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Today, we start a series of lectures devoted to linear classification,
which harbors a deep theory and is one of the most important topics
in machine learning.
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Linear Classification

Let A1, ...,Ad be d attributes, each with a domain R, i.e.,
dom(Ai ) = Rd for each i ∈ [1, d ].

Instance space: X = dom(A1)× dom(A2)× ...× dom(Ad) = Rd .

Label space: Y = {−1, 1} (where −1 and 1 are class labels).

Instance-label pair (a.k.a. object): a pair (x , y) in X × Y.

x is a d-dimensional vector. Since every dimension has a real
domain, we can regard x as a d-dimensional point.

We use x [i ] to represent the i-th coordinate of point x .
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Linear Classification

Linear classifier: A function h : X → Y where h is defined by a
d-dimensional weight vector w such that

h(x) = 1 if x ·w ≥ 0 (note: “·” represents dot product);

h(x) = −1 otherwise.

Suppose that Alice chooses a linear classifier h∗ and a distributionD
over X (note: D is defined in the instance space, not the instance-
label space).

For any linear classifier h, its error on D is defined as:

errD(h) = Pr x∼D[h(x) 6= h∗(x)].

Note that the error of h∗ on D is 0.
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Linear Classification

Alice provides a training set S which contains objects (x , y) obtained as
follows:

First, draw x independently from X .

Then, set y = h∗(x).

The goal of linear classification is to learn a classifier h from S
whose error on D is as low as possible.
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Linear Classification

S is linearly separable if there is a d-dimensional vector w such that for
each p ∈ S :

w · p > 0 if p has label 1;

w · p < 0 if p has label −1.

The plane w · x = 0 is a separation plane of S .

We will discuss only the scenario where S is linearly separable.
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Example:

origin

Linearly separable Linearly non-separable

Y Tao Linear Classification: Perceptron



8/17

In this lecture, we will study the following problem:

Problem (Finding a Separation Plane): Given a linearly separa-
ble set S , find a separation plane.

The separation plane gives a linear classifier h with errS(h) = 0, i.e.,
empirical error 0.

We will solve the problem with a surprisingly simple algorithm called
perceptron.
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Perceptron

The algorithm starts with w = (0, 0, ..., 0) and, then, runs in iterations.

In each iteration, it looks for a violation point p ∈ S :

If p has label 1, p is a violation point if w · p ≤ 0;

If p has label −1, p is a violation point if w · p ≥ 0;

If p exists, the algorithm adjusts w as follows:

If p has label 1, then w ← w + p.

If p has label −1, then w ← w − p.

The algorithm finishes when there are no more violation points.
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Example: Suppose that S has points: p1 = (1, 0), p2 = (0,−1),
p3 = (0, 1), and p4 = (−1, 0). Points p1 and p3 have label 1, and
the other have label −1.

The algorithm starts with w = (0, 0, ..., 0).

Iteration 1: p1 is a violation point because it has label 1 but
p1 ·w = 0. Hence, we update w to w + p1 = (1, 0).

Iteration 2: pw is a violation point because it has label −1
but p2 ·w = 0. Hence, we update w to
w − p2 = (1, 0)− (0,−1) = (1, 1).

Iteration 3: No more violation points. The algorithm finishes
with w = (1, 1).
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We now analyze the number of iterations performed by Perceptron.

Given a vector v = (v1, ..., vd), we define its length as

|v | =
√

v · v =

√√√√ d∑
i=1

v [i ]2.

For any vectors v 1, v 2, it holds that v 1 · v 2 ≤ |v 1||v 2|.

Define:

R = max
p∈S
{|p|}.

In other words, all the points of S fall in a ball that centers at the origin

and has radius R.
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Given a separation plane π, define its margin as the smallest distance
from the points of S to π.

Example:

margin

π∗

origin

u

label 1

label −1

Denote by γ the largest margin of all the separation planes. Let π∗ be
the origin-passing plane with margin γ; the plane has a unit normal
vector u∗ such that

for every p ∈ S with label 1, u∗ · p > 0;

for every p ∈ S with label −1, u∗ · p < 0.

We have:
γ = min

p∈S
|u∗ · p|.
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Theorem: Perceptron terminates after at most (R/γ)2 adjust-
ments of w .

Proof: Let w i (i ≥ 1) be the value of w after the i-th adjustment. As a

special case, define w 0 = (0, ..., 0). Denote by k the total number of

violations.
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We first show that w i+1 · u∗ ≥ w i · u∗ + γ for any i ≥ 0. Consider the
violation point p used to change w from w i to w i+1:

Case 1: p has label 1. Thus, p ·w i < 0 and w i+1 = w i + p. Hence,
w i+1 · u∗ = w i · u∗ + p · u∗. From the definition of γ, we know that
p · u∗ ≥ γ. This gives w i+1 · u∗ ≥ w i · u∗ + γ.

Case 2: p has label −1. The proof is similar and left to you.

Therefore:

w k · u∗ ≥ w k−1 · u∗ + γ

≥ w k−2 · u∗ + 2γ

...

≥ w 0 · u∗ + kγ

= kγ. (1)
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Next, we show that |w i+1|2 ≤ |w i |2 + R2 for any i ≥ 0. Consider the
violation point p used to change w from w i to w i+1:

Case 1: p has label 1. Thus, p ·w i < 0 and w i+1 = w i + p. Hence:

|w i+1|2 = w i+1 ·w i+1 = (w i + p) · (w i + p)

= w i ·w i + 2w i · p + |p|2

(by def. of R) ≤ |w i |2 + 2w i · p + R2

≤ |w i |2 + R2

where the last step used the fact that p ·w i < 0.

Case 2: p has label −1. The proof is similar and left to you.

Therefore:

|w k |2 ≤ |w k−1|2 + R2 ≤ |w k−2|2 + 2R2... ≤ |w 0|2 + kR2 = kR2. (2)
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From (1), we know:

|w k | = |w k ||u∗| ≥ w k · u∗ ≥ kγ.

Therefore, |w k |2 ≥ k2γ2. Comparing this to (2) gives:

kR2 ≥ k2γ2 ⇒

k ≤ R2

γ2
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We have learned how to obtain a linear classifier h with 0 empirical
error on S . Does h have a small generalization error errD(h)?
The answer is yes, but this does not follow from the generalization
theorem we currently have (think: why not?). In the next lecture,
we will discuss a more powerful generalization theorem that will
allow us to bound errD(h).
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