
Searching the Deep Web

Yufei Tao

KAIST

June 9, 2013

Y. Tao, June 9, 2013 Searching the Deep Web

We already know that a search engine discovers the world wide web with
a web crawler, which works by following hyperlinks. The term surface
web is often used to refer to the collection of web pages that can be
found by a web crawler.

Opposite to this is the deep web. It alludes to those web pages that

cannot be unsurfaced by simply crawling hyperlinks. Often times, such

web pages do not exist until they are dynamically generated in response

to users’ queries.

Y. Tao, June 9, 2013 Searching the Deep Web

Database
Hidden

Make Body style Price Mileage

BMW sedan $17,500 68,647 mi
BMW sedan $17,500 76,072 mi
BMW coupe $3,299 158,573 mi
BMW convertible $50,000 5,231 mi

· · ·

Query

Response

As an example, consider Yahoo Auto, a popular website for people to

trade used vehicles. A potential buyer fills in a form that solicits her/his

preferences (see the above figure). Then, the system queries its backend

database – one that is hidden from the public’s direct access – to find

vehicles satisfying the preferences, whose information is displayed in the

user’s browser. Such information, which did not exist before the query, is

part of the deep web.

Y. Tao, June 9, 2013 Searching the Deep Web

It has been widely recognized that the deep web contains a gigantic
amount of valuable information. It would therefore be useful for a search
engine to be able to manage such information as well.

Towards that purpose, a search engine must acquire the information in
the first place. Why is this difficult? For example, in the scenario of the
previous slide, can’t a user glean all the vehicles in the hidden database
by specifying:

Make = any
Body style = any
Price from 0 to ∞

Mileage from 0 to ∞?

Y. Tao, June 9, 2013 Searching the Deep Web

The answer is no. This is because a site like Yahoo typically puts a limit
on how many records to return. For example, the limit at Yahoo Auto is
about 1000. In other words, when over 1000 vehicles satisfy the user’s
query, only 1000 of them are returned, together with a note like “refine
your query to retrieve more vehicles”.

Think

Why such a limit? Is it to prevent people from obtaining the entire
hidden database?

So here comes the question: how to extract the entire hidden database
behind Yahoo Autoo with the smallest number of queries?

Think

Why do we want to minimize the number of queries?

Y. Tao, June 9, 2013 Searching the Deep Web

Formally, we will consider the following hidden database crawling
problem. The data space is Nd , where d is the dimensionality. Let D be
a hidden database where each element is a point in the d-dimensional
space.

Each query that can be issued by a user specifies an axis-parallel
rectangle q in Nd . The server returns:

the entire q ∩D, if |q ∩D| ≤ k where k is a system parameter. We
say that such a query is resolved.

arbitrary k points in q ∩D, otherwise. Also, in this case, the system
also returns a signal to indicate that not all the results have been
returned. We say that such a query overflows.

The goal is to obtain the entire D by asking queries strategically. The

cost of the algorithm is defined to be the number of queries issued.

Y. Tao, June 9, 2013 Searching the Deep Web

D must not have k + 1 points that are at the same location. Otherwise,
the problem admits no solution at all (i.e., no algorithm can guarantee
extracting the entire D) – think: why?

We have assumed that all attributes are numeric. In practice, an attribute

can be categorical, e.g., Make of a vehicle. Categorical attributes require

different handling, which is not required by this course.

Y. Tao, June 9, 2013 Searching the Deep Web

Let us define a basic operation.

Let q be a rectangle [a1, b1]× [a2, b2]...× [ad , bd]. A 3-way split at value
v of dimension i generates three rectangles:

qleft = [a1, b1]× ...× [ai , v − 1]× ...× [ad , bd]

qmid = [a1, b1]× ...× [v , v]× ...× [ad , bd].

qright = [a1, b1]× ...× [v + 1, bi]× ...× [ad , bd].

Y. Tao, June 9, 2013 Searching the Deep Web

Let us first consider d = 1. We will solve a more general problem: given
any rectangle q, our algorithm extracts the entire q ∩D from the server.

Issue a query with q to the server. Let R be the set of points returned by
the sever. If q is resolved, then we finish by returning R.

Consider now the case where q overflows. Sort all the points in R in
ascending order, breaking ties arbitrarily. Let p be the (k/2)-th point in
the sorted order. Count the number c of points in R that are equal to p
(including p itself).

Perform a 3-way split of q at p into qleft , qmid , and qright . Recursively

retrieve qleft ∩D, qmid ∩D, and qright ∩D.

Y. Tao, June 9, 2013 Searching the Deep Web

Example.

t4

35

t5

45

t6 (t7, t8)

55

t3

30

t1

10 20

t2

q2 q3 q4
q5 q7q6

We issue the first query with q1 = (−∞,∞). Suppose that the
server returns {t3, t6, t7, t8}. So the query is split into
q2 = (−∞, 54], q3 = [55, 55], and q4 = [56,∞).

We then issue q2. Suppose that the server returns {t1, t2, t4, t5}. So
the query is split into q5 = (−∞, 19], q6 = [20, 20], and
q7 = [20, 54].

Next, we issue q3, q4, q5, q6, and q7, all of which are resolved.

Y. Tao, June 9, 2013 Searching the Deep Web

Lemma

The algorithm issues O(n/k) queries.

Y. Tao, June 9, 2013 Searching the Deep Web

Next we extend the algorithm to d > 1. As before, given a query
rectangle q, we will return q ∩D.

Let [a1, b1] be the extent of q on the first dimension.

If a1 = b1, then we process q as a (d − 1)-dimensional query in the data

space [a1, a1]× Nd−1.

Y. Tao, June 9, 2013 Searching the Deep Web

If a1 6= b1, then issue a query with q to the server. Let R be the set of
points returned by the sever. If q is resolved, then we finish by returning
R.

Consider now the case where q overflows. Sort all the points of R in
ascending order by their coordinates on the first dimension, breaking ties
arbitrarily. Let p be the (k/2)-th point in the sorted order. Count the
number c of points in R that are equal to p (including p itself) on the
first dimension.

Perform a 3-way split of q at p into qleft , qmid , and qright . Recursively

retrieve qleft ∩D, qmid ∩D, and qright ∩D.

Y. Tao, June 9, 2013 Searching the Deep Web

Example.

t4

t6

t3

t1

80

t2
t5

40 60503010

t7

t8

t9

t10

q4q2 q3

A1

A2
q5 q7q6

We issue the first query with q1 = (−∞,∞)× (−∞,∞). Suppose
that the server returns {t4, t7, t8, t9}. So the query is split into q2,
q3, and q4, as shown in the above figure.

We then issue q2. Suppose that the server returns {t2, t3, t4, t5}. So
the query is split into q5, q6, and q7.

Next, we answer q3 using our 1d algorithm (observe that q3
essentially is a 1d query).

Finally, we issue q4, q5, q6, and q7, all of which are resolved.

Y. Tao, June 9, 2013 Searching the Deep Web

Lemma

The algorithm issues O(dn/k) queries.

Y. Tao, June 9, 2013 Searching the Deep Web

