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Abstract

The existing predictive spatiotemporal indexes can besiflad into two categories, depending on
whether they are based on tpemal or dual methodology. Although we have gained considerable
empirical knowledge about various access methods, clyrdagtre is only limited understanding on the
theoretical characteristics of the two methodologies.abit,fthe experimental results in different papers
even contradict each other, regarding the relative sugiigriaf the primal and dual techniques.

This paper presents a careful study on the query perfornargeneral primal and dual indexes, and
reveals important insight into the behavior of each teameidn particular, we mathematically establish
the conditions that determine the superiority of each natamy, and provide rigorous justification for
well-known observations that have not been properly erplin the literature. Our analytical findings
also resolve the contradiction in the experiments of previeork.

To appear in VLDB Journal.
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1 Introduction

A predictive spatiotemporal databaseaintains the current motion parameters of linearly moving objects,
and supports efficient retrieval of objects whose expected futuréidosasatisfy certain predicates. Such
databases have been extensively studied in the past decade, singdathey imperative role in many

applications including transportation monitoring, flight control, location-asevices, etc.

A fundamental operation in these applicationsaisge searchwhich specifies a (usually, rectangular) region
Q, a future timestamp, and reports all the objects whose locations appear inQ). For example, a query
may retrieve “all the aircrafts expected to appear in the airspace of VishihO minutes later”, where the

spatial region is “Washington”, and the query time “10 minutes from now”.

We are interested in access methods that minimize the cost of range sedrdloudty, the problem of
indexing is much simpler, if all objects are stationary. In this case, a spatiotahgaiabase degenerates
into a conventional, thoroughly studied, spatial database. There exiggjeanamber of efficient spatial

indexes, most notably, the R-tree [2].

Moving objects can be regarded as static points, as long as a single timestaomgasned. Therefore,

a natural idea of spatiotemporal indexing is to build a spatial access methedrgtfeture timestamp,
capturing the “snapshot” of the dataset at that time. This is the motivationdahiimportant technique
[17], which we refer to as therimal method Informally (see the next section for details), as time progresses,
the method allows an R-tree to evolve with tisngtomatically namely, no physical modification is necessary
unless an object alters its motion parameters. A range query can beggoci®ctly using the spatial range

search algorithm, but on the evolved version of the index at the query time.

Thedual method12] is an alternative technique of spatiotemporal indexing. It appliesnafwemation that
maps each moving object tostationarypoint in a “dual space”. Accordingly, for any range quépyit is
possible to construct another search regiimn the dual space (as discussed in Section 2.1), such that if an
object qualifies), its dual must fall inQ’. As a result, spatiotemporal range search is reduced to a purely

spatial problem: retrieval of static points (i.e., duals) covered in a givem ar

The spatiotemporal community has deployed numerous primal and dual sndsx@immarized in Section 2.
After we have gained considerable empirical knowledge, it is time to addrelseper questiomwhich

technique is better in theory®e cannot (neither now nor in the future) answer the question by simply



checking which technique is taken by the current state-of-the-arsacoethod. For example, the fact that
the state-of-the-art belongs to the primal family does not imply that the prinpabaph is superior, because

an “ideal” dual index may not have been discovered (and vice versa).

Contributions. This paper does not propose yet another index structure. Insteazhivy out a systematic
theoretical study on the intrinsic properties that are possessed by akibgr(g and future) primal and dual
access methods, thus enhancing the understanding of the primal anshetbaldologies in general. Our

primary results can be summarized as follows.

First, for both primal and dual indexes, we establish a lower bé(rdn ) for the expected I/O cost of range
search on uniform data, whereis the number of leaf nodes. Our analysis settles the hidden constant in
the complexity, and thus, quantifies the smaledtialoverhead in practice. Unfortunately, the same lower
bound also applies to most, if not all, well-studied operations on moving objecfs, nearest neighbor
search. This is a somewhat surprising fact, because a nearestoreygiely is typically highly efficient on

stationary points (for realistic datasets, it can be solved in a very small mohld®s [4], using an R-tree).

Second, we prove that, regardless of the dataset properties, thyeopsenf a dual index is “stable”, since
it is always limited by a certain upper bound. However, except at its agigin time, a dual index never
achieves the theoretical cost lower bound. On the other hand, deplaypnighal access method is more
“risky”, in the sense that query efficiency of the index may continuoustgiibrate with time, and eventually,
become extremely poor. The advantage of a primal index is that, when aagtalitions are satisfied, it may

achieve the cost lower bound at all times, i.e., offering the optimal seartdrpance.

Third, we show that thdataset agility(describing how many objects are updated at a timestamp, as will be
formalized later) determines the relative query performance of primal aadindexes. Specifically, when
the agility exceeds a threshold, a primal index outperforms a dual accéissdn®©therwise (the agility is
below the threshold), as time evolves, a dual method eventually entails smaiteead. We present detailed

derivation of the threshold, thus providing reliable guidance for chgosisuitable index in practice.

Finally, we apply our analytical findings to resolve the contradiction amongxperiment results reported
in the previous work [11, 16, 18, 22]. Specifically, primal indexes adigpen dual access methods in [18,
22], whereas the opposite is argued in [11, 16]. This divergencgesatonfusion in the spatiotemporal
community, and prevents practitioners from selecting the most appropriatgdae. We show that all the

results are correct, which seem inconsistent simply because they weaireubby setting several crucial



parameters in different ways, favoring the technique being championed.

The rest of the paper is organized as follows. Section 2 reviews the @imdalual methodologies. Section 3
formally defines the problem studied in this paper. Section 4 analyzes tHewesbound of spatiotemporal
search, while Section 5 investigates the different behavior of primal aaldittlexes, respectively. Section 6
discusses update performance. Section 7 contains numerical and elmpsides. Finally, Section 8 con-

cludes the paper by summarizing the practical influence of our findings.
2 Primal and Dual Techniques

Saltenis et al. [17] propose the primal method by designing the TPR-tras.sffacture has an enhanced
version called the TPR*-tree [18]. The dual technique, on the othat,hainitiated by Kollios et al. [12],
and improved in [1, 6, 13]. The dual category also includes STRIPE§ {fie B*-tre€' [11], and the
Bduval tree [22].

Assuming the knowledge of R-trees [2], here we provide an introductitmetprimal and dual approaches.
Our discussion proceeds in two steps. In Section 2.1, we explain thelyindamtionales behind the two
techniques, and elaborate their common properties. Then, Section 2alsréaeecrucial difference between

primal and dual indexes that determine their unique characteristics.
2.1 Equivalent Rationales

Primal. Figure la shows three 2D objecis, o2, 03 at the current time 0. For example; is at the
coordinateg2,4), and moving with velocitie? and—1 on the x- and y-dimensions respectively (we use
black arrows to illustrate object velocities). A negative velocity means thamntihveement is towards the

negative direction of an axis.

A primal access method can be regarded as an adapted R-tree indgeictg'dbcations. The most impor-
tant adaptation is to augment the spatial bounding rectangle (SBR) of edehwith velocities. Consider
a leaf node containing;, o2, andos, whose SBR is the grey rectang®0) in Figure 1a, tightly enclosing
the locations of the 3 objects. The node is associated with 4 velocities, whichlmethe movement of the
edges of its SBR. Specifically, the velocity of the left/right edge equals théestiargest velocity of the

objects in the node on the x-dimension (e.g., the velocities2 of the left and right edges are decided by

1The B*-tree spans the boundary of the primal and dual techniques, since iesiféiatures of both methodologies.
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Figure 1: An expanding bounding rectangle

0o andoq, respectively). Likewise, the velocities of the bottom and top edges défimange of y-velocities
of the objects. Figure 1a demonstrates edge velocities with white arrowsSBRend velocities of a node

are stored in its parent.

The velocities of a node allow its SBR to expand over time, such that the SBR ftitare timet always
covers the locations of the objects (in the node) at tim&fe illustrate this using a range query that requests
the objects in rectangl@ (see Figure 1b) at future time 1 (the current time is 0). The grey box in &igjor
shows the expanded SBR, denoted3), of the node in Figure 1a (e.g., the right edge of the SBR has
moved 2 units).B(1) intersects), and hence, the node must be visited to prevent false misses. Figure 1b
also demonstrates objects’ expected locations at tineg Gualifies the queryd; and the dashed rectangle

will be discussed later).

An expanded SBR at any future timés not physically stored, but it is computed dynamically during query
execution from the node’s SBR at time 0 and its velocities. In general, allxppeneed SBRs at time
simulate a conventional R-tree managing the object locations attiexeept that an SBR is not necessarily
tight. For example, in Figure 1, althoudh(0) is the minimum SBR 0b4, 0,, 03, B(1) is larger than the

minimum SBR of these objects at time 1.

Dual. The dual method does not generate a time-evolving index, but directly sgpéigtionary structure.
For this purpose, a 2D moving point is mapped into a 4D dual space. Fapdxathe dual of objeat; in
Figure laig2,4, —1,2), where the first (or last) two numbers indicate the object’s coordinateel@eities)
on the x- and y-dimensions, respectively. This transformation is basedefarence timé, since(2,4) is

the location ofo; at that time. In general, all duals must be calculated using the same ref¢ireec

Given a range query, the dual technique transforms it into a “simplexmégidhe dual space. Since it is
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Figure 2: Dual transformation

not possible to visualize a 4D region, we illustrate the idea using 1D objedtsisloase, the dual space has

two dimensions, capturing an object’s locatioat the reference time 0, and velocityrespectively.

Let [c1, c2] be the search region (a 1D rectangle) of a range query; émel query time. Obviously, if an
object qualifies the query, it holds that< = +u -t < ¢y. This inequality defines the shaded area (a simplex
region) in Figure 2, where ling is described by, = — 1z + ¢z, and linel, by u = — 12 + }¢;. Retrieval

of qualifying objects is reduced to finding all the duals in the shaded aneh &so in Figure 2).

Following the same idea, for 2D objects, a range query is transformed imgpéex region in the 4D dual
space bounded by four linear hyper-planes. Discovery of objesisdn such a region is a well-studied
problem. A nice practical solution [7] is to create a 4D R-tree on the dualan3wer a query, a node needs

to be visited, if and only if its 4D minimum bounding rectangle (MBR) intersectsithplex region.

Equivalence. Although presented from different perspectives, the rationales gbrih@al and dual tech-

niques can be naturally bridged.

First,a node in a primal index can be regarded as a 4D MBR in the dual sgameexample, the leaf node in
Figure 1a defines a 4D MBR, whose projection on the two spatial dimensibtiee(dual space) i2, 5], and

its projection on the two velocity dimensions[isl, 2]. As time progresses, the MBR is always minimum
(in the dual space), since it keeps tightly enclosing the duals of the objeitis mode (duals never move).
By the same reasoning,dual node, represented as a 4D MBR in the dual space, can alsgaelesl as an

expanding SBR in the primal space

In the sequel, we will use the expanding-2D-SBR and stationary-4D-MipResentations of a node inter-
changeably (no matter the node is from a primal or dual index). As an immexieilary, in processing a

range query, the node access conditions are identical for both tyjpesdesks. Specifically, given a node in



a primal index, its expanded SBR intersects the query region at the queryftand only if its 4D MBR in
the dual space intersects the transformed simplex region. The reverse gt respect to a node in a dual

access method.
2.2 Different Clustering Effects over Time

A dual space must always be accompanied by a reference time, sinegsthatifferent dual space at every
timestamp. For example, as discussed earlier, the dual of Figure 1a is(2,4,—1,2) at time 0. If the

reference time equals 1, the dualefbecomeg1, 6, —1, 2).

As time evolves, the primal and dual techniques organize objects in diffdual spaces Specifically, a
primal index always aims at clustering objects in the dual spadke current timewhereas a dual index

performs clustering in the dual spaaea fixed historical timestamp

Next, we explain the above difference by elaborating the update stratezpch technique, focusing on

insertion (deletion is relatively easy, since it involves simply finding an olgjedtthen removing it).

Primal. Assume a primal index constructed at time 0. A timestamp later, we need to insdjeato. For

this purpose, the primal technique examines the 4D MBRs of the leaf moties dual space at the current
timel. In Figure 1b, for instance, the 4D MBR of the node has projedtiof] on the x- and y-dimensions,
and projection—1, 2] on the two velocity dimensions. The leaf incorporating selected to minimize a
certain quality metric. This is a leaf whose 4D MBR covers the dualaiftime 1. If no such MBR exists,
the selected leaf is the one whose 4D MBR needs the “smallest” expansiotidseen where the degree of

expansion is measured based on the quality metric.

Whenever a node is modified, the primal method perfo8BR tighteningwhich shrinks the SBR of the
node to minimum at the current time. For example, if objgds added to the node in Figure 1b, the SBR of
the node will be shrunk to the smallest rectangle (the dashed box) cowgring o4 at time 1. Tightening
usually incurs no extra I/O because the SBR and velocities of the node radymbe updated in its parent
anyway, in order to capture the newly inserted object (this is why tighteniogriged out only if the node
is modified). Furthermore, tightening the SBR also makes the 4D MBR of the(imotlee dual space at the

current time) smaller.

Each node is associated withreference timeequal to the most recent timestamp when the node’s SBR

was tightened. In Figure 1a, the node has reference time 0. After theti§Bt@ning at time 1, the node’s
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reference time changes to 1, so that an expanded SBR at a future timestaimg calculated based on the

SBR at time 1. Obviously, different nodes can have various referimes’.

Dual. Regardless of the current time, the dual method always converts datagrdadhspace at the index
construction time. Again, assume a dual index at time 0, and that we want tb amsebjecto at time
t > 0. The dual approach converdo its “counterpart’o’ at time 0. Specifically, let, y (or u, v) be the
x-, y-coordinates (or -velocities) @efat timet¢. Then,o’ shares the same velocities@$ut has coordinates
(x —u-t,y —v-t), ie., the location ob at time 0. We incorporate the dual of in the index, which

completes the insertion of

Hence, the reference time is a property of a dual index, commalh tmdes. Updating the index is reduced
to modifying a conventional spatial structure. Hence, objects are alwel€lustered, but in the dual space

at time 0.

As will be proved in Section 5.2, fixing the reference time to 0 has a seri@vgbaick: query cost continu-
ously grows with time (a primal index may not have this problem, which will be éx@thin Section 5.1).

To solve the problem, we should periodically replace the old index with a newbaoift at a more recent
timestamp. To achieve this with the same update overhead (as maintaining a siag)etimeldual technique
adopts @wo-structure mechanismvhich places a requirement on objects: they must issue at least one up-
date everyl’ timestamps, wher€ is a system parameter. (This requirement may not necessarily be satisfied
in practice, in which case some objects may be forced to generate additpateies. We will re-visit this

issue later in Section 6.)

Specifically, the mechanism works as follows. At the initial time 0, a dual inBekz, is built with
reference time 0, and the other structiéirelex, is inactive. During the periofd, 7'), all insertions/deletions
are performed otindex;. Attime T, Indexs is initialized with reference tim&'. During [T, 2T"), objects
are inserted only idndexs, but deletion may be performed didex; or Indexo, depending on whether

the corresponding object was inserted before or &fter

2The reference time of a node can be captured without spending asicphstorage, using a trick proposed in [17]. Consider a
node with reference time Assume that, along a dimension, the SBR of the node has éxterit, and its VBR has exterjt, v'].
Then, the parent entry of the node only needs to keep 4 vajyes; v, v', wherey = x — v -t andy’ = 2’ — v - t. These 4 values
are sufficient to obtain the projection of the node’s SBR on the correpgimension, at any future timestamyp Specifically,

the projection igz, 2], wherez = y + v - t. andz’ =y + v - te.



At time 2T, Index; is definitely empty, because all objects inserted dufind’) must have been deleted.
Hence,Index; is destroyed, and re-initiated with reference ti#gié During [27, 3T"), the roles oflndex;
and Indexs are reversed. Namely, insertions are carried oulridex; only, but objects may be deleted
from either tree, depending on their insertion time. Similarly, at e Indexs is empty, and re-initiated
with reference tim&T, after which the roles of the two structures are reversed again. Tive pbocess is

repeated every’ timestamps.
3 Problem Formulation

Unless specifically stated, our analysis focuses on 2D objects, since adkthits can be extended to arbitrary
dimensionalities in a straightforward manner. Without loss of generality, sumnaes that the spatial domain
has a unit rang@, 1] on the x- and y-dimensions, respectively. Along each dimension, theityetdan
object distributes if—V, V]. In other words, a dual space has 4 axes: $patial dimensionsvith range

[0, 1], and twovelocity dimensionwith range[—V, V].

At timestamp O, every object generates an insertion to register its initial locattbuedocities. Whenever
its velocity changes, it issues an update, including a deletion followed bysention. In particular, the
deletion removes the database tuple corresponding to the object’s old velowitiée the insertion adds a

tuple capturing its new velocity. Thus, the dataset cardin&@lityemains fixed at all times.

We adopt adeletions-firssstrategy. Specifically, at each timestamp (other than the initial timestamp 0), the
database first collects objects’ update requests at this timestamp. Ther,ddl¢tions are processed first,

before insertions are handled.

An object doeshot necessarily issue an update at every timestamp. We consider that ejesy/has an
equal probability of issuing updates. Hence, the number of updateshatisgestamp accounts for a fixed
percentage of the cardinality. We refer to the percentage amjliy of the dataset, and denote it As For
example, a dataset with agility O contains objects that move with their initial velooitiesdr, while, in a

dataset with agility 1, all the objects change velocities at every timestamp.

Construction of a primal/dual index requires an optimization goal. Followingriégus work [17, 18], we
aim at minimizing the average cost of “point queries”, whose query time diséstuniformly injt., t. + H|,
wheret, is the current time, anfl a parameter calleldorizon In particular,H is greater than 0, and controls

how far into the future the index is optimized for.pdint queryis a special range query whose search region



is a point, i.e., a degenerated rectangle. Formally, if we de@¢tgas the expected cost of a query whose

query time equals, the cost metric of the index equals
1 te+H

CM(tC) - E \

Q(t)dt. (1)

The quality of an index ibetterat the current time., if its C M (t.) is lower. Note that the quality is a

function of¢..

We define the quality using point queries because they lead to the simplestider In the same way, it
is straightforward to formulate the quality using query regions with non-eetents. All our analysis still
applies, except that the resulting equations are more complex. As will beirci8action 4.2, focusing on

point queries allows us to explain the performance of other types of spapotal queries as well.

We measure query cost as the numbeleaf nodesaccessed, which, in general, is significantly larger than
the number of node accesses at the intermediate levels. This is especiafatnemory buffer is used; in
that case, all the non-leaf levels may be retained in the buffer, so thesssecto those levels incur no 1/0O
operations. Furthermore, all the existing spatiotemporal indexes havartieerepresentation for leaf entries
(each entry must store all the details of an object), even though they sitffieificantly at the intermediate

levels.

Our derivation focuses on theniform data distribution at every timestamp, each coordinate and velocity
of an object uniformly distribute iff), 1] and[—V, V], respectively. The reasons for discussing uniform data
are three-fold. First, this is a popular distribution experimented by the widrk16, 18] proposing recent
spatiotemporal indexes. Second, we must make certain simplifying assumiatiabhsw rigorous proba-
bilistic analysis, as in the existing studies on R-tree performance [20]. fif@m assumption minimizes
the complication caused by data properties, making it easier to discover heimtharacteristics of each
indexing technique. The third reason is that, a real data distribution canlEtapproximated as piece-wise
uniform, as confirmed by the success of bucket-based histograms, [B9RD selectivity/query-cost esti-
mation. When this is true, we can divide the dataset into several partstheiche distribution within each
part is close to uniformity. Then, we apply the observations from unifanaiyais “locally” to each part,
for explaining the behavior of the index on the objects there. This appitas been applied in R-tree cost

analysis [20].

Table 1 summarizes the set of symbols that will be used frequently in thecgidrgenalysis. Some symbols

have not appeared so far, and will be introduced later.
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Symbol Description

t. the current time

H the horizon of a primal index

T the length of an update period of a dual index
CM(t) the quality of an index at time

%4 the maximum absolute velocity value

n the number of leaf nodes

N the dataset cardinality

A the dataset agility

f the average node fanout

s the spatial extent of a leaf MBR

w the velocity extent of a leaf MBR

Table 1: Frequently used symbols

4 Basic Results

In this section, we study the quality (Equation 1) of primal and dual indegbesafter they are constructed
The results are fundamental to studying the behavior of alternative steaas time evolves, which is the

topic of Section 5.

The following analysis applies to both primal and dual indexes, which havsdine query performance at
the construction time 0, due to their equivalence discussed in Section 2ituRaly, a node in a primal/dual
index can be regarded as an expanding 2D SBR in the primal space,rontitely, a stationary 4D MBR
in the dual space at time 0. Throughout this paper, we omit ‘2D’ and ‘didge all SBRs and MBRs will
be two- and four-dimensional respectively, unless otherwise statedh&same reason, in this section, we

ignore “at time 0” when referring to the dual space.
4.1 Lower Bound of Index Quality

Let us focus on a specific leaf node. Denetas the projection length of its MBR on the two spatial
dimensions (for uniform data, the projections on both dimensions are edpradly, Similarly, we usev to

represent the projection length of the MBR on the velocity dimensions.

Given a point query; at timet > 0, the node is visited, if and only if its expanded SBR at tiw®versg.
In particular, the SBR is a 2D square with extent lengthw - . Wheng randomly distributes in the spatial

domain (with area 1), the probability that the node is accessed eguals - t)2. Note that this probability
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holds, regardless of th@ositionof the node’s MBR in the dual spaté.e., the probability depends on only
thesizeof the MBR).

Let n be the number of leaf nodes. In practiceequalsN/f, whereN is the dataset cardinality, antl
the average number of entries per nodag a system parameter determined by the page size). Since data
characteristics are identical throughout the dual space, the MBRstbedkaf nodes have the same sizes,

i.e., s andw on the spatial and velocity dimensions, respectively. Therefore:
Q(t) = n(s +w-t)? 2)
which gives the expected cost of a point query at time

To obtain the index quality at time O, we plug the above formula into Equation Iagiegt. with 0) which

results in (after solving the remaining integral with respeeto

CM(0) = n(52+s~w-H+w2H2/3) (3)

The dual of each object must be enclosed in at least one leaf MBR |&@eedataset, the data density is high
in the dual space, in which case we can consider that the union of all MBRss the entire space. Under
such circumstances and based on the fact@hat(0) is monotonic withs andw, C'M(0) is minimized
when all MBRs form a reguldiling of the dual space, i.e., no overlap among the MBRs. Specifically, the
tiling is a 4D matrix of 4D rectangles, such that there Bfe rectangles on each spatial dimension of the
matrix, and2V/w on a velocity dimension (recall that a velocity ranges in an intervdl, V| with length

2V). Since the total number of rectangles equale/e have

(1/)*- (2V/w)* =n (4)

The above equation is valid only whenk 1 andw <« 2V, i.e., the leaf MBRs are adequately partitioned
along all dimensions of the dual space. This is true when the datasetadaydsilarge, andd is meaningful,
i.e., H is neither very small nor very large. In particular, an excessively smiala(ge)H leads to an index
optimized for queries at the current time (or a long future period), rémglegaf partitioning to be performed

only on the spatial (or velocity) dimensions.
Subject to the constraint of Equation 4, Equation 3 is minimized when

s =w?H?/3 )

SHere, we tackle the “boundary effect”, using the “wrapping model” swnly assumed in the spatial literature [15, 20].
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From Equations 4 and 5, we obtain thandw that produce the best index quality:

s = (\/2V-H) /(3n)0% (6)
w = (12/n)"* /V/H (7)

Substitutings andw of Equation 3 with their values in Equations 6 and 7 respectively, we obtailowre
bound forC'M (0):
2(2/V3+1)-V-H-n (8)

The above formula quantifies the quality of a primal/dual index (at time 0) ilbés¢ casgachievable by

a “sufficiently good” implementation. In particular, the implementation should betalcreate leaf nodes
with flexible MBR sizes. As shown in Equations 6 and 7, the bestdw rely on numerous factors, which
discourages using a structure like the quad-tree as the basis of a spatigtbatggess method. Specifically,
a quad-tree creates leaf nodes by recursively breaking a quati@Atequal-sized sub-quadrants (using the
dual space as the original quadrant). As a result, the MBRs of leabriwale rigid side lengths, which are

limited to 1/2 of the lengths of the corresponding dimensions, for some integer

We point out that Equations 6 and 7 also confirm a relevant result in {dMgh shows that the best ratio

s/w (for minimizing query cost) equald /+/3.
4.2 “y/n Nature” of Spatiotemporal Queries

Formula 8 shows that the average cost of point search is at least atdreod/n (the formula has not
included the overhead of accessing the non-leaf levels). For compatisce we mention a well-known
result on spatial databases [20]: given a set of stationary points tifatraly distribute in 2D space, an

R-tree permits processing any point search by accessing only 1 leaimegpectation!

The comparison reveals a pessimistic facany types of queries that used to be cheap in the spatial scenario
become expensive on moving objedsypical example ismearest neighbo(NN) search[9], which finds
the data point closest to a query point The definition naturally extends to spatiotemporal databases [3],

where a NN query specifies an additional timestamp.

For both stationary and moving data in 2D space, the cost of a NN querisatnalogous to that of per-
forming point search at (obviously, for moving data, the NN and point queries should share the gaery

timestamp). This is a property of the “best-first” algorithm [9], which is the sténe-art for NN search

12



in low-dimensional spaces. In spatial databases, a NN query is verieetfiand usually terminates by ac-
cessing a single path of an R-tree. In spatiotemporal environments, @iQws\cost is significantly higher:

Q(y/n) leaf nodes are expected to be visited.

In fact, Formula 8 implies a more general resalt:spatiotemporal queries, which are provably more expen-
sive than point search, have cost compleflty/n) in expectation Unfortunately, such queries include (i)
the spatiotemporal counterparts of all well-studied spatial operationstegrse NN search [3], aggregate
retrieval, etc., and (ii) operations specific to moving objects such as consmetrieval [3], location-based
queries [10], and so on. Furthermore, although our analysis soffiaidars only timestamp 0, the situation

is actually worse at subsequent timestamps, as will be clarified in the néxtrsec

Kollios et al. [12] also establish a cost lower bouti¢h/n) for the type of queries targeted by our analysis.
Care is needed to interpret the two bounds. The one by Kollios et al. applies most-adversely designed
one-dimensionatlatasets and queries. In other words, their bound implies that one dzop®to design

a data structure that consumes linear space, and answers any (Xppgueny (1D) dataset in less than
O(y/n) 110s. Kollios et al. [12] in fact develop another cost lower bounh?/*) for the 2D case. Our
lower boundO(4/n), on the other hand, concerns the average performancepg@altype of queries on a
specialtype of 2D datasets, i.auniformqueries oruniformdata. These bounds do not contradict each other.
Specifically, in the 2D space, evendf(,/n) expected cost might be achievable by some index structure
(occupyingO(n) space) for uniform queries issued on uniform data, that structuessagly entails at least

O(n®/*) 1/0s on the worst dataset and query.
5 Advanced Results

The previous section focused an(the current time) = 0 (index construction time). We proceed to discuss
how the index quality” M (t.) (Equation 1) changes with. We will first study primal indexes in Section 5.1,
before analyzing dual solutions in Section 5.2. Finally, Section 5.3 compagaharacteristics of the two

techniques, and identifies the better technique in different scenarios.
5.1 Primal

If the dataset agility is exceedingly low (i.e., very few object updates), tiadityg of a primal index keeps
deteriorating with time. As an extreme case, if the agility equals O (all objects mdveiainitial velocities

permanently), SBR tightening (as explained in Section 2.2) is never perdpreraering leaf SBRs to grow

13



increasingly larger as time evolves, which in turn leads to higher queryeadr

On the other hand, if the agility is sufficiently high, the index will remain equalficient. This is most
obvious when the agility is 1, i.e., all the objects are updated at each timestathjs dase, the entire index

is destroyed at each timestamp, and then re-built, thus trivially retaining the maguality (Formula 8).

The above facts suggest a “magic threshold”, such that when the agaithee the threshold, a primal
index offers the optimal query performance at all times! Next, we confirspilenomenon with theoretical

justification, and quantify the threshold.
5.1.1 Why Would Quality Deteriorate?

This subsection considers the following problem. Assume that, at time 0, weabpiichal index with the
optimal query performance, i.e., the extent lengths of the 4D leaf MBRs\s&iigfations 6 and 7. At time
1, A- N objects issue updates, whe¥eis the dataset cardinality, andithe agility. What are the conditions

to be satisfied, if the resulting index at time 1 offers the same (optimal) quecieatty?

The index quality at time 1 can also be represented by Equation 3 (replddin@) with CM (1)), except
thats andw should be interpreted as the extent lengths of the 4D leaf MBRs in the daze spptime 1 (as
opposed to time 0). Hence, if there is no deterioration (of query perfar@)at time 15 andw should also

satisfy Equations 6 and 7, respectively.

In processing the object updates at time 1, the extents of a leaf nodgaredseries of changes. For uniform
data distribution, the behavior of all leaves is analogous. From a proligtplesnt of view, since the number
n of leaf nodes is large, it is safe to ignore the minor discrepancies amonggtifinodes. Hence, to facilitate
our analysis, we consider that all leaves behave in the same mannerofdlarg, A - N/n = A - f objects

are deleted and inserted in each leaf node, wliesghe average node fanout.

Let us denotd3(0) andB(1) as the 2D SBR of any leaf node at timestamps 0 and 1, respectively. Similarly,
we useM (0) andM (1) to represent the 4D MBRs of the node in the dual spaces at time 0 angégctigsly.
In other wordsB(0) (or B(1)) is the projection of\/(0) (or M (1)) onto the spatial dimensions.

It suffices to discuss only the case wheref > 1, that is,each leaf node receives at least an update at time
1. Otherwise (a node is not updated), no SBR tightening is performed fandhis, whose SBR at time 1 is

thus expanded from its SBR at time O (c.f. the grey boxes in Figures lalgndHénce, thes (the SBR’s
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side length) at time 1 must be larger than its (optimal) value at time 0, resulting in gdedjtgdation.

Under our deletions-first update strategy (deletions are procesk®d lmsertions; see Section 3), the extents
of a node go through #&rst-shrink-then-growprocess at time 1. Specifically, the extents keep shrinking
during deletions, and then, are continuously enlarged in handling inserii@xt, we clarify the two phases

in turn.

The Shrinking Phase. At time 1, before any deletion is performed, the node extents are the lakyest.
denoteB),q;(1) and M,,,,(1) as the SBR and MBR of the node at this moment. Comparet! (0),

M,42(1) is longer only on the spatial dimensions, i.8/,(0) and M,,..(1) have identical extents on the
velocity dimensions. In particular, the spatial projectiBp. (1) of M,,..(1) is the expanded version (at

time 1) of the spatial projectio(0) of M (0), based on the velocities &f(0).

As objects are deleted from the leaf node, the SBR of the node shrioks Bi,...(1)), driven by two factors.
First, after the first deletion, the SBR is immediately tightened. FurthermoreBiReasll remain tightened
after the subsequent deletions (and also insertions in the growing pt&ss)nd, as objects deciding the

boundaries of the SBR are removed, the SBR becomes even smaller.

The velocity projection of the MBR, on the other hand, may also shrink asarferm deletions. However,
the shrinking is only because objects at the boundary of the projectigopdiag similar to the second factor
mentioned earlier for SBRs (recall that tightening affects only spatial diimesis It follows that the SBR
and MBR of the node are the smallest, at the moment when all deletions aredin\&le use3,,;, (1) and

M,in (1) to represent their extents at this moment, respectively.

Before the enlargement phase starts, the current leaf MBRs (aftéiods)eno longer cover the whole dual
space. They have created gaps along the velocity dimensions, but NOT nelyeseaalong the spatial
dimensionsSince we cannot visualize a 4D dual space, let us illustrate this on 1D mobjegt® (the idea

extents to any dimensionality naturally), for which the dual space has atialsgnd one velocity dimension.

Figure 3a shows the leaf MBRs after the index is constructed at time 0 (thesN&BR a regular tiling of the
dual space). Figure 3b demonstrates the situation at time 1 before delstiabject, i.e., the moment when
the MBR extents are the largest (corresponding#g...(1) in our earlier analysis). Note that the centroid
of each MBR has moved on the spatial dimension from its position at time 0, astediby the lengths of

the horizontal segments above the MBRs in Figures 3a and 3b, respedtioee that, these MBRs overlap
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Figure 3: Transitions of MBRs in the dual space

on the spatial dimension, but remain disjoint on the velocity dimension.

After all deletions, the extents of an MBR are reduced along all dimensidoaever, depending on the
amount of shrinking on the spatial dimension, the resulting MBRs may end upwatkituations, as shown
in Figures 3c and 3d respectively (corresponding#g;,,(1)). There are gaps between two consecutive rows
of MBRs on the velocity dimension in both cases, which, however, diffetiatiher MBRs may overlap on
the spatial dimension (i.e., MBRs shrink less in Figure 3c). As analyzed itio§eg.1.2, the amount of

spatial-extent shrinking depends on several factors including, veryriantly, the dataset agility.

The Growing Phase. Inserting an object means first computing its dual at the current time 1, and th
including the dual into the leaf MBR whose enlargement (for covering tiecghbncurs the smallest penalty
(various penalties are adopted in different primal indexes; e.g., thetf@@R47] applies the “integrated
volume”, while the TPR*-tree [18] uses the areas of “sweeping reg)oAs data is inserted, the MBRs will

become larger, in order to fill the gaps among them. After all insertions, tio& wh all MBRs will again
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cover the entire dual space (for a large dataset, object duals appeankere in the space).

Figure 3e shows the final MBRs for the situation of Figure 3c. Since thBaseatents of the MBRs
are already overlapping in Figure 3c, during insertions, the MBRs willrdarged only on the velocity
dimension (i.e., no gap to fill along the spatial dimension). In this case, thelgpajiection lengths of an

MBR exceeds the corresponding value at time 0, i.e., the index has ddgrade

In Figure 3d, on the other hand, each MBR is smaller than the corresgpiBR at time 0 (Figure 3a) on
all dimensions. Hence, when insertions are performed, an MBR cargpedlagain to the optimal extents,

as demonstrated in Figure 3f. In this case, the index retains the same tjisteney as at time 0.

From the above analysis, it is clear that two conditions should be fulfilled,pifiraal index incurs no

deterioration at time 1:

1. The agilityA must be at least/ f, so that each leaf node can receive at least an update.

2. The side length oB,,,;,(1) (i.e., the SBR of a node after all deletions) must be smaller than the value
of s in Equation 6, so that the MBR of the node can “bounce” back to its size at tiffiki® condition
actually also indicates that the agiliymust be adequately high, since the higHds, the shorter the

extents ofB,,in(1).

Finally, we point out that the above analysis also applies to subsequentampss Specifically, given a
primal index with no degradation at time 1, the same conditions should be sat@sfithe index to retain

efficiency at the next timestamp, too.
5.1.2 Computing the Deterioration Threshold

To obtain the deterioration threshold (i.e., the lowest agility validating Conditi@rsl12 in Section 5.1.1),
we need to find the smallest agility fulfilling the second condition (Condition 1 iekica constant agility
1/f). The analysis is the same for all leaf nodes, regardless of where tiB#sMre in the dual space at
time 0. Hence, to simplify notation, we consider a node whose MBR is corrarén origin of the dual
space. Furthermore, it suffices to discuss 1D objects, because therdgiten threshold is identical for data

of any dimensionality.

Specifically, the problem is as follows. We haf& D moving points at time 0. Their locations and velocities

are uniformly distributed in rangé8, s| and|0, w], respectively. Attime 14- f points are randomly deleted.
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For the remainingl — A) f points, we usé to represent the length of the minimum 1D SBR enclosing their

locations at time 1. What is the lowedtsuch that the expectdds at mosts (represented in Equation 6)?

Rationale. Let z; be the location of thé-th (1 < i < (1— A) f) remaining point at time 0, ang, its velocity
(i.e.,z; andu; are uniform in[0, s| and|[0, w], respectively). Hence, i; is the location of the point at time

1, we have\; = z; + u;. The value of thus equals

_ (1-A)f
- %ﬁ%f A~ min )
Clearly,! distributes in rang@), s +w]|. The rest of this subsection will be devoted to deriving the probability

P{l < ¢} thatl is at most a particular valuec [0, s + w]. This probability will be a function ofA ande.

OnceP{l < ¢} is available, by taking its derivative againstwe obtain the probability density function
pdf (I = €), which is also a function oft ande. Then, setting the expectédo s, we obtain an equation of
A:
Ss+w
/ €-pdf(e) de = s (20)
0

The solution ofA is thus the lowest agility satisfying Condition 2 of the previous section. Theisolu
cannot be represented as a closed formula, but can be obtained raliyjelicSection 7.3, we will list the

solutions under various settings (e.qg., differéhtn, f, etc.).

Detailed Derivation. We first analyze the distribution ofi, Aa, ..., A\(1_4)s. Since thes¢l — A) f random
variables are symmetric, it is sufficient to focus on one of them. In the §egaalrop the subscript of

(and accordingly, also the subscriptsiofdndu), when there is no ambiguity.
Lemma 1. The distribution of\ is described by

A(w-s) if Xe0,w)

gy ={ * A€ w,s) -
D stw=A if X e [s, 5+ w)

w-Ss

\ 0 otherwise

wheres andw are given in Equations 6 and 7, respectively.

Proof. Obviously,A belongs tdo0, s + w]. To obtain its pdf, we first compute the probabilf{ A < ¢} that

A does not exceed a particular vale [0, s + w]. Recall that\ = = + u; hence A < e meansr < € — u.
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Figure 4: Visualization opdf ()
As a result,
1 w
P{A<e} = / P{x <e—uldu (12)
w Jo

If € falls in [0, w], Equation 12 becomes

PA< ) = /06(6 Cwdu=© (13)

w- S C 2w-s
Taking the derivative of the above equation againste obtainpdf (A = €¢) = ¢/(w - s), thus proving the

first case in the lemma\(€ [0, w]). The other cases can be established similarly. Ol

Figure 4 provides the visualization pdif (\), which is a trapezoidal shape, symmetric by the vertical line of
A = (s +w)/2. The above lemma assumes< s. However,s/w always equaldi/+/3 (as is clear from

Equation 4); hencey < s holds, as long aél > V3.

We are ready to calculate{/ < ¢}, wherel is defined in Equation 9. For convenience, let us introduce

(1-A)f —A
o= IIl_l{l Ai,and G = (1m_a))<f i,

2

i.e.,l =0 — a.Clearly,0 < a < < s+ w. Hence,P{l < ¢} = P{# — a < €}, which is equivalent to

/s+wpdf(oz) - P{f — a < ¢la}da
0

Thus, it remains to solve the two components of the above integrabdfdq) and P{5 — o < €|a}. We

achieve this in two separate lemmas:

Lemma 2. Whena € [0, w), pdf(a) =

a-(1—A)f - o2 \ At
2w - s

w-Ss
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Whena € [w, ), pdf (o) =

(1-A)f (1 20— w>(1A)f1

s 2s

Whena € [s, s +w), pdf (o) =

o\ f(1-A)-1
fA—=A)Ys+w—a) (1_ s(2a—s)—(a—w) )

w-s 2w-s

In any other casepdf () = 0.

Proof. The value ofx is at mostk, if and only if one of\q, e A=A S is at most. Hence,
P{la<el=1—(1—-P{x<ep)l -4

whereP{\ < ¢} is given by Equation 12. According to Equation 13, foE [0, w], we have
Pla<et=1-(1-¢/2uw- 3>)(1—A)f

Taking the derivative of the above equation againste obtainpdf (« = ¢€), which results in the first formula

of the lemma. The other formulae can be established in the same way. Ol

Lemma 3. P{ — a < ¢|a} equals

. A f—
farnln{a+e,s+w} pdf()\)d)\ (1-A4)f-1
S pdf (A

(14)
wherepdf (A) is given in Lemma 1.

‘N

Proof. The a priori condition fa” states that one of th¢l — A) f random variables\, ..., \(;_ 1)y must
bea. Since these variables are symmetric and independent, without loss oélifgnassume\; = a. In
this case, each ofy, ..., \(;_4)y must be in rangéy, min{a + ¢, s + w}] (provided that it is at least), the
probability of which is captured by Equation 14. O
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5.2 Dual

As mentioned in Section 2.2, a dual index adopts the two-structure mechani&rfdan efficient periodic
re-building. Before elaborating the behavior of the mechanism, we needitoire a fundamental issue:
given asingledual index constructed at time 0, what is its best possible quality at timestant}® Equiva-

lently, what is the lower bound @f'M (¢) as in Equation 1? The following lemma provides the answer.

Lemma 4. For a dual index with reference time 0, at any time> 0, CM (t) is at leastg(t) - v/n, where

g(t) =

2V ((2/V3)\/3t2 + 3t - H + H? + 2t + H) (15)

Proof. Let s (or w) be the spatial- (or velocity-) extent length of a leaf MBR. Plugging EquaionEqua-
tion 1 and solving the remaining integral ofwe haveC' M (t) =

n(s* +s-w(2t + H) +w?/3 - (H? + 3t - H + 3t?)) (16)

Following the analysis in Section 4.1 for obtaining Equations 6 and 7, we ob&inahdw that minimize

CM(t):

s = V2V(3t? +3t- H+ H*)"?/(3n)%?

w = (12V?/n)"?°/(3t> + 3t - H + H*)*

Substitutings andw in Formula 16 with the above equations, we arrive at the representatiod /&) in

the lemma. O

Lemma 4 essentially generalizes the results in Section 4, because,=fof, ¢(t)/n degenerates into
Formula 8. Furthermore, the lemma also confirms the necessity of the two-straedghanism: if only a

single structure (built at time 0) is deployed, the query cost will increaseg(rly) linearly with timet.

Now, we turn our attention to a dual index with two structufedez; andIndexs, each of which becomes
empty and is re-created evely¥' timestamps (as described in Section 2.2). Hence, the behavior of the index
demonstrates a periodic pattern, with 27°) being the first period27’, 37| the second, and so on. Note that
the first period starts &t (instead of0) because, durin{, T'), Indexs is inactive. Furthermore, the length

of a period isT" (as opposed t@T"), because the roles of the two indexes are switched évdirmestamps.
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Without loss of generality, let us focus on a single pefib27"). We aim at representing the best possible
index quality as a function of the current time € [T,27). In particular, since a query must search both

Index; andIndexs, the index quality equals
CM;(t.) + CMa(t.) @7
where, forl < i <2, CM;(t.) is given in Equation 1, capturing the overhead of searching:z;.

During [T, 2T"), Index, and Indexs have reference times O afid respectively. We denote, (t.) as the
number of leaf nodes iindex; at timet., and similarly,nz(t.) with respect talndez,. At all times, the
sum ofny(t.) andna(t.) is a constankh = N/f, whereN is the dataset cardinality, antithe average
fanout. Furthermore, sincdex; contains the entire dataset (or is empty) at tithéor 27), it holds that

ni1(T) =nandn;(27) = 0.

In general, there ard - N updates at every timestamp, where the agilitis at leastl /T (an object must
have issued at least one update witfiitimestamps). Since each object removed frbidez, is added to
Indexs, Indexy losesA- N objects (ord-n leaf node$) at each timestamp in the time interV&l 7 +1/A),
and remains empty durin@ + 1/A, 2T"). Therefore, for any, € [T, 2T, we have

ni(t.) = n(l— A -min{t. —T,1/A}) (18)

na(te) = n—mni(te) (19)

Computation of Formula 17 can be reduced to Lemma 4, but with care: the lemuomaessan index with
reference time 0, whereas the reference timérafex, is T'. In fact, Lemma 4 is always correct, as long
as we interpret as the difference between the current time and the reference time of the inéace,

Formula 17 becomes
g(te) - Vmi(te) +g(te = T) - /ma(te) (20)

where functiory is defined in Equation 15 (t.) andns(t.) in Equations 18 and 19, respectively.
5.3 Which Technique is Faster in Theory?

There is no absolute answer, because each (primal or dual) techmis|its binique characteristics, and has

better query performance in some scenarios. The dataset agilityhs out to be the most important factor

4At each timestamp, the objects deleted are amortized among all the leaf Aidwse nodes may entail underflows, and hence,

be merged into a smaller number of nodes after all deletions.
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that determines the relative superiority of alternative solutions.

As shown in Section 5.1, a primal index offers the optimal query efficiehall imes, as long ad exceeds
a threshold (depending on the solutionAfrom Equation 10). However, when this condition is violated,
the index risks continuously deteriorating with time, such that eventually obliestering at the leaf level
may become completely arbitrary, i.e., each leaf node confainadom objects (this phenomenon was also

observed in [18]).

Regardless of the value df, choosing a dual index is a “safe bet”, because its quality changesljpaiiy,
andnever exceeds an upper bouritis bound equals the maximum value of Formula 2G.agries from

T to 2T (i.e., within a period). Note that thie that produces the upper bound is not necessarily the center
of a period, but varies depending éh, A, f, etc (we will demonstrate this in Section 5.2). Henced ifs
excessively small, a dual index may significantly outperform a primal indepui@ry processing, after the

latter has degraded seriously as time passes.

However,a dual index never achieves the optimal efficiency at any time0 (in other wordswhen A is
sufficiently high, at time, a dual index always has worse query performance than a primalkasaoethoq
Specifically, Formula 20 is constantly larger than Formula 8, fot.a#f [T',27"). This can be understood
as follows. Remember that the optimal quality is reached, if and only if (i) all Hjects are managed by
a single structure, and (ii) the reference time of the structure equals trenttimet.. During [T, 27),
condition (i) holds at timel” or in the time intervalT + 1/A,27T'), whenIndex, or Indexs is the sole
structure indexing the entire dataset, respectively. However, conditjos always violated when (i) is
fulfilled: attimeT’, Index; has reference time 0, whereas, durfiigr 1 /A, 2T"), Index, has reference time

T.
6 Discussion about the Update Performance

Some empirical evidence [11, 16] suggests that, as far as the existing sslateconcerned, dual indexes
incur lower update cost than primal structures. This observation hagite extent, misled the spatiotem-
poral community into the misconception that the primal technique is a worseagbpio practice, despite
its superiority in query performance. This misconception comes from therengt that, in a spatiotempo-

ral application, there are much more updates than gesissh that the overall workload of a database is

5This is true. For example, in a highway monitoring system, a vehicle gersesm update whenever its moving speed or

direction has changed significantly. The update frequency of an eatiaset may be at the order of once per second, and is much
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dominated by the overhead of updates, which advocates the employmeratl aicdess methods.

In this section, we aim to eliminate the above misconception, and therebyatdigs the practical impor-

tance of the primal methodology. Our discussion proceeds in three steps.

Commercial Importance of Optimizing Query Performance. Update overhead and query overhead are
two types of cost with different influences on the commercial success application. Specifically, update
performance limits the scalability of the database, in terms of the maximum numbkejeciothat can be
supported, subject to the system’s computing capacities. Query perfoemfaowever, affects the service

guality that can be offered to a customer, namely, how fast her/his loskeuest can be processed.

Query cost actually has a more immediate impact on the public image of a systeenit siac be directly

noticed by customers when they are waiting for their results. Update costearther hand, is “internal”,

because it is hidden from the public, i.e., an object does not need to kmeviakt its updates were handled.
Therefore, minimization of query cost is crucial, even though it is not thiéemeck of the system’s overall
performance. In particular, even if an index structure is query-efiidiat relatively update-expensive, it
still has practical merits, as it helps to improve the “tangible” service qualityetystem. Note that, the
above discussion is valid under the circumstances that the system is ablelte &hupdates (i.e., no load

shedding is necessary). This is highly possible, given the gigantic corgmdimer of modern machines.

The Update Cost of a Perfect Primal Index.It is not correct to claim that the primal technique has worse
update performance than the dual methodology, simply becausadwenprimal structures are slower in
updates than their dual counterparts. In other words, it could be just tharfect” primal index had not been
discovered yet, and such a solution would have excellent update efficienfact, the only rigorous way
to conclude that the primal technique is inherently update-expensivddweuo establish a lower bound
for its query cost, when the update overhead must be controlled unéetaendimit [8]. For example, the
conclusion would be convincing, if one could show that, when the updatencast be logarithmic to the
dataset cardinality, the query overhead would have to exceed a lduge laterestingly, as explained next,
our findings in the previous sections point to the opposite: a good primat isttguld have nice update

efficiency, if it undergoes no structural deterioration.

An update involves an insertion and a deletion. Let us focus on deletienaube they are more expensive

(an insertion can be completed by accessing, on average, a single gath@dt to a leaf, as is a property of

higher than the query frequency.
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the TPR-tree [17]). A deletion, specifically, is divided into two steps. Tis¢ dine locates the leaf node that
contains the object being deleted, whereas the second step removejgthérom the node, and propagates
the changes to the upper levels of the tree. We concentrate on the firsiveiep dominates the overall
deletion overhead. (In particular, the second step often entails no IfOsowse it usually affects only the
path from the root to the leaf node accommaodating the object, and the patedraadressed in the first step,
and thus, still resides in the buffer. The second step incurs higheioodgtyvhen a node underflow happens.
Underflows, however, are provably infrequent, under the realisticion that a deletion may occur in
any leaf node with an equal probability. Specifically, as mentioned in Sectioh, &tleach timestamp in

expectationA - f objects are inserted and removed from a node, respectively.)

Let o be the object being removed. Locating the leaf node contaimimgjuires, in the worst case, visiting

all the leaf nodes whose MBRs, in the dual space at the insertiort tifne(z is smaller than the current time
t.), cover the dual representation @fit timet. This process could be expensive because, due to structural
deterioration, the MBRs of many nodes may overlap, anthy happen to fall in their overlapping region.
However, if the tree undergoes no deterioration, all the leaf nodesdisjeint MBRs in the dual space at
timet. — 1, and hence, their MBRs must also be disjoint in the dual space at finatice that the MBR of

a node at an older timestamp must be contained by its MBR at a later timestamp)e#dtaoris covered

by the MBR of exactly one leaf node in the dual space at time

The above analysis indicates that, if no deterioration occurs in a primal,indéxone leaf node needs to
be accessed to discover the object in the tree. The analysis can beegkterttle intermediate levels in a
straightforward manner. It follows that, without structural deterioratesingle path from the root to the
leaf level needs to be visited in a deletion. In this case, the deletion cost isnse whan that of any dual
index in the literature. It is worth mentioning that, the discussion earlier assilnaiesonventional update
algorithms, such as those developed in [17, 18], are applied. In facgm&ing that indexes adapted from
R-trees may incur large deletion overhead after structural degradét@spatial community has developed
several novel approaches (e.g., the bottom-up method [14] and the metinodni2l]) for alleviating this
problem. Those approaches allow retrieval of the node containing act dbjee deleted i (1) I/Os, and

thus, further improve the update efficiency of a primal index.

The Periodic-Update Requirement of the Dual TechniqueA dual method can be applied, only if all the

objects obey a requirement: they must issue at least one updateletiengstamps (we mentioned this at
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the end of Section 2.2), whei® is the length of an update period. In practice, however, this requirement
may not be fulfilled. For example, the next timestamp for an aircraft to issup@aie, depends on its flight
trajectory (e.g., no update is required, as long as the aircraft moveslyinesard may be larger than its
previous update time by more thdhtimestamps. The primal technique does not suffer from this defect.
Specifically, an object sends an update, only when it is absolutely rmegdssdo so — a velocity change

has happened.

To remedy the defect, the dual technique takes a “mandatory appraé&chforcing an object to generate
an update anyway at the end of a period, if it has not already donerker @a this period. Although
this approach guarantees the correctness of query results, it inbodnother two drawbacks. First, it
necessitates redundant updates, and hence, consumes a larget eimmiwork bandwidth. Second, it
may render a dual index actually more update-expensive than a primetuséru This happens when the
dataset agilityd exceeds the deterioration threshold of the primal technique, and yet, istloavel /7". As
mentioned earlier, when no structural deterioration happens, the casjad primal index in handling a
single update should be comparable to that of a dual structure. Howleeatual structure must process a
larger number of updates, since many objects, which do not generateargylupdates, are forced to issue

redundant updates. As a result, overall the dual technique entails Inigiretenance overhead.
7 Numerical and Empirical Results

This section aims at achieving four purposes:
e Since some equations in our analysis cannot be transformed into closes] fee solve them numer-
ically, and reveal additional characteristics of the primal/dual techniques.

e \We show that the “theoretical characteristics” can indeed be obsenwextlie existing access meth-

ods.

e We evaluate the potential improvement for these indexes, by comparing ¢iseiiocthe optimal per-

formance.

e We apply our analytical findings to explain the experiment results in the prework [11, 16, 18, 22],

which seem to contradict each other.

26



number of leaf accesses number of leaf accesses

3000 TPR* 3000 TPR*
2500[* optimal —+— 1 2500 optimal ——
2000
1500 ¢
1000 ¢
5000 &~ !
) D S 0 | | |
1% 10% 20% 30% 40% 50% 1% 20% 40% 60% 80%
agility A agility A
(@) ps =1024 (b)ps = 4096

Figure 5: TPR* quality at timestamp 10@/(= 30)
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Figure 6: Typical TPR* deterioration{ = 30)

7.1 Settings

Our experiments examine the state-of-the-art primal and dual indexe3PRetree [18] andB¥-tree
[22], respectively. Since thB?“*-tree has not been compared with the (dual) solution of [13] previously, w
also implement (an enhanced version of) that solution, referredR8'@in the sequel. The implementation
is essentially an R-tree [2], whose update algorithms are adapted to minimizettieahEquation 1. Each

insertion/deletion is performed individually, i.e., no bulkloading is performed.

We generate 2D data conforming to the problem formulation in Section 3. Tde $i2eps equals 1024
or 4096 bytes; accordingly, the average node farfo(df all structures) equals 39 or 157, respectivély.
is fixed to 0.01 (i.e., the largest object velocity is 100 times smaller than the lengtbpatial dimension).
For dual methods]" equals 20 (every object issues at least an update every 20 timestanmgsyallies
of n (number of leaf nodesW (agility) and 4 (horizon) will be clarified in individual experiments. Note

that, oncen is finalized, the value ofN is also decided ag - n. Each dataset evolves forhéstory of 100
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timestamps 4 - N objects are updated at each timestamp). Thus, the largest dataset sougpi80 Giga

bytes of space.

A query workloadhas 10000 point queries, whose locations are random in the spatial damditheir
timestamps are uniformly distributedfin ¢ + H|, wheret is the time of workload execution. Thygiality of

an index is measured as the average number of leaf nodes accessadenragma workload query.
7.2 Primal Deterioration

As analyzed in Section 5.1, the query cost of a primal index may continuiusigase with time, ifA

is excessively low. However, the index retains the same efficiency at al tiafeer A reaches a certain
threshold. The first set of experiments demonstrates the phenomend?RSArEes. Towards this, we set
n, H to 30k and 30 respectively, but varyin a wide range. It is worth mentioning that, some combinations
of A and H may not necessarily be realistic in practice. For example; 50% implies that each object is
expected to issue an update every two timestamps, in which case it may nafbeta®ptimize a TPR*-
tree for H = 30 future timestamps. Nevertheless, since our objective is to evaluate thedidraoretical
findings, we examine those combinations anyway, in order to make sureuhakjperiments consider a

wide spectrum of values for each parameter.

Figures 5a and 5b plot the TPR* quality at the end of history, as a functidhn whenps (page size) equals
1024 and 4096, respectively. The curve labeled@snalrepresents the theoretical lower bound, computed
with Equation 8. Clearly, the quality at time 100 is significantly worse than the optiataé for A = 1%,

but gradually approaches the lower boundiaacreases. The lower bound is identical in Figures 5a and 5b,

because it relies on only, H, andn (which are the same in the two figures).

In Figure 6a, we inspect the quality changes (in the experiment of Figrelding timestamps 0-100,
focusing onA = 1%, 5%, and 20%, respectively. The curves at these agilities illustratee3 tf TPR*-

degradation (the curve “optimal” has the same meaning as in Figure 5).

First, for exceedingly smalll (e.g., 1%), the query overhead rapidly and continuously escalates with time,
until object clustering in the TPR*-tree is completely random. Second, i low, but not exceedingly
(e.g., 5%), the efficiency also degrades severely at the beginning elr¢onwunlike the casd = 1%, the
deterioration rate decreases with time, such that the query cost eventagBycenstant at a high value.

Third, as A grows further, the initial degradation becomes less obvious; furtherntoeeoverhead also
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stabilizes faster. After is sufficiently large (e.g., 20%), the query cost is always close to the loawnd.

Figure 6b presents similar results fdr= 1%, 10%, 60% in the experiments of Figure 5b, confirming the
same observations. Notice that, regardlesd aihdps, the performance of TPR*-trees is nearly optimal at

time O.
7.3 Primal Degradation Agility

As elaborated in Section 5.1.2, the deterioration agility threshold, denotdg,as can be computed as
follows. We first solveA from Equation 10, and then determingy,,s asmax{A,1/f}, wheref is the
average node fanout. In Table 2a, fer= 1k, we list the theoretical thresholds for all the combination& of
andn, when they equal to 5 different values|iro, 50] and[10k, 50k], respectively. Table 2b demonstrates

the results fops = 4k.

The first important observation is thdty,,.s is independent with the numberof leaf nodes (hence, also
with the dataset cardinality). Instead, it only reliesi@nor in other words, the “aspect ratio” betweeand
w, i.e., the extent lengths of a node on the spatial and velocity dimensionectigsfy (as in Equation 5,

s/w = H/\/3).

The second crucial phenomenon is that, fbre [10, 30], A, is significantly higher, when a larger page
size is used. This fact negatively impacts the applicability of the primal technigpractice. Specifically,
sinceps = 4096 is “standard” in many database systems, a primal index should ¢theombeif a significant
portion of the dataset generates updates at every timestamp. Otherwisdethgerformance risks (gradual)

deterioration, and eventually, ends up with unacceptable performance.

Finally, notice thatA,;,.; monotonically decreases d@$ increases. Remember that a latgeoptimizes
queries in the “distant” future, and leads to nodes with long spatial exterdss(eort velocity extents). As a
result, fewer objects can move out of the current SBR (of the nodeinorgadhem) at the next timestamp,

making it easier for the primal structure to retain its efficiency (see the asatySection 5.1).

Tables 2c and 2d present the actual deterioration agiitiEEPR*-trees, with respect to the same parameter
combinations in Tables 2a and 2b. These actual thresholds are consisiethie facts revealed earlier from

the theoretical ones. Note that, it is reasonable for an actual threshoéd (gvén much) higher than the

5We declare a TPR*-tree “deteriorated” if its quality at timestamp 100 exctrerquality at time 0 by 25%. Given a pair bf

andn, the threshold agility is the lowest agility at which TPR* deterioration is observe
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n(N)\H 10 20 30 40 50
10k (390k) | 11.8% | 2.6% | 2.6% | 2.6% | 2.6%
20k (780K) | 11.8%| 2.6% | 2.6% | 2.6% | 2.6%
30k (1.17m)| 11.8% | 2.6% | 2.6% | 2.6% | 2.6%
40k (1.56m)| 11.8%| 2.6% | 2.6% | 2.6% | 2.6%
50k (1.95m)| 11.8% | 2.6% | 2.6% | 2.6% | 2.6%
(a) ps = 1024 (theoretical)
n(N)\H 10 | 20 | 30 | 40 | 50
10k (1.57m)| 78% | 56% | 28% | 4% | 1%
20K (3.14m)| 78% | 56% | 28% | 4% | 1%
30k (4.71m)| 78% | 56% | 28% | 4% | 1%
40k (6.28m)| 78% | 56% | 28% | 4% | 1%
50k (7.85m)| 78% | 56% | 28% | 4% | 1%
(b) ps = 4096 (theoretical)
n(N)\H 10 | 20 | 30 | 40 | 50
10Kk (390k) | 40% | 28% | 20% | 17% | 15%
20k (780k) | 40% | 28% | 20% | 17% | 15%
30k (1.27m)| 40% | 28% | 20% | 17% | 15%
40k (1.56m)| 40% | 28% | 20% | 17% | 15%
50K (1.95m)| 40% | 28% | 20% | 17% | 15%
(c) ps = 1024 (TPR¥)
n(N)\H 10 | 20 | 30 | 40 | 50
10k (1.57m)| 80% | 68% | 60% | 54% | 50%
20k (3.14m)| 80% | 68% | 60% | 54% | 50%
30k (4.71m)| 80% | 68% | 60% | 54% | 50%
40k (6.28m)| 80% | 68% | 60% | 54% | 50%
50K (7.85m)| 80% | 68% | 60% | 54% | 50%

(d) ps = 4096 (TPR*)

Table 2: Primal degradation agilities

7.4 Dual Periodic Behavior

30

The results presented in this subsection are obtainedpaith 4096.

corresponding theoretical,,,s, since a TPR*-tree is not a “perfect” primal index.

We proceed to study the dual technique. For this purgesis,irrelevant; as shown in Section 5.2, the query

cost of dual indexes is independent with the node farfpas long as the numberof leaf nodes is the same.

To examine the influence df, n, A, we choose 3 values for each paramefér= 10, 30, or 50, = 10K,

30k, or 50k;A = 5%, 20%, or 35%. Setting to the median 30, Figure 7a (or 7b) plots the cosB6&t*- and
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Figure 7: Dual quality changes (any page size). Notesthigtthe number ofeaf nodessee Table 2 for the
corresponding dataset cardinalitids

R4l trees as time evolves, using the smallest (or largest) values for the othpatameters. In Figures 7¢
and 7d, we fix: to the median 30k, and repeat the previous experiments, treating the athwerepers in the

same manner. Finally, Figures 7c and 7d demonstrate similar results with the medi2ad%.

Each of Figures 7a-7f also includes two reference cunpéisnalanddual-optimal indicating different lower
bounds. Specificallypptimalis the value of Equation 8, representing the general smallest overhéathof
primal and dual indexes. On the other haddal-optimalcorresponds to the value of Equation 20, i.e., the

best efficiency of dual methods.
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At timestamp Opptimal-dualandoptimal share the same value because, as explained in Section 4, primal
and dual indexes have essentially equivalent forms, when they areojustructed. However, at any other
time, optimal-dualis consistently worse thaoptimal confirming the prediction in Section 5.3 that a dual

index can never possess the optimal performance except at the initial tinpesta

Optimal-dualis periodic, but its shape varies depending on the concrete paramateazhl periodpptimal-
dual has a local minimum and maximum. In particular, the minimum is always achieved atdhent
when the passive structure (recall that a dual index involves two stas;tanly one of which is active at
any particular timestamp) becomes empty, i.e.,lthé-th timestamp of each period. On the other hand, the

maximum occurs when the two structures have roughly an equal numbbject®

It is clear that the behavior of botB? - and R¥-trees follows very closelpptimal-dua) validating the
correctness of our derivation. In particular, tRé** cost approximatesptimal-dual suggesting that this

index almost achieves the lower bound of dual access methods.
7.5 Resolving the Contradiction in the Experiments of Previous Work

There seems to be some inconsistency among the experiment results in tbeagpveark [11, 16, 18, 22],
which develops the most efficient spatiotemporal indexes. Specificallyi,RRe-tree in [18] has low and
stable query cost, even after a long history. However, this is challengéd ii6], where TPR*-trees are
significantly outperformed by dual-solutions STRIPES aitdtrees, respectively. Recently, the relative su-

periority is again reversed in [22], where TPR*-trees are faster inyqu®cessing than all the dual indexes.

Equipped with the theoretical findings in this paper, we can easily explair#s®ns underlying the above
“inconsistency” (apart from the discrepancies of the implementations frelift authors). That is, all the
experiments advocating (or against) TPR* deploy disk pages of 10200®) bytes, and datasets with large
(or small) agilities. The agility exceeds (or falls far below) the degradatiastuld in Table 2; hence, the

TPR* exhibits excellent (or severely-deteriorating) performance.

In [18], the update interval of an object essentially follows a highly skkdistribution. Specifically, a
majority of the objects issue velocity changes frequently, whereas a snbaktsaf the database is not
updated for a (very) long period. In [22], the objects have low velogitigsch follow a Zipf distribution in
[0,0.005] (skewed towards 0). Furthermore, each object is required to replatétson every 25 timestamps.

The effect is equivalent to soliciting an update from an object (fretig)emhenever it moves a short distance.
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Therefore, in [18, 22], the TPR*-cost grows in a way resemblingeur+ 20% in Figure 6a.

On the other hand, the velocities of the objects in [11, 16] are around 3 times’ Ithan those used in
Sections 7.2-7.4. An object issues an update (on average) every 6@atimpss i.e., the dataset agility is
%. This is analogous to an agility %% x 3 = 5% in our settings, which is more than 10 times lower than
the degradation agility threshold of TPR*-trees (recall that, the threshohdich higher fops = 4096 than

1024). As a result, the behavior of TPR*-trees is similar toAre 1% curve in Figure 6b.
8 Concluding Remarks

Both primal and dual methodologies have their important strengths and ess#sin query processing.
A primal index promises (much) lower query overhead (compare the £optamal and dual-optimalin
Figure 7), but may deteriorate continuously with time for some datasets, anthbgrohibitively expensive
eventually. A dual access method, on the other hand, is “conservats/edst is far above the optimal value,

but always remains reasonable, regardless of the data properties.

The dataset agility is the most influential factor on the relative superiority etwlo methodologies. A
primal index, unfortunately, is not suitable for large page sizes (e.gonaef096), in which case the index
is almost certain to keep deteriorating with time (unless the dataset agility is extrhigie)y In practice, if
query efficiency is crucial (i.e., even the costofal-optimalis unacceptable, thus excluding dual methods),

a possible solution is to re-construct a primal index periodically, after itshamsdegraded to some extent.

Another pessimistic phenomenon revealed by our analysis is that, quesspioeg is much harder in spa-
tiotemporal databases than in the traditional spatial context. For example tidenderlying data is uni-
formly distributed, there may not be a}(logn) spatiotemporal queries at all. In other words, we should
not expect any of the well-studied spatial operations (e.g., nearestawgigearch) to be solved by visiting
just a few paths of a spatiotemporal index. All these operations refUigé:) node accesses in expectation

(see Section 4.2).

This work also initiates several directions for future research. Firsieasonstrated in Table 2, the degra-
dation agilities of the existing primal indices are higher than the theoreticahttidss This phenomenon
indicates that the primal technique still has much room for improvement. It wariidorthy to investigate

how to enhance the update algorithms of the TPR*-tree, in order to redusteuitsural deterioration. Sec-

“In [11, 16], an object velocity takes one of 3 values 0.0007, 0.08180.003 with equal probability.
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ond, our analytical findings suggest the possibility of combining the primé@ldaral techniques to design
a good spatiotemporal index that takes the advantages of both techrpexsfically, one may divide the
underlying dataset into different clusters, based on the objects’ ufrdatgencies. To optimize query per-
formance, a primal index may be constructed on the objects that issue sifidapeently, whereas a dual
structure may be created on the others. Finally, in this paper, we do ncércoooncurrent updates and
queries. In practice, multiple queries and/or updates may be carried autiodex at the same time. Thus,
it would not be sufficient to consider only the leaf level in performancdyais, since locking operations at
the intermediate levels may have a major influence on the query/update effieemell. In that case, the

relative superiority of the primal and dual techniques deservers fusthdies.
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