decade, since theyplay an imperative role in many

applications including transportation monitoring, flight control, location-based services, etc.

A fundamental operation in these applications isrange search, which specifies a (usually, rectangular) region

Q, a future timestampt, and reports all the objects whose locations att appear inQ. For example, a query

may retrieve “all the aircrafts expected to appear in the airspace of Washington 10 minutes later”, where the

spatial region is “Washington”, and the query time “10 minutes from now”.

We are interested in access methods that minimize the cost of range search. Obviously, the problem of

indexing is much simpler, if all objects are stationary. In this case, a spatiotemporal database degenerates

into a conventional, thoroughly studied, spatial database. There exist a large number of efficient spatial

indexes, most notably, the R-tree [2].

Moving objects can be regarded as static points, as long as a single timestamp is concerned. Therefore,

a natural idea of spatiotemporal indexing is to build a spatial access method at every future timestamp,

capturing the “snapshot” of the dataset at that time. This is the motivation behind an important technique

[17], which we refer to as theprimal method. Informally (see the next section for details), as time progresses,

the method allows an R-tree to evolve with timeautomatically, namely, no physical modification is necessary

unless an object alters its motion parameters. A range query can be processed directly using the spatial range

search algorithm, but on the evolved version of the index at the query time.

Thedual method[12] is an alternative technique of spatiotemporal indexing. It applies a transformation that

maps each moving object to astationarypoint in a “dual space”. Accordingly, for any range queryQ, it is

possible to construct another search regionQ′ in the dual space (as discussed in Section 2.1), such that if an

object qualifiesQ, its dual must fall inQ′. As a result, spatiotemporal range search is reduced to a purely

spatial problem: retrieval of static points (i.e., duals) covered in a given area.

The spatiotemporal community has deployed numerous primal and dual indexes, as summarized in Section 2.

After we have gained considerable empirical knowledge, it is time to addressa deeper question:which

technique is better in theory?We cannot (neither now nor in the future) answer the question by simply
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checking which technique is taken by the current state-of-the-art access method. For example, the fact that

the state-of-the-art belongs to the primal family does not imply that the primal approach is superior, because

an “ideal” dual index may not have been discovered (and vice versa).

Contributions. This paper does not propose yet another index structure. Instead, we carry out a systematic

theoretical study on the intrinsic properties that are possessed by all the (existing and future) primal and dual

access methods, thus enhancing the understanding of the primal and dualmethodologies in general. Our

primary results can be summarized as follows.

First, for both primal and dual indexes, we establish a lower boundΩ(
√

n) for the expected I/O cost of range

search on uniform data, wheren is the number of leaf nodes. Our analysis settles the hidden constant in

the complexity, and thus, quantifies the smallestactualoverhead in practice. Unfortunately, the same lower

bound also applies to most, if not all, well-studied operations on moving objects,e.g., nearest neighbor

search. This is a somewhat surprising fact, because a nearest neighbor query is typically highly efficient on

stationary points (for realistic datasets, it can be solved in a very small number of I/Os [4], using an R-tree).

Second, we prove that, regardless of the dataset properties, the query cost of a dual index is “stable”, since

it is always limited by a certain upper bound. However, except at its construction time, a dual index never

achieves the theoretical cost lower bound. On the other hand, deployinga primal access method is more

“risky”, in the sense that query efficiency of the index may continuously deteriorate with time, and eventually,

become extremely poor. The advantage of a primal index is that, when certainconditions are satisfied, it may

achieve the cost lower bound at all times, i.e., offering the optimal search performance.

Third, we show that thedataset agility(describing how many objects are updated at a timestamp, as will be

formalized later) determines the relative query performance of primal and dual indexes. Specifically, when

the agility exceeds a threshold, a primal index outperforms a dual access method. Otherwise (the agility is

below the threshold), as time evolves, a dual method eventually entails smaller overhead. We present detailed

derivation of the threshold, thus providing reliable guidance for choosing a suitable index in practice.

Finally, we apply our analytical findings to resolve the contradiction among theexperiment results reported

in the previous work [11, 16, 18, 22]. Specifically, primal indexes outperform dual access methods in [18,

22], whereas the opposite is argued in [11, 16]. This divergence causes confusion in the spatiotemporal

community, and prevents practitioners from selecting the most appropriate technique. We show that all the

results are correct, which seem inconsistent simply because they were obtained by setting several crucial
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parameters in different ways, favoring the technique being championed.

The rest of the paper is organized as follows. Section 2 reviews the primaland dual methodologies. Section 3

formally defines the problem studied in this paper. Section 4 analyzes the cost lower bound of spatiotemporal

search, while Section 5 investigates the different behavior of primal and dual indexes, respectively. Section 6

discusses update performance. Section 7 contains numerical and empirical results. Finally, Section 8 con-

cludes the paper by summarizing the practical influence of our findings.

2 Primal and Dual Techniques

Saltenis et al. [17] propose the primal method by designing the TPR-tree. This structure has an enhanced

version called the TPR*-tree [18]. The dual technique, on the other hand, is initiated by Kollios et al. [12],

and improved in [1, 6, 13]. The dual category also includes STRIPES [16], the Bx-tree1 [11], and the

Bdual-tree [22].

Assuming the knowledge of R-trees [2], here we provide an introduction tothe primal and dual approaches.

Our discussion proceeds in two steps. In Section 2.1, we explain the underlying rationales behind the two

techniques, and elaborate their common properties. Then, Section 2.2 reveals the crucial difference between

primal and dual indexes that determine their unique characteristics.

2.1 Equivalent Rationales

Primal. Figure 1a shows three 2D objectso1, o2, o3 at the current time 0. For example,o1 is at the

coordinates(2, 4), and moving with velocities2 and−1 on the x- and y-dimensions respectively (we use

black arrows to illustrate object velocities). A negative velocity means that themovement is towards the

negative direction of an axis.

A primal access method can be regarded as an adapted R-tree indexing objects’ locations. The most impor-

tant adaptation is to augment the spatial bounding rectangle (SBR) of each node with velocities. Consider

a leaf node containingo1, o2, ando3, whose SBR is the grey rectangleB(0) in Figure 1a, tightly enclosing

the locations of the 3 objects. The node is associated with 4 velocities, which describe the movement of the

edges of its SBR. Specifically, the velocity of the left/right edge equals the smallest/largest velocity of the

objects in the node on the x-dimension (e.g., the velocities−1, 2 of the left and right edges are decided by

1TheBx-tree spans the boundary of the primal and dual techniques, since it utilizes features of both methodologies.
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Figure 1: An expanding bounding rectangle

o2 ando1, respectively). Likewise, the velocities of the bottom and top edges definethe range of y-velocities

of the objects. Figure 1a demonstrates edge velocities with white arrows. TheSBR and velocities of a node

are stored in its parent.

The velocities of a node allow its SBR to expand over time, such that the SBR at any future timet always

covers the locations of the objects (in the node) at timet. We illustrate this using a range query that requests

the objects in rectangleQ (see Figure 1b) at future time 1 (the current time is 0). The grey box in Figure 1b

shows the expanded SBR, denoted asB(1), of the node in Figure 1a (e.g., the right edge of the SBR has

moved 2 units).B(1) intersectsQ, and hence, the node must be visited to prevent false misses. Figure 1b

also demonstrates objects’ expected locations at time 1;o3 qualifies the query (o4 and the dashed rectangle

will be discussed later).

An expanded SBR at any future timet is not physically stored, but it is computed dynamically during query

execution from the node’s SBR at time 0 and its velocities. In general, all the expanded SBRs at timet

simulate a conventional R-tree managing the object locations at timet, except that an SBR is not necessarily

tight. For example, in Figure 1, althoughB(0) is the minimum SBR ofo1, o2, o3, B(1) is larger than the

minimum SBR of these objects at time 1.

Dual. The dual method does not generate a time-evolving index, but directly applies a stationary structure.

For this purpose, a 2D moving point is mapped into a 4D dual space. For example, the dual of objecto1 in

Figure 1a is(2, 4,−1, 2), where the first (or last) two numbers indicate the object’s coordinates (orvelocities)

on the x- and y-dimensions, respectively. This transformation is based ona reference time0, since(2, 4) is

the location ofo1 at that time. In general, all duals must be calculated using the same reference time.

Given a range query, the dual technique transforms it into a “simplex region” in the dual space. Since it is
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not possible to visualize a 4D region, we illustrate the idea using 1D objects. Inthis case, the dual space has

two dimensions, capturing an object’s locationx at the reference time 0, and velocityu, respectively.

Let [c1, c2] be the search region (a 1D rectangle) of a range query, andt the query time. Obviously, if an

object qualifies the query, it holds thatc1 ≤ x+u · t ≤ c2. This inequality defines the shaded area (a simplex

region) in Figure 2, where linel1 is described byu = −1
t x + 1

t c2, and linel2 by u = −1
t x + 1

t c1. Retrieval

of qualifying objects is reduced to finding all the duals in the shaded area (such aso in Figure 2).

Following the same idea, for 2D objects, a range query is transformed into a simplex region in the 4D dual

space bounded by four linear hyper-planes. Discovery of object duals in such a region is a well-studied

problem. A nice practical solution [7] is to create a 4D R-tree on the duals. Toanswer a query, a node needs

to be visited, if and only if its 4D minimum bounding rectangle (MBR) intersects the simplex region.

Equivalence. Although presented from different perspectives, the rationales of theprimal and dual tech-

niques can be naturally bridged.

First,a node in a primal index can be regarded as a 4D MBR in the dual space. For example, the leaf node in

Figure 1a defines a 4D MBR, whose projection on the two spatial dimensions (of the dual space) is[2, 5], and

its projection on the two velocity dimensions is[−1, 2]. As time progresses, the MBR is always minimum

(in the dual space), since it keeps tightly enclosing the duals of the objects inthe node (duals never move).

By the same reasoning,a dual node, represented as a 4D MBR in the dual space, can also be regarded as an

expanding SBR in the primal space.

In the sequel, we will use the expanding-2D-SBR and stationary-4D-MBRrepresentations of a node inter-

changeably (no matter the node is from a primal or dual index). As an immediatecorollary, in processing a

range query, the node access conditions are identical for both types ofindexes. Specifically, given a node in
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a primal index, its expanded SBR intersects the query region at the query time, if and only if its 4D MBR in

the dual space intersects the transformed simplex region. The reverse is true with respect to a node in a dual

access method.

2.2 Different Clustering Effects over Time

A dual space must always be accompanied by a reference time, since there is a different dual space at every

timestamp. For example, as discussed earlier, the dual ofo1 in Figure 1a is(2, 4,−1, 2) at time 0. If the

reference time equals 1, the dual ofo1 becomes(1, 6,−1, 2).

As time evolves, the primal and dual techniques organize objects in different dual spaces. Specifically, a

primal index always aims at clustering objects in the dual spaceat the current time, whereas a dual index

performs clustering in the dual spaceat a fixed historical timestamp.

Next, we explain the above difference by elaborating the update strategy of each technique, focusing on

insertion (deletion is relatively easy, since it involves simply finding an objectand then removing it).

Primal. Assume a primal index constructed at time 0. A timestamp later, we need to insert anobjecto. For

this purpose, the primal technique examines the 4D MBRs of the leaf nodesin the dual space at the current

time1. In Figure 1b, for instance, the 4D MBR of the node has projection[1, 7] on the x- and y-dimensions,

and projection[−1, 2] on the two velocity dimensions. The leaf incorporatingo is selected to minimize a

certain quality metric. This is a leaf whose 4D MBR covers the dual ofo at time 1. If no such MBR exists,

the selected leaf is the one whose 4D MBR needs the “smallest” expansion to encloseo, where the degree of

expansion is measured based on the quality metric.

Whenever a node is modified, the primal method performsSBR tightening, which shrinks the SBR of the

node to minimum at the current time. For example, if objecto4 is added to the node in Figure 1b, the SBR of

the node will be shrunk to the smallest rectangle (the dashed box) coveringo1, ..., o4 at time 1. Tightening

usually incurs no extra I/O because the SBR and velocities of the node may need to be updated in its parent

anyway, in order to capture the newly inserted object (this is why tightening iscarried out only if the node

is modified). Furthermore, tightening the SBR also makes the 4D MBR of the node(in the dual space at the

current time) smaller.

Each node is associated with areference time, equal to the most recent timestamp when the node’s SBR

was tightened. In Figure 1a, the node has reference time 0. After the SBR-tightening at time 1, the node’s
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reference time changes to 1, so that an expanded SBR at a future timestamp can be calculated based on the

SBR at time 1. Obviously, different nodes can have various referencetimes2.

Dual. Regardless of the current time, the dual method always converts data into the dual space at the index

construction time. Again, assume a dual index at time 0, and that we want to insert an objecto at time

t > 0. The dual approach convertso to its “counterpart”o′ at time 0. Specifically, letx, y (or u, v) be the

x-, y-coordinates (or -velocities) ofo at timet. Then,o′ shares the same velocities aso, but has coordinates

(x − u · t, y − v · t), i.e., the location ofo at time 0. We incorporate the dual ofo′ in the index, which

completes the insertion ofo.

Hence, the reference time is a property of a dual index, common toall nodes. Updating the index is reduced

to modifying a conventional spatial structure. Hence, objects are alwayswell-clustered, but in the dual space

at time 0.

As will be proved in Section 5.2, fixing the reference time to 0 has a serious drawback: query cost continu-

ously grows with time (a primal index may not have this problem, which will be explained in Section 5.1).

To solve the problem, we should periodically replace the old index with a new one built at a more recent

timestamp. To achieve this with the same update overhead (as maintaining a single index), the dual technique

adopts atwo-structure mechanism, which places a requirement on objects: they must issue at least one up-

date everyT timestamps, whereT is a system parameter. (This requirement may not necessarily be satisfied

in practice, in which case some objects may be forced to generate additional updates. We will re-visit this

issue later in Section 6.)

Specifically, the mechanism works as follows. At the initial time 0, a dual indexIndex1 is built with

reference time 0, and the other structureIndex2 is inactive. During the period[0, T ), all insertions/deletions

are performed onIndex1. At time T , Index2 is initialized with reference timeT . During [T, 2T ), objects

are inserted only inIndex2, but deletion may be performed onIndex1 or Index2, depending on whether

the corresponding object was inserted before or afterT .

2The reference time of a node can be captured without spending any physical storage, using a trick proposed in [17]. Consider a

node with reference timet. Assume that, along a dimension, the SBR of the node has extent[x, x′], and its VBR has extent[v, v′].

Then, the parent entry of the node only needs to keep 4 values:y, y′, v, v′, wherey = x − v · t andy′ = x′
− v · t. These 4 values

are sufficient to obtain the projection of the node’s SBR on the corresponding dimension, at any future timestamptc. Specifically,

the projection is[z, z′], wherez = y + v · tc andz′ = y′ + v · tc.
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At time 2T , Index1 is definitely empty, because all objects inserted during[0, T ) must have been deleted.

Hence,Index1 is destroyed, and re-initiated with reference time2T . During [2T, 3T ), the roles ofIndex1

andIndex2 are reversed. Namely, insertions are carried out inIndex1 only, but objects may be deleted

from either tree, depending on their insertion time. Similarly, at time3T , Index2 is empty, and re-initiated

with reference time3T , after which the roles of the two structures are reversed again. The above process is

repeated everyT timestamps.

3 Problem Formulation

Unless specifically stated, our analysis focuses on 2D objects, since all the results can be extended to arbitrary

dimensionalities in a straightforward manner. Without loss of generality, we assume that the spatial domain

has a unit range[0, 1] on the x- and y-dimensions, respectively. Along each dimension, the velocity of an

object distributes in[−V, V ]. In other words, a dual space has 4 axes: twospatial dimensionswith range

[0, 1], and twovelocity dimensionswith range[−V, V ].

At timestamp 0, every object generates an insertion to register its initial location and velocities. Whenever

its velocity changes, it issues an update, including a deletion followed by an insertion. In particular, the

deletion removes the database tuple corresponding to the object’s old velocities, while the insertion adds a

tuple capturing its new velocity. Thus, the dataset cardinalityN remains fixed at all times.

We adopt adeletions-firststrategy. Specifically, at each timestamp (other than the initial timestamp 0), the

database first collects objects’ update requests at this timestamp. Then, all the deletions are processed first,

before insertions are handled.

An object doesnot necessarily issue an update at every timestamp. We consider that every object has an

equal probability of issuing updates. Hence, the number of updates at each timestamp accounts for a fixed

percentage of the cardinality. We refer to the percentage as theagility of the dataset, and denote it asA. For

example, a dataset with agility 0 contains objects that move with their initial velocities forever, while, in a

dataset with agility 1, all the objects change velocities at every timestamp.

Construction of a primal/dual index requires an optimization goal. Following the previous work [17, 18], we

aim at minimizing the average cost of “point queries”, whose query time distributes uniformly in[tc, tc +H],

wheretc is the current time, andH a parameter calledhorizon. In particular,H is greater than 0, and controls

how far into the future the index is optimized for. Apoint queryis a special range query whose search region
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is a point, i.e., a degenerated rectangle. Formally, if we denoteQ(t) as the expected cost of a query whose

query time equalst, the cost metric of the index equals

CM(tc) =
1

H

∫ tc+H

tc

Q(t)dt. (1)

The quality of an index isbetterat the current timetc, if its CM(tc) is lower. Note that the quality is a

function oftc.

We define the quality using point queries because they lead to the simplest formulae. In the same way, it

is straightforward to formulate the quality using query regions with non-zeroextents. All our analysis still

applies, except that the resulting equations are more complex. As will be clear in Section 4.2, focusing on

point queries allows us to explain the performance of other types of spatiotemporal queries as well.

We measure query cost as the number ofleaf nodesaccessed, which, in general, is significantly larger than

the number of node accesses at the intermediate levels. This is especially trueif a memory buffer is used; in

that case, all the non-leaf levels may be retained in the buffer, so that accesses to those levels incur no I/O

operations. Furthermore, all the existing spatiotemporal indexes have the same representation for leaf entries

(each entry must store all the details of an object), even though they differsignificantly at the intermediate

levels.

Our derivation focuses on theuniform data distribution: at every timestamp, each coordinate and velocity

of an object uniformly distribute in[0, 1] and[−V, V ], respectively. The reasons for discussing uniform data

are three-fold. First, this is a popular distribution experimented by the work [11, 16, 18] proposing recent

spatiotemporal indexes. Second, we must make certain simplifying assumptionsto allow rigorous proba-

bilistic analysis, as in the existing studies on R-tree performance [20]. The uniform assumption minimizes

the complication caused by data properties, making it easier to discover the intrinsic characteristics of each

indexing technique. The third reason is that, a real data distribution can often be approximated as piece-wise

uniform, as confirmed by the success of bucket-based histograms [5, 20, 19] in selectivity/query-cost esti-

mation. When this is true, we can divide the dataset into several parts, suchthat the distribution within each

part is close to uniformity. Then, we apply the observations from uniform-analysis “locally” to each part,

for explaining the behavior of the index on the objects there. This approach has been applied in R-tree cost

analysis [20].

Table 1 summarizes the set of symbols that will be used frequently in the subsequent analysis. Some symbols

have not appeared so far, and will be introduced later.
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Symbol Description
tc the current time
H the horizon of a primal index
T the length of an update period of a dual index

CM(t) the quality of an index at timet
V the maximum absolute velocity value
n the number of leaf nodes
N the dataset cardinality
A the dataset agility
f the average node fanout
s the spatial extent of a leaf MBR
w the velocity extent of a leaf MBR

Table 1: Frequently used symbols

4 Basic Results

In this section, we study the quality (Equation 1) of primal and dual indexesright after they are constructed.

The results are fundamental to studying the behavior of alternative structures as time evolves, which is the

topic of Section 5.

The following analysis applies to both primal and dual indexes, which have the same query performance at

the construction time 0, due to their equivalence discussed in Section 2.1. Particularly, a node in a primal/dual

index can be regarded as an expanding 2D SBR in the primal space, or alternatively, a stationary 4D MBR

in the dual space at time 0. Throughout this paper, we omit ‘2D’ and ‘4D’,since all SBRs and MBRs will

be two- and four-dimensional respectively, unless otherwise stated. For the same reason, in this section, we

ignore “at time 0” when referring to the dual space.

4.1 Lower Bound of Index Quality

Let us focus on a specific leaf node. Denotes as the projection length of its MBR on the two spatial

dimensions (for uniform data, the projections on both dimensions are equallylong). Similarly, we usew to

represent the projection length of the MBR on the velocity dimensions.

Given a point queryq at timet ≥ 0, the node is visited, if and only if its expanded SBR at timet coversq.

In particular, the SBR is a 2D square with extent lengths + w · t. Whenq randomly distributes in the spatial

domain (with area 1), the probability that the node is accessed equals(s + w · t)2. Note that this probability
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holds, regardless of thepositionof the node’s MBR in the dual space3 (i.e., the probability depends on only

thesizeof the MBR).

Let n be the number of leaf nodes. In practice,n equalsN/f , whereN is the dataset cardinality, andf

the average number of entries per node (f is a system parameter determined by the page size). Since data

characteristics are identical throughout the dual space, the MBRs of allthe leaf nodes have the same sizes,

i.e.,s andw on the spatial and velocity dimensions, respectively. Therefore:

Q(t) = n(s + w · t)2 (2)

which gives the expected cost of a point query at timet.

To obtain the index quality at time 0, we plug the above formula into Equation 1 (replacingtc with 0) which

results in (after solving the remaining integral with respect tot):

CM(0) = n
(

s2 + s · w · H + w2H2/3
)

(3)

The dual of each object must be enclosed in at least one leaf MBR. For alarge dataset, the data density is high

in the dual space, in which case we can consider that the union of all MBRscovers the entire space. Under

such circumstances and based on the fact thatCM(0) is monotonic withs andw, CM(0) is minimized

when all MBRs form a regulartiling of the dual space, i.e., no overlap among the MBRs. Specifically, the

tiling is a 4D matrix of 4D rectangles, such that there are1/s rectangles on each spatial dimension of the

matrix, and2V/w on a velocity dimension (recall that a velocity ranges in an interval[−V, V ] with length

2V ). Since the total number of rectangles equalsn, we have

(1/s)2 · (2V/w)2 = n (4)

The above equation is valid only whens � 1 andw � 2V , i.e., the leaf MBRs are adequately partitioned

along all dimensions of the dual space. This is true when the dataset cardinality is large, andH is meaningful,

i.e.,H is neither very small nor very large. In particular, an excessively small (or large)H leads to an index

optimized for queries at the current time (or a long future period), rendering leaf partitioning to be performed

only on the spatial (or velocity) dimensions.

Subject to the constraint of Equation 4, Equation 3 is minimized when

s2 = w2H2/3 (5)

3Here, we tackle the “boundary effect”, using the “wrapping model” commonly assumed in the spatial literature [15, 20].
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From Equations 4 and 5, we obtain thes andw that produce the best index quality:

s =
(√

2V · H
)

/(3n)0.25 (6)

w = (12/n)0.25
√

V/H (7)

Substitutings andw of Equation 3 with their values in Equations 6 and 7 respectively, we obtain thelower

bound forCM(0):

2(2/
√

3 + 1) · V · H ·
√

n (8)

The above formula quantifies the quality of a primal/dual index (at time 0) in thebest case, achievable by

a “sufficiently good” implementation. In particular, the implementation should be able to create leaf nodes

with flexible MBR sizes. As shown in Equations 6 and 7, the bests andw rely on numerous factors, which

discourages using a structure like the quad-tree as the basis of a spatiotemporal access method. Specifically,

a quad-tree creates leaf nodes by recursively breaking a quadrantinto 4 equal-sized sub-quadrants (using the

dual space as the original quadrant). As a result, the MBRs of leaf nodes have rigid side lengths, which are

limited to1/2i of the lengths of the corresponding dimensions, for some integeri.

We point out that Equations 6 and 7 also confirm a relevant result in [17], which shows that the best ratio

s/w (for minimizing query cost) equalsH/
√

3.

4.2 “
√

n Nature” of Spatiotemporal Queries

Formula 8 shows that the average cost of point search is at least at the order of
√

n (the formula has not

included the overhead of accessing the non-leaf levels). For comparison, here we mention a well-known

result on spatial databases [20]: given a set of stationary points that uniformly distribute in 2D space, an

R-tree permits processing any point search by accessing only 1 leaf node in expectation!

The comparison reveals a pessimistic fact:many types of queries that used to be cheap in the spatial scenario

become expensive on moving objects. A typical example isnearest neighbor(NN) search[9], which finds

the data point closest to a query pointq. The definition naturally extends to spatiotemporal databases [3],

where a NN query specifies an additional timestamp.

For both stationary and moving data in 2D space, the cost of a NN query atq is analogous to that of per-

forming point search atq (obviously, for moving data, the NN and point queries should share the same query

timestamp). This is a property of the “best-first” algorithm [9], which is the state-of-the-art for NN search
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in low-dimensional spaces. In spatial databases, a NN query is very efficient, and usually terminates by ac-

cessing a single path of an R-tree. In spatiotemporal environments, however, its cost is significantly higher:

Ω(
√

n) leaf nodes are expected to be visited.

In fact, Formula 8 implies a more general result:all spatiotemporal queries, which are provably more expen-

sive than point search, have cost complexityΩ(
√

n) in expectation. Unfortunately, such queries include (i)

the spatiotemporal counterparts of all well-studied spatial operations, e.g.,reverse NN search [3], aggregate

retrieval, etc., and (ii) operations specific to moving objects such as continuous retrieval [3], location-based

queries [10], and so on. Furthermore, although our analysis so far considers only timestamp 0, the situation

is actually worse at subsequent timestamps, as will be clarified in the next section.

Kollios et al. [12] also establish a cost lower boundO(
√

n) for the type of queries targeted by our analysis.

Care is needed to interpret the two bounds. The one by Kollios et al. appliesto the most-adversely designed

one-dimensionaldatasets and queries. In other words, their bound implies that one cannothope to design

a data structure that consumes linear space, and answers any (1D) query on any (1D) dataset in less than

O(
√

n) I/Os. Kollios et al. [12] in fact develop another cost lower boundO(n3/4) for the 2D case. Our

lower boundO(
√

n), on the other hand, concerns the average performance of aspecialtype of queries on a

specialtype of 2D datasets, i.e.,uniformqueries onuniformdata. These bounds do not contradict each other.

Specifically, in the 2D space, even ifO(
√

n) expected cost might be achievable by some index structure

(occupyingO(n) space) for uniform queries issued on uniform data, that structure necessarily entails at least

O(n3/4) I/Os on the worst dataset and query.

5 Advanced Results

The previous section focused ontc (the current time) = 0 (index construction time). We proceed to discuss

how the index qualityCM(tc) (Equation 1) changes withtc. We will first study primal indexes in Section 5.1,

before analyzing dual solutions in Section 5.2. Finally, Section 5.3 comparesthe characteristics of the two

techniques, and identifies the better technique in different scenarios.

5.1 Primal

If the dataset agility is exceedingly low (i.e., very few object updates), the quality of a primal index keeps

deteriorating with time. As an extreme case, if the agility equals 0 (all objects move at their initial velocities

permanently), SBR tightening (as explained in Section 2.2) is never performed, rendering leaf SBRs to grow
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increasingly larger as time evolves, which in turn leads to higher query overhead.

On the other hand, if the agility is sufficiently high, the index will remain equally efficient. This is most

obvious when the agility is 1, i.e., all the objects are updated at each timestamp. Inthis case, the entire index

is destroyed at each timestamp, and then re-built, thus trivially retaining the maximum quality (Formula 8).

The above facts suggest a “magic threshold”, such that when the agility reaches the threshold, a primal

index offers the optimal query performance at all times! Next, we confirm this phenomenon with theoretical

justification, and quantify the threshold.

5.1.1 Why Would Quality Deteriorate?

This subsection considers the following problem. Assume that, at time 0, we builda primal index with the

optimal query performance, i.e., the extent lengths of the 4D leaf MBRs satisfy Equations 6 and 7. At time

1, A ·N objects issue updates, whereN is the dataset cardinality, andA the agility. What are the conditions

to be satisfied, if the resulting index at time 1 offers the same (optimal) query efficiency?

The index quality at time 1 can also be represented by Equation 3 (replacingCM(0) with CM(1)), except

thats andw should be interpreted as the extent lengths of the 4D leaf MBRs in the dual space at time 1 (as

opposed to time 0). Hence, if there is no deterioration (of query performance) at time 1,s andw should also

satisfy Equations 6 and 7, respectively.

In processing the object updates at time 1, the extents of a leaf node undergo a series of changes. For uniform

data distribution, the behavior of all leaves is analogous. From a probabilistic point of view, since the number

n of leaf nodes is large, it is safe to ignore the minor discrepancies among different nodes. Hence, to facilitate

our analysis, we consider that all leaves behave in the same manner. As a corollary,A · N/n = A · f objects

are deleted and inserted in each leaf node, wheref is the average node fanout.

Let us denoteB(0) andB(1) as the 2D SBR of any leaf node at timestamps 0 and 1, respectively. Similarly,

we useM(0) andM(1) to represent the 4D MBRs of the node in the dual spaces at time 0 and 1, respectively.

In other words,B(0) (or B(1)) is the projection ofM(0) (or M(1)) onto the spatial dimensions.

It suffices to discuss only the case whereA · f ≥ 1, that is,each leaf node receives at least an update at time

1. Otherwise (a node is not updated), no SBR tightening is performed for thisnode, whose SBR at time 1 is

thus expanded from its SBR at time 0 (c.f. the grey boxes in Figures 1a and 1b). Hence, thes (the SBR’s
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side length) at time 1 must be larger than its (optimal) value at time 0, resulting in qualitydegradation.

Under our deletions-first update strategy (deletions are processed before insertions; see Section 3), the extents

of a node go through afirst-shrink-then-growprocess at time 1. Specifically, the extents keep shrinking

during deletions, and then, are continuously enlarged in handling insertions. Next, we clarify the two phases

in turn.

The Shrinking Phase. At time 1, before any deletion is performed, the node extents are the largest.We

denoteBmax(1) andMmax(1) as the SBR and MBR of the node at this moment. Compared toM(0),

Mmax(1) is longer only on the spatial dimensions, i.e.,M(0) andMmax(1) have identical extents on the

velocity dimensions. In particular, the spatial projectionBmax(1) of Mmax(1) is the expanded version (at

time 1) of the spatial projectionB(0) of M(0), based on the velocities ofB(0).

As objects are deleted from the leaf node, the SBR of the node shrinks (fromBmax(1)), driven by two factors.

First, after the first deletion, the SBR is immediately tightened. Furthermore, the SBR will remain tightened

after the subsequent deletions (and also insertions in the growing phase). Second, as objects deciding the

boundaries of the SBR are removed, the SBR becomes even smaller.

The velocity projection of the MBR, on the other hand, may also shrink as we perform deletions. However,

the shrinking is only because objects at the boundary of the projection disappear, similar to the second factor

mentioned earlier for SBRs (recall that tightening affects only spatial dimensions). It follows that the SBR

and MBR of the node are the smallest, at the moment when all deletions are finished. We useBmin(1) and

Mmin(1) to represent their extents at this moment, respectively.

Before the enlargement phase starts, the current leaf MBRs (after deletions) no longer cover the whole dual

space. They have created gaps along the velocity dimensions, but NOT necessarily so along the spatial

dimensions.Since we cannot visualize a 4D dual space, let us illustrate this on 1D moving objects (the idea

extents to any dimensionality naturally), for which the dual space has one spatial and one velocity dimension.

Figure 3a shows the leaf MBRs after the index is constructed at time 0 (the MBRs form a regular tiling of the

dual space). Figure 3b demonstrates the situation at time 1 before deleting any object, i.e., the moment when

the MBR extents are the largest (corresponding toMmax(1) in our earlier analysis). Note that the centroid

of each MBR has moved on the spatial dimension from its position at time 0, as indicated by the lengths of

the horizontal segments above the MBRs in Figures 3a and 3b, respectively. Note that, these MBRs overlap
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Figure 3: Transitions of MBRs in the dual space

on the spatial dimension, but remain disjoint on the velocity dimension.

After all deletions, the extents of an MBR are reduced along all dimensions.However, depending on the

amount of shrinking on the spatial dimension, the resulting MBRs may end up withtwo situations, as shown

in Figures 3c and 3d respectively (corresponding toMmin(1)). There are gaps between two consecutive rows

of MBRs on the velocity dimension in both cases, which, however, differ in whether MBRs may overlap on

the spatial dimension (i.e., MBRs shrink less in Figure 3c). As analyzed in Section 5.1.2, the amount of

spatial-extent shrinking depends on several factors including, very importantly, the dataset agility.

The Growing Phase. Inserting an object means first computing its dual at the current time 1, and then

including the dual into the leaf MBR whose enlargement (for covering the object) incurs the smallest penalty

(various penalties are adopted in different primal indexes; e.g., the TPR-tree [17] applies the “integrated

volume”, while the TPR*-tree [18] uses the areas of “sweeping regions”). As data is inserted, the MBRs will

become larger, in order to fill the gaps among them. After all insertions, the union of all MBRs will again
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cover the entire dual space (for a large dataset, object duals appear everywhere in the space).

Figure 3e shows the final MBRs for the situation of Figure 3c. Since the spatial-extents of the MBRs

are already overlapping in Figure 3c, during insertions, the MBRs will be enlarged only on the velocity

dimension (i.e., no gap to fill along the spatial dimension). In this case, the spatial projection lengths of an

MBR exceeds the corresponding value at time 0, i.e., the index has degraded.

In Figure 3d, on the other hand, each MBR is smaller than the corresponding MBR at time 0 (Figure 3a) on

all dimensions. Hence, when insertions are performed, an MBR can be shaped again to the optimal extents,

as demonstrated in Figure 3f. In this case, the index retains the same query efficiency as at time 0.

From the above analysis, it is clear that two conditions should be fulfilled, if aprimal index incurs no

deterioration at time 1:

1. The agilityA must be at least1/f , so that each leaf node can receive at least an update.

2. The side length ofBmin(1) (i.e., the SBR of a node after all deletions) must be smaller than the value

of s in Equation 6, so that the MBR of the node can “bounce” back to its size at time 0. This condition

actually also indicates that the agilityA must be adequately high, since the higherA is, the shorter the

extents ofBmin(1).

Finally, we point out that the above analysis also applies to subsequent timestamps. Specifically, given a

primal index with no degradation at time 1, the same conditions should be satisfiedfor the index to retain

efficiency at the next timestamp, too.

5.1.2 Computing the Deterioration Threshold

To obtain the deterioration threshold (i.e., the lowest agility validating Conditions 1and 2 in Section 5.1.1),

we need to find the smallest agility fulfilling the second condition (Condition 1 indicates a constant agility

1/f ). The analysis is the same for all leaf nodes, regardless of where their MBRs are in the dual space at

time 0. Hence, to simplify notation, we consider a node whose MBR is corneredat the origin of the dual

space. Furthermore, it suffices to discuss 1D objects, because the deterioration threshold is identical for data

of any dimensionality.

Specifically, the problem is as follows. We havef 1D moving points at time 0. Their locations and velocities

are uniformly distributed in ranges[0, s] and[0, w], respectively. At time 1,A·f points are randomly deleted.
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For the remaining(1−A)f points, we usel to represent the length of the minimum 1D SBR enclosing their

locations at time 1. What is the lowestA such that the expectedl is at mosts (represented in Equation 6)?

Rationale. Let xi be the location of thei-th (1 ≤ i ≤ (1−A)f ) remaining point at time 0, andui its velocity

(i.e.,xi andui are uniform in[0, s] and[0, w], respectively). Hence, ifλi is the location of the point at time

1, we haveλi = xi + ui. The value ofl thus equals

l =
(1−A)f
max
i=1

λi −
(1−A)f

min
i=1

λi (9)

Clearly,l distributes in range[0, s+w]. The rest of this subsection will be devoted to deriving the probability

P{l ≤ ε} thatl is at most a particular valueε ∈ [0, s + w]. This probability will be a function ofA andε.

OnceP{l ≤ ε} is available, by taking its derivative againstε, we obtain the probability density function

pdf(l = ε), which is also a function ofA andε. Then, setting the expectedl to s, we obtain an equation of

A:
∫ s+w

0
ε · pdf(ε) dε = s (10)

The solution ofA is thus the lowest agility satisfying Condition 2 of the previous section. The solution

cannot be represented as a closed formula, but can be obtained numerically. In Section 7.3, we will list the

solutions under various settings (e.g., differentH, n, f , etc.).

Detailed Derivation. We first analyze the distribution ofλ1, λ2, ...,λ(1−A)f . Since these(1 − A)f random

variables are symmetric, it is sufficient to focus on one of them. In the sequel, we drop the subscript ofλ

(and accordingly, also the subscripts ofx andu), when there is no ambiguity.

Lemma 1. The distribution ofλ is described by

pdf(λ) =































λ/(w · s) if λ ∈ [0, w)

1/s if λ ∈ [w, s)

s+w−λ
w·s if λ ∈ [s, s + w)

0 otherwise

(11)

wheres andw are given in Equations 6 and 7, respectively.

Proof. Obviously,λ belongs to[0, s + w]. To obtain its pdf, we first compute the probabilityP{λ ≤ ε} that

λ does not exceed a particular valueε ∈ [0, s + w]. Recall thatλ = x + u; hence,λ ≤ ε meansx ≤ ε − u.
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As a result,

P{λ ≤ ε} =
1

w

∫ w

0
P{x ≤ ε − u}du (12)

If ε falls in [0, w], Equation 12 becomes

P{λ ≤ ε} =
1

w · s

∫ ε

0
(ε − u)du =

ε2

2w · s (13)

Taking the derivative of the above equation againstε, we obtainpdf(λ = ε) = ε/(w · s), thus proving the

first case in the lemma (λ ∈ [0, w]). The other cases can be established similarly.

Figure 4 provides the visualization ofpdf(λ), which is a trapezoidal shape, symmetric by the vertical line of

λ = (s + w)/2. The above lemma assumesw ≤ s. However,s/w always equalsH/
√

3 (as is clear from

Equation 4); hence,w ≤ s holds, as long asH ≥
√

3.

We are ready to calculateP{l ≤ ε}, wherel is defined in Equation 9. For convenience, let us introduce

α =
(1−A)f

min
i=1

λi, and β =
(1−A)f
max
i=1

λi,

i.e., l = β − α. Clearly,0 ≤ α ≤ β ≤ s + w. Hence,P{l ≤ ε} = P{β − α ≤ ε}, which is equivalent to

∫ s+w

0
pdf(α) · P{β − α ≤ ε|α}dα

Thus, it remains to solve the two components of the above integral, i.e.,pdf(α) andP{β − α ≤ ε|α}. We

achieve this in two separate lemmas:

Lemma 2. Whenα ∈ [0, w), pdf(α) =

α · (1 − A)f

w · s

(

1 − α2

2w · s

)(1−A)f−1
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Whenα ∈ [w, s), pdf(α) =

(1 − A)f

s

(

1 − 2α − w

2s

)(1−A)f−1

Whenα ∈ [s, s + w), pdf(α) =

f(1−A)(s+w−α)

w·s

(

1− s(2α−s)−(α−w)2

2w·s

)f(1−A)−1

In any other case,pdf(α) = 0.

Proof. The value ofα is at mostε, if and only if one ofλ1, ...,λ(1−A)f is at mostε. Hence,

P{α ≤ ε} = 1 − (1 − P{λ ≤ ε})f ·(1−A)

whereP{λ ≤ ε} is given by Equation 12. According to Equation 13, forα ∈ [0, w], we have

P{α ≤ ε} = 1 −
(

1 − ε2/(2w · s)
)(1−A)f

Taking the derivative of the above equation againstε, we obtainpdf(α = ε), which results in the first formula

of the lemma. The other formulae can be established in the same way.

Lemma 3. P{β − α ≤ ε|α} equals

(

∫ min{α+ε,s+w}
α pdf(λ)dλ
∫ s+w
α pdf(λ)dλ

)(1−A)f−1

(14)

wherepdf(λ) is given in Lemma 1.

Proof. The a priori condition “|α” states that one of the(1 − A)f random variablesλ1, ..., λ(1−A)f must

beα. Since these variables are symmetric and independent, without loss of generality, assumeλ1 = α. In

this case, each ofλ2, ...,λ(1−A)f must be in range[α,min{α + ε, s + w}] (provided that it is at leastα), the

probability of which is captured by Equation 14.
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5.2 Dual

As mentioned in Section 2.2, a dual index adopts the two-structure mechanism toperform efficient periodic

re-building. Before elaborating the behavior of the mechanism, we need to examine a fundamental issue:

given asingledual index constructed at time 0, what is its best possible quality at timestampt ≥ 0? Equiva-

lently, what is the lower bound ofCM(t) as in Equation 1? The following lemma provides the answer.

Lemma 4. For a dual index with reference time 0, at any timet ≥ 0, CM(t) is at leastg(t) · √n, where

g(t) =

2V ((2/
√

3)
√

3t2 + 3t · H + H2 + 2t + H) (15)

Proof. Let s (or w) be the spatial- (or velocity-) extent length of a leaf MBR. Plugging Equation2 in Equa-

tion 1 and solving the remaining integral oft, we haveCM(t) =

n(s2 + s · w(2t + H) + w2/3 · (H2 + 3t · H + 3t2)) (16)

Following the analysis in Section 4.1 for obtaining Equations 6 and 7, we obtain the s andw that minimize

CM(t):

s =
√

2V (3t2 + 3t · H + H2)0.25/(3n)0.25

w = (12V 2/n)0.25/(3t2 + 3t · H + H2)0.25

Substitutings andw in Formula 16 with the above equations, we arrive at the representation ofCM(t) in

the lemma.

Lemma 4 essentially generalizes the results in Section 4, because, fort = 0, g(t)
√

n degenerates into

Formula 8. Furthermore, the lemma also confirms the necessity of the two-structure mechanism: if only a

single structure (built at time 0) is deployed, the query cost will increase (roughly) linearly with timet.

Now, we turn our attention to a dual index with two structuresIndex1 andIndex2, each of which becomes

empty and is re-created every2T timestamps (as described in Section 2.2). Hence, the behavior of the index

demonstrates a periodic pattern, with[T, 2T ) being the first period,[2T, 3T ] the second, and so on. Note that

the first period starts atT (instead of0) because, during[0, T ), Index2 is inactive. Furthermore, the length

of a period isT (as opposed to2T ), because the roles of the two indexes are switched everyT timestamps.
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Without loss of generality, let us focus on a single period[T, 2T ). We aim at representing the best possible

index quality as a function of the current timetc ∈ [T, 2T ). In particular, since a query must search both

Index1 andIndex2, the index quality equals

CM1(tc) + CM2(tc) (17)

where, for1 ≤ i ≤ 2, CMi(tc) is given in Equation 1, capturing the overhead of searchingIndexi.

During [T, 2T ), Index1 andIndex2 have reference times 0 andT , respectively. We denoten1(tc) as the

number of leaf nodes inIndex1 at timetc, and similarly,n2(tc) with respect toIndex2. At all times, the

sum ofn1(tc) andn2(tc) is a constantn = N/f , whereN is the dataset cardinality, andf the average

fanout. Furthermore, sinceIndex1 contains the entire dataset (or is empty) at timeT (or 2T ), it holds that

n1(T ) = n andn1(2T ) = 0.

In general, there areA · N updates at every timestamp, where the agilityA is at least1/T (an object must

have issued at least one update withinT timestamps). Since each object removed fromIndex1 is added to

Index2, Index1 losesA·N objects (orA·n leaf nodes4) at each timestamp in the time interval[T, T +1/A),

and remains empty during[T + 1/A, 2T ). Therefore, for anytc ∈ [T, 2T ], we have

n1(tc) = n (1 − A · min{tc − T, 1/A}) (18)

n2(tc) = n − n1(tc) (19)

Computation of Formula 17 can be reduced to Lemma 4, but with care: the lemma assumes an index with

reference time 0, whereas the reference time ofIndex2 is T . In fact, Lemma 4 is always correct, as long

as we interprett as the difference between the current time and the reference time of the index. Hence,

Formula 17 becomes

g(tc) ·
√

n1(tc) + g(tc − T ) ·
√

n2(tc) (20)

where functiong is defined in Equation 15,n1(tc) andn2(tc) in Equations 18 and 19, respectively.

5.3 Which Technique is Faster in Theory?

There is no absolute answer, because each (primal or dual) technique has its unique characteristics, and has

better query performance in some scenarios. The dataset agilityA turns out to be the most important factor

4At each timestamp, the objects deleted are amortized among all the leaf nodes. These nodes may entail underflows, and hence,

be merged into a smaller number of nodes after all deletions.
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that determines the relative superiority of alternative solutions.

As shown in Section 5.1, a primal index offers the optimal query efficiency at all times, as long asA exceeds

a threshold (depending on the solution ofA from Equation 10). However, when this condition is violated,

the index risks continuously deteriorating with time, such that eventually objectclustering at the leaf level

may become completely arbitrary, i.e., each leaf node containsf random objects (this phenomenon was also

observed in [18]).

Regardless of the value ofA, choosing a dual index is a “safe bet”, because its quality changes periodically,

andnever exceeds an upper bound. This bound equals the maximum value of Formula 20, astc varies from

T to 2T (i.e., within a period). Note that thetc that produces the upper bound is not necessarily the center

of a period, but varies depending onH, A, f , etc (we will demonstrate this in Section 5.2). Hence, ifA is

excessively small, a dual index may significantly outperform a primal index inquery processing, after the

latter has degraded seriously as time passes.

However,a dual index never achieves the optimal efficiency at any timet > 0 (in other words,whenA is

sufficiently high, at timet, a dual index always has worse query performance than a primal access method).

Specifically, Formula 20 is constantly larger than Formula 8, for alltc ∈ [T, 2T ). This can be understood

as follows. Remember that the optimal quality is reached, if and only if (i) all the objects are managed by

a single structure, and (ii) the reference time of the structure equals the current timetc. During [T, 2T ),

condition (i) holds at timeT or in the time interval[T + 1/A, 2T ), whenIndex1 or Index2 is the sole

structure indexing the entire dataset, respectively. However, condition (ii) is always violated when (i) is

fulfilled: at timeT , Index1 has reference time 0, whereas, during[T +1/A, 2T ), Index2 has reference time

T .

6 Discussion about the Update Performance

Some empirical evidence [11, 16] suggests that, as far as the existing solutions are concerned, dual indexes

incur lower update cost than primal structures. This observation has, to some extent, misled the spatiotem-

poral community into the misconception that the primal technique is a worse approach in practice, despite

its superiority in query performance. This misconception comes from the argument that, in a spatiotempo-

ral application, there are much more updates than queries5 such that the overall workload of a database is

5This is true. For example, in a highway monitoring system, a vehicle generates an update whenever its moving speed or

direction has changed significantly. The update frequency of an entire dataset may be at the order of once per second, and is much
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dominated by the overhead of updates, which advocates the employment of dual access methods.

In this section, we aim to eliminate the above misconception, and thereby, re-establish the practical impor-

tance of the primal methodology. Our discussion proceeds in three steps.

Commercial Importance of Optimizing Query Performance. Update overhead and query overhead are

two types of cost with different influences on the commercial success of an application. Specifically, update

performance limits the scalability of the database, in terms of the maximum number of objects that can be

supported, subject to the system’s computing capacities. Query performance, however, affects the service

quality that can be offered to a customer, namely, how fast her/his look-uprequest can be processed.

Query cost actually has a more immediate impact on the public image of a system, since it can be directly

noticed by customers when they are waiting for their results. Update cost, onthe other hand, is “internal”,

because it is hidden from the public, i.e., an object does not need to know how fast its updates were handled.

Therefore, minimization of query cost is crucial, even though it is not the bottleneck of the system’s overall

performance. In particular, even if an index structure is query-efficient but relatively update-expensive, it

still has practical merits, as it helps to improve the “tangible” service quality of the system. Note that, the

above discussion is valid under the circumstances that the system is able to handle all updates (i.e., no load

shedding is necessary). This is highly possible, given the gigantic computing power of modern machines.

The Update Cost of a Perfect Primal Index.It is not correct to claim that the primal technique has worse

update performance than the dual methodology, simply because theknownprimal structures are slower in

updates than their dual counterparts. In other words, it could be just that a “perfect” primal index had not been

discovered yet, and such a solution would have excellent update efficiency. In fact, the only rigorous way

to conclude that the primal technique is inherently update-expensive, would be to establish a lower bound

for its query cost, when the update overhead must be controlled under a certain limit [8]. For example, the

conclusion would be convincing, if one could show that, when the update cost must be logarithmic to the

dataset cardinality, the query overhead would have to exceed a large value. Interestingly, as explained next,

our findings in the previous sections point to the opposite: a good primal index should have nice update

efficiency, if it undergoes no structural deterioration.

An update involves an insertion and a deletion. Let us focus on deletions, because they are more expensive

(an insertion can be completed by accessing, on average, a single path ofthe root to a leaf, as is a property of

higher than the query frequency.
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the TPR-tree [17]). A deletion, specifically, is divided into two steps. The first one locates the leaf node that

contains the object being deleted, whereas the second step removes the object from the node, and propagates

the changes to the upper levels of the tree. We concentrate on the first step, which dominates the overall

deletion overhead. (In particular, the second step often entails no I/O cost, since it usually affects only the

path from the root to the leaf node accommodating the object, and the path has been accessed in the first step,

and thus, still resides in the buffer. The second step incurs higher cost,only when a node underflow happens.

Underflows, however, are provably infrequent, under the realistic condition that a deletion may occur in

any leaf node with an equal probability. Specifically, as mentioned in Section 5.1.1, at each timestamp in

expectationA · f objects are inserted and removed from a node, respectively.)

Let o be the object being removed. Locating the leaf node containingo requires, in the worst case, visiting

all the leaf nodes whose MBRs, in the dual space at the insertion timet of o (t is smaller than the current time

tc), cover the dual representation ofo at timet. This process could be expensive because, due to structural

deterioration, the MBRs of many nodes may overlap, ando may happen to fall in their overlapping region.

However, if the tree undergoes no deterioration, all the leaf nodes havedisjoint MBRs in the dual space at

time tc − 1, and hence, their MBRs must also be disjoint in the dual space at timet (notice that the MBR of

a node at an older timestamp must be contained by its MBR at a later timestamp). As a result,o is covered

by the MBR of exactly one leaf node in the dual space at timet.

The above analysis indicates that, if no deterioration occurs in a primal index, only one leaf node needs to

be accessed to discover the object in the tree. The analysis can be extended to the intermediate levels in a

straightforward manner. It follows that, without structural deterioration,a single path from the root to the

leaf level needs to be visited in a deletion. In this case, the deletion cost is no worse than that of any dual

index in the literature. It is worth mentioning that, the discussion earlier assumesthat conventional update

algorithms, such as those developed in [17, 18], are applied. In fact, recognizing that indexes adapted from

R-trees may incur large deletion overhead after structural degradation,the spatial community has developed

several novel approaches (e.g., the bottom-up method [14] and the memo-method [21]) for alleviating this

problem. Those approaches allow retrieval of the node containing an object to be deleted inO(1) I/Os, and

thus, further improve the update efficiency of a primal index.

The Periodic-Update Requirement of the Dual Technique.A dual method can be applied, only if all the

objects obey a requirement: they must issue at least one update everyT timestamps (we mentioned this at
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the end of Section 2.2), whereT is the length of an update period. In practice, however, this requirement

may not be fulfilled. For example, the next timestamp for an aircraft to issue anupdate, depends on its flight

trajectory (e.g., no update is required, as long as the aircraft moves linearly), and may be larger than its

previous update time by more thanT timestamps. The primal technique does not suffer from this defect.

Specifically, an object sends an update, only when it is absolutely necessary to do so — a velocity change

has happened.

To remedy the defect, the dual technique takes a “mandatory approach”,i.e., forcing an object to generate

an update anyway at the end of a period, if it has not already done so earlier in this period. Although

this approach guarantees the correctness of query results, it introduces another two drawbacks. First, it

necessitates redundant updates, and hence, consumes a larger amount of network bandwidth. Second, it

may render a dual index actually more update-expensive than a primal structure. This happens when the

dataset agilityA exceeds the deterioration threshold of the primal technique, and yet, is lower than1/T . As

mentioned earlier, when no structural deterioration happens, the cost ofa good primal index in handling a

single update should be comparable to that of a dual structure. However,the dual structure must process a

larger number of updates, since many objects, which do not generate voluntary updates, are forced to issue

redundant updates. As a result, overall the dual technique entails higher maintenance overhead.

7 Numerical and Empirical Results

This section aims at achieving four purposes:

• Since some equations in our analysis cannot be transformed into closed forms, we solve them numer-

ically, and reveal additional characteristics of the primal/dual techniques.

• We show that the “theoretical characteristics” can indeed be observed from the existing access meth-

ods.

• We evaluate the potential improvement for these indexes, by comparing their cost to the optimal per-

formance.

• We apply our analytical findings to explain the experiment results in the previous work [11, 16, 18, 22],

which seem to contradict each other.
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Figure 5: TPR* quality at timestamp 100 (H = 30)
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Figure 6: Typical TPR* deterioration (H = 30)

7.1 Settings

Our experiments examine the state-of-the-art primal and dual indexes: theTPR*-tree [18] andBdual-tree

[22], respectively. Since theBdual-tree has not been compared with the (dual) solution of [13] previously, we

also implement (an enhanced version of) that solution, referred to asRdual in the sequel. The implementation

is essentially an R-tree [2], whose update algorithms are adapted to minimize the metric of Equation 1. Each

insertion/deletion is performed individually, i.e., no bulkloading is performed.

We generate 2D data conforming to the problem formulation in Section 3. The page sizeps equals 1024

or 4096 bytes; accordingly, the average node fanoutf (of all structures) equals 39 or 157, respectively.V

is fixed to 0.01 (i.e., the largest object velocity is 100 times smaller than the length ofa spatial dimension).

For dual methods,T equals 20 (every object issues at least an update every 20 timestamps). The values

of n (number of leaf nodes),A (agility) andH (horizon) will be clarified in individual experiments. Note

that, oncen is finalized, the value ofN is also decided asf · n. Each dataset evolves for ahistoryof 100
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timestamps (A · N objects are updated at each timestamp). Thus, the largest dataset occupies over 80 Giga

bytes of space.

A query workloadhas 10000 point queries, whose locations are random in the spatial domain, and their

timestamps are uniformly distributed in[t, t + H], wheret is the time of workload execution. Thequalityof

an index is measured as the average number of leaf nodes accessed in answering a workload query.

7.2 Primal Deterioration

As analyzed in Section 5.1, the query cost of a primal index may continuouslyincrease with time, ifA

is excessively low. However, the index retains the same efficiency at all times, afterA reaches a certain

threshold. The first set of experiments demonstrates the phenomenon on TPR*-trees. Towards this, we set

n, H to 30k and 30 respectively, but varyA in a wide range. It is worth mentioning that, some combinations

of A andH may not necessarily be realistic in practice. For example,A = 50% implies that each object is

expected to issue an update every two timestamps, in which case it may not be useful to optimize a TPR*-

tree forH = 30 future timestamps. Nevertheless, since our objective is to evaluate the derived theoretical

findings, we examine those combinations anyway, in order to make sure that our experiments consider a

wide spectrum of values for each parameter.

Figures 5a and 5b plot the TPR* quality at the end of history, as a function of A, whenps (page size) equals

1024 and 4096, respectively. The curve labeled asoptimalrepresents the theoretical lower bound, computed

with Equation 8. Clearly, the quality at time 100 is significantly worse than the optimalvalue forA = 1%,

but gradually approaches the lower bound asA increases. The lower bound is identical in Figures 5a and 5b,

because it relies on onlyV , H, andn (which are the same in the two figures).

In Figure 6a, we inspect the quality changes (in the experiment of Figure 5a) during timestamps 0-100,

focusing onA = 1%, 5%, and 20%, respectively. The curves at these agilities illustrate 3 types of TPR*-

degradation (the curve “optimal” has the same meaning as in Figure 5).

First, for exceedingly smallA (e.g., 1%), the query overhead rapidly and continuously escalates with time,

until object clustering in the TPR*-tree is completely random. Second, ifA is low, but not exceedingly

(e.g., 5%), the efficiency also degrades severely at the beginning. However, unlike the caseA = 1%, the

deterioration rate decreases with time, such that the query cost eventually stays constant at a high value.

Third, asA grows further, the initial degradation becomes less obvious; furthermore, the overhead also
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stabilizes faster. AfterA is sufficiently large (e.g., 20%), the query cost is always close to the lowerbound.

Figure 6b presents similar results forA = 1%, 10%, 60% in the experiments of Figure 5b, confirming the

same observations. Notice that, regardless ofA andps, the performance of TPR*-trees is nearly optimal at

time 0.

7.3 Primal Degradation Agility

As elaborated in Section 5.1.2, the deterioration agility threshold, denoted asAthrs, can be computed as

follows. We first solveA from Equation 10, and then determineAthrs asmax{A, 1/f}, wheref is the

average node fanout. In Table 2a, forps = 1k, we list the theoretical thresholds for all the combinations ofH

andn, when they equal to 5 different values in[10, 50] and[10k, 50k], respectively. Table 2b demonstrates

the results forps = 4k.

The first important observation is thatAthrs is independent with the numbern of leaf nodes (hence, also

with the dataset cardinality). Instead, it only relies onH, or in other words, the “aspect ratio” betweens and

w, i.e., the extent lengths of a node on the spatial and velocity dimensions, respectively (as in Equation 5,

s/w = H/
√

3).

The second crucial phenomenon is that, forH ∈ [10, 30], Athrs is significantly higher, when a larger page

size is used. This fact negatively impacts the applicability of the primal technique in practice. Specifically,

sinceps = 4096 is “standard” in many database systems, a primal index should be used, only if a significant

portion of the dataset generates updates at every timestamp. Otherwise, theindex performance risks (gradual)

deterioration, and eventually, ends up with unacceptable performance.

Finally, notice thatAthrs monotonically decreases asH increases. Remember that a largeH optimizes

queries in the “distant” future, and leads to nodes with long spatial extents (and short velocity extents). As a

result, fewer objects can move out of the current SBR (of the node containing them) at the next timestamp,

making it easier for the primal structure to retain its efficiency (see the analysis in Section 5.1).

Tables 2c and 2d present the actual deterioration agilities6 of TPR*-trees, with respect to the same parameter

combinations in Tables 2a and 2b. These actual thresholds are consistentwith the facts revealed earlier from

the theoretical ones. Note that, it is reasonable for an actual threshold to be (even much) higher than the

6We declare a TPR*-tree “deteriorated” if its quality at timestamp 100 exceeds the quality at time 0 by 25%. Given a pair ofH

andn, the threshold agility is the lowest agility at which TPR* deterioration is observed.
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n(N)\H 10 20 30 40 50
10k (390k) 11.8% 2.6% 2.6% 2.6% 2.6%
20k (780k) 11.8% 2.6% 2.6% 2.6% 2.6%
30k (1.17m) 11.8% 2.6% 2.6% 2.6% 2.6%
40k (1.56m) 11.8% 2.6% 2.6% 2.6% 2.6%
50k (1.95m) 11.8% 2.6% 2.6% 2.6% 2.6%

(a)ps = 1024 (theoretical)

n(N)\H 10 20 30 40 50
10k (1.57m) 78% 56% 28% 4% 1%
20k (3.14m) 78% 56% 28% 4% 1%
30k (4.71m) 78% 56% 28% 4% 1%
40k (6.28m) 78% 56% 28% 4% 1%
50k (7.85m) 78% 56% 28% 4% 1%

(b) ps = 4096 (theoretical)

n(N)\H 10 20 30 40 50
10k (390k) 40% 28% 20% 17% 15%
20k (780k) 40% 28% 20% 17% 15%
30k (1.17m) 40% 28% 20% 17% 15%
40k (1.56m) 40% 28% 20% 17% 15%
50k (1.95m) 40% 28% 20% 17% 15%

(c) ps = 1024 (TPR*)

n(N)\H 10 20 30 40 50
10k (1.57m) 80% 68% 60% 54% 50%
20k (3.14m) 80% 68% 60% 54% 50%
30k (4.71m) 80% 68% 60% 54% 50%
40k (6.28m) 80% 68% 60% 54% 50%
50k (7.85m) 80% 68% 60% 54% 50%

(d) ps = 4096 (TPR*)

Table 2: Primal degradation agilities

corresponding theoreticalAthrs, since a TPR*-tree is not a “perfect” primal index.

7.4 Dual Periodic Behavior

We proceed to study the dual technique. For this purpose,ps is irrelevant; as shown in Section 5.2, the query

cost of dual indexes is independent with the node fanoutf , as long as the numbern of leaf nodes is the same.

The results presented in this subsection are obtained withps = 4096.

To examine the influence ofH, n, A, we choose 3 values for each parameter:H = 10, 30, or 50;n = 10k,

30k, or 50k;A = 5%, 20%, or 35%. SettingH to the median 30, Figure 7a (or 7b) plots the cost ofBdual- and

30



Bdual Rdual dual-optimal optimal
 

 0
 100
 200
 300
 400
 500
 600
 700

 0  20  40  60  80  100
time

number of leaf accesses

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0  20  40  60  80  100
time

number of leaf accesses

(a)H=30,n=10k,A=5% (b)H=30,n=50k,A=35%

 0

 200

 400

 600

 800

 1000

 1200

 0  20  40  60  80  100
time

number of leaf accesses

 0

 200

 400

 600

 800

 1000

 1200

 0  20  40  60  80  100
time

number of leaf accesses

(c) H=10,n=30k,A=5% (d)H=50,n=30k,A=35%

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

 0  20  40  60  80  100
time

number of leaf accesses

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0  20  40  60  80  100
time

number of leaf accesses

(e)H=10,n=10k,A=20% (f)H=50,n=50k,A=20%

Figure 7: Dual quality changes (any page size). Note thatn is the number ofleaf nodes; see Table 2 for the
corresponding dataset cardinalitiesN .

Rdual-trees as time evolves, using the smallest (or largest) values for the other twoparameters. In Figures 7c

and 7d, we fixn to the median 30k, and repeat the previous experiments, treating the other parameters in the

same manner. Finally, Figures 7c and 7d demonstrate similar results with the medianA = 20%.

Each of Figures 7a-7f also includes two reference curvesoptimalanddual-optimal, indicating different lower

bounds. Specifically,optimal is the value of Equation 8, representing the general smallest overhead ofboth

primal and dual indexes. On the other hand,dual-optimalcorresponds to the value of Equation 20, i.e., the

best efficiency of dual methods.
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At timestamp 0,optimal-dualandoptimalshare the same value because, as explained in Section 4, primal

and dual indexes have essentially equivalent forms, when they are justconstructed. However, at any other

time, optimal-dualis consistently worse thanoptimal, confirming the prediction in Section 5.3 that a dual

index can never possess the optimal performance except at the initial timestamp.

Optimal-dualis periodic, but its shape varies depending on the concrete parameters. In each period,optimal-

dual has a local minimum and maximum. In particular, the minimum is always achieved at themoment

when the passive structure (recall that a dual index involves two structures, only one of which is active at

any particular timestamp) becomes empty, i.e., the1/A-th timestamp of each period. On the other hand, the

maximum occurs when the two structures have roughly an equal number of objects.

It is clear that the behavior of bothBdual- andRdual-trees follows very closelyoptimal-dual, validating the

correctness of our derivation. In particular, theRdual cost approximatesoptimal-dual, suggesting that this

index almost achieves the lower bound of dual access methods.

7.5 Resolving the Contradiction in the Experiments of Previous Work

There seems to be some inconsistency among the experiment results in the previous work [11, 16, 18, 22],

which develops the most efficient spatiotemporal indexes. Specifically, theTPR*-tree in [18] has low and

stable query cost, even after a long history. However, this is challenged in[11, 16], where TPR*-trees are

significantly outperformed by dual-solutions STRIPES andBx-trees, respectively. Recently, the relative su-

periority is again reversed in [22], where TPR*-trees are faster in query processing than all the dual indexes.

Equipped with the theoretical findings in this paper, we can easily explain the reasons underlying the above

“inconsistency” (apart from the discrepancies of the implementations by different authors). That is, all the

experiments advocating (or against) TPR* deploy disk pages of 1024 (or4096) bytes, and datasets with large

(or small) agilities. The agility exceeds (or falls far below) the degradation threshold in Table 2; hence, the

TPR* exhibits excellent (or severely-deteriorating) performance.

In [18], the update interval of an object essentially follows a highly skewed distribution. Specifically, a

majority of the objects issue velocity changes frequently, whereas a small subset of the database is not

updated for a (very) long period. In [22], the objects have low velocities, which follow a Zipf distribution in

[0, 0.005] (skewed towards 0). Furthermore, each object is required to report itslocation every 25 timestamps.

The effect is equivalent to soliciting an update from an object (frequently) whenever it moves a short distance.
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Therefore, in [18, 22], the TPR*-cost grows in a way resembling curveA = 20% in Figure 6a.

On the other hand, the velocities of the objects in [11, 16] are around 3 times lower7 than those used in

Sections 7.2-7.4. An object issues an update (on average) every 60 timestamps, i.e., the dataset agility is

1
60 . This is analogous to an agility of160 × 3 = 5% in our settings, which is more than 10 times lower than

the degradation agility threshold of TPR*-trees (recall that, the threshold ismuch higher forps = 4096 than

1024). As a result, the behavior of TPR*-trees is similar to theA = 1% curve in Figure 6b.

8 Concluding Remarks

Both primal and dual methodologies have their important strengths and weaknesses in query processing.

A primal index promises (much) lower query overhead (compare the curves optimal anddual-optimal in

Figure 7), but may deteriorate continuously with time for some datasets, and become prohibitively expensive

eventually. A dual access method, on the other hand, is “conservative”; its cost is far above the optimal value,

but always remains reasonable, regardless of the data properties.

The dataset agility is the most influential factor on the relative superiority of the two methodologies. A

primal index, unfortunately, is not suitable for large page sizes (e.g., beyond 4096), in which case the index

is almost certain to keep deteriorating with time (unless the dataset agility is extremelyhigh). In practice, if

query efficiency is crucial (i.e., even the cost ofdual-optimalis unacceptable, thus excluding dual methods),

a possible solution is to re-construct a primal index periodically, after its cost has degraded to some extent.

Another pessimistic phenomenon revealed by our analysis is that, query processing is much harder in spa-

tiotemporal databases than in the traditional spatial context. For example, when the underlying data is uni-

formly distributed, there may not be anyO(log n) spatiotemporal queries at all. In other words, we should

not expect any of the well-studied spatial operations (e.g., nearest neighbor search) to be solved by visiting

just a few paths of a spatiotemporal index. All these operations requireΩ(
√

n) node accesses in expectation

(see Section 4.2).

This work also initiates several directions for future research. First, asdemonstrated in Table 2, the degra-

dation agilities of the existing primal indices are higher than the theoretical thresholds. This phenomenon

indicates that the primal technique still has much room for improvement. It wouldbe worthy to investigate

how to enhance the update algorithms of the TPR*-tree, in order to reduce itsstructural deterioration. Sec-

7In [11, 16], an object velocity takes one of 3 values 0.0007, 0.0015,and 0.003 with equal probability.
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ond, our analytical findings suggest the possibility of combining the primal and dual techniques to design

a good spatiotemporal index that takes the advantages of both techniques.Specifically, one may divide the

underlying dataset into different clusters, based on the objects’ updatefrequencies. To optimize query per-

formance, a primal index may be constructed on the objects that issue updates frequently, whereas a dual

structure may be created on the others. Finally, in this paper, we do not concern concurrent updates and

queries. In practice, multiple queries and/or updates may be carried out onan index at the same time. Thus,

it would not be sufficient to consider only the leaf level in performance analysis, since locking operations at

the intermediate levels may have a major influence on the query/update efficiency as well. In that case, the

relative superiority of the primal and dual techniques deservers further studies.
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