Relational Model 2: Relational Algebra

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Relational Model 2: Relational Algebra

- **→** → **→**

The relational model defines:

the format by which data should be stored;

2 the operations for querying the data.

We will focus on the second aspect in this lecture.

Relational algebra is a language for issuing queries on the data stored in a relation database.

Its core consists of 6 fundamental operations:

- Rename ρ
- Selection σ
- Projection Π
- Set union \cup
- Set difference -
- Cartesian product \times

Rename

Denoted by $\rho_s(T)$

- where T is a table, and s is a string.
- The output of the operation is a table *T'* that is exactly the same as *T*, but is named *s*.

pid	name	dept	rank	sal
p1	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
<i>p</i> 3	Calvin	CS	full	10000
<i>p</i> 4	Dorothy	EE	asst	5000
<i>p</i> 5	Emily	EE	asso	8500
<i>p</i> 6	Frank	CS	full	9000

 $\rho_{\text{LECT}}(\text{PROF})$ returns:

LECT

pid	name	dept	rank	sal
p1	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
<i>p</i> 3	Calvin	CS	full	10000
<i>p</i> 4	Dorothy	EE	asst	5000
<i>p</i> 5	Emily	EE	asso	8500
<i>p</i> 6	Frank	CS	full	9000

<ロ> <部> < 2> < 2> < 2> < 2> < 2</p>

Selection

Denoted by $\sigma_P(T)$

- where T is a table, and P is a predicate on the tuples of T.
- The output is a table T' such that
 - T' has the same schema as T'.
 - T' includes all and only the tuples in T satisfying P.

Each predicate can be

- a comparison using the following operators: =, \neq , <, \leq , >, \leq .
- multiple comparisons connected by \land (and), \lor (or) and \neg (not).

pid	name	dept	rank	sal
<i>p</i> 1	Adam	CS	asst	6000
<i>p</i> 2	Bob	EE	asso	8000
<i>p</i> 3	Calvin	CS	full	10000
<i>p</i> 4	Dorothy	EE	asst	5000
<i>p</i> 5	Emily	EE	asso	8500
<i>p</i> 6	Frank	CS	full	9000

 $\sigma_{\text{name}=\text{"Bob"}}(\text{PROF})$ returns:

pid	name	dept	rank	sal
<i>p</i> 2	Bob	EE	asso	8000

<ロ> <部> < 部> < き> < き> < き</p>

pid	name	dept	rank	sal
p1	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
р3	Calvin	CS	full	10000
<i>p</i> 4	Dorothy	EE	asst	5000
<i>p</i> 5	Emily	EE	asso	8500
<i>p</i> 6	Frank	CS	full	9000

 $\sigma_{\rm dept="EE"~\wedge~sal~>~7000}({\rm PROF})$ returns:

pid	name	dept	rank	sal
<i>p</i> 2	Bob	EE	asso	8000
<i>p</i> 5	Emily	EE	asso	8500

・ロト ・回ト ・ヨト ・ヨト

Projection

Denoted by $\Pi_A(T)$

- where T is a table, and A is a set of attributes in T.
- The output of the operation is a table T' such that
 - T' has all and only the attributes in A.
 - *T'* contains all the tuples of *T* after trimming the attributes not in *A*.
 - All duplicates (resulting from the trimming) are removed.

11101				
name	dept	rank	sal	
Adam	CS	asst	6000	
Bob	EE	asso	8000	
Calvin	CS	full	10000	
Dorothy	EE	asst	5000	
Emily	EE	asso	8500	
Frank	CS	full	9000	
	name Adam Bob Calvin Dorothy Emily Frank	namedeptAdamCSBobEECalvinCSDorothyEEEmilyEEFrankCS	namedeptrankAdamCSasstBobEEassoCalvinCSfullDorothyEEasstEmilyEEassoFrankCSfull	

 $\Pi_{\rm dept}({\rm PROF})$ returns:

dept CS EE

Relational Model 2: Relational Algebra

æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

pid	name	dept	rank	sal
<i>p</i> 1	Adam	CS	asst	6000
<i>p</i> 2	Bob	EE	asso	8000
<i>p</i> 3	Calvin	CS	full	10000
<i>p</i> 4	Dorothy	EE	asst	5000
<i>p</i> 5	Emily	EE	asso	8500
рб	Frank	CS	full	9000

 $\Pi_{\rm dept,\ rank}({\rm PROF})$ returns:

dept	rank
CS	asst
EE	asso
CS	full
EE	asst

▲御▶ ▲理▶ ▲理≯

Union

Denoted by $T_1 \cup T_2$

- where T_1 and T_2 are tables with the same schema.
- The output of the operation is a table T' such that
 - T' has the same schema as T_1 (and hence, T_2).
 - T' contains all the tuples of T_1 and T_2 , after removing duplicates.

▲ 同 ▶ → ● 三

pid	name	dept	rank	sal
p1	Adam	CS	asst	6000
<i>p</i> 2	Bob	EE	asso	8000
<i>p</i> 3	Calvin	CS	full	10000
<i>p</i> 4	Dorothy	EE	asst	5000
<i>p</i> 5	Emily	EE	asso	8500
<i>p</i> 6	Frank	CS	full	9000

 $\sigma_{sal} \leq 5000 (PROF) \cup \sigma_{sal} \geq 10000 (PROF)$ returns:

PROF				
pid	name	dept	rank	sal
<i>p</i> 3	Calvin	CS	full	10000
<i>p</i> 4	Dorothy	EE	asst	5000

御 と く き と く き と …

Set difference

Denoted by $T_1 - T_2$

- where T_1 and T_2 are tables with the same schema.
- The output of the operation is a table T' such that
 - T' has the same schema as T_1 (and hence, T_2).
 - T' contains all the tuples that appear in T_1 but not in T_2 .

pid	name	dept	rank	sal
p1	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
<i>p</i> 3	Calvin	CS	full	10000
<i>p</i> 4	Dorothy	EE	asst	5000
<i>p</i> 5	Emily	EE	asso	8500
<i>p</i> 6	Frank	CS	full	9000

 $\Pi_{\mathrm{rank}}(\sigma_{\mathrm{sal} \ge 8000}(\mathrm{PROF})) - \Pi_{\mathrm{rank}}(\sigma_{\mathrm{sal} \ge 9000}(\mathrm{PROF}))$ returns:

rank asso

.⊒ . ►

Cartesian product

Denoted by $T_1 \times T_2$

- where T_1 and T_2 are tables.
- The output of the operation is a table T such that
 - The schema of *T* includes all the attributes in *T*₁ and *T*₂ (if an attribute in *T*₁ has the same name as an attribute in *T*₂, they are treated as different attributes in *T*).
 - For every tuple t₁ ∈ T₁ and t₂ ∈ T₂, T contains a tuple t whose values are the same as t₁ (t₂) on the attributes from T₁ (T₂).

TEACH

\mathbf{pid}	name	\mathbf{dept}	\mathbf{rank}	sal		nid	cid	voor
<u>p1</u>	Adam	CS	asst	6000		più	Ciu	year
<u></u>	Dob	DD DD	0.000	8000		p1	c1	2011
p_{Z}	DOD	E/E/	asso	8000	-	n^2	c^2	2012
p3	Calvin	CS	full	10000		P=	0_	2012
p_4	Dorothy	EE	asst	5000		p_1	c2	2012
p5	Emily	EE	asso	8500				

 $\mathrm{PROF} \times \mathrm{TEACH}$ returns the table in the next slide.

<ロ> <部> < 部> < き> < き> < き</p>

pid	name	dept	rank	sal	pid	cid	year
<i>p</i> 1	Adam	CS	asst	6000	p_1	<i>c</i> ₁	2011
<i>p</i> 2	Bob	EE	asso	8000	p_1	<i>c</i> ₁	2011
р3	Calvin	CS	full	10000	p_1	<i>c</i> ₁	2011
<i>p</i> 4	Dorothy	EE	asst	5000	p_1	<i>c</i> ₁	2011
<i>p</i> 5	Emily	EE	asso	8500	p_1	<i>c</i> ₁	2011
<i>p</i> 1	Adam	CS	asst	6000	<i>p</i> ₂	<i>c</i> ₂	2012
<i>p</i> 2	Bob	EE	asso	8000	<i>p</i> ₂	<i>c</i> ₂	2012
р3	Calvin	CS	full	10000	<i>p</i> ₂	<i>c</i> ₂	2012
<i>p</i> 4	Dorothy	EE	asst	5000	<i>p</i> ₂	<i>c</i> ₂	2012
<i>p</i> 5	Emily	EE	asso	8500	<i>p</i> ₂	<i>c</i> ₂	2012
<i>p</i> 1	Adam	CS	asst	6000	p_1	<i>c</i> ₂	2012
<i>p</i> 2	Bob	EE	asso	8000	p_1	<i>c</i> ₂	2012
<i>p</i> 3	Calvin	CS	full	10000	p_1	<i>c</i> ₂	2012
<i>p</i> 4	Dorothy	EE	asst	5000	p_1	<i>c</i> ₂	2012
<i>p</i> 5	Emily	EE	asso	8500	p_1	<i>c</i> ₂	2012

▲ロト ▲御 と ▲注 と ▲注 と 三注